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Abstract

We study special linear systems called “very special” whose dimension does

not satisfy a Clifford type inequality given by Huisman. We classify all these very

special linear systems when they are compounded of an involution. Examples

of very special linear systems that are simple are also given.

1 Introduction and preliminaries

1.1 Introduction

In this note, a real algebraic curve X is a smooth proper geometrically integral scheme
over R of dimension 1. A closed point P of X will be called a real point if the residue
field at P is R, and a non-real point if the residue field at P is C. The set of
real points X(R) of X decomposes into finitely many connected components, whose
number will be denoted by s. By Harnack’s Theorem ([5, Th. 11.6.2 p. 245]) we
know that s ≤ g +1, where g is the genus of X . A curve with g +1−k real connected
components is called an (M − k)-curve. Another topological invariant associated to
X is a(X), the number of connected components of X(C) \ X(R) counted modulo 2.
The pair (s, a(X)) is referred to as the topological type of X . A theorem of Klein
asserts that there exists real curves of genus g with topological type (s, a) if and only
if the integers g, s and a obey the following restrictions:

Proposition 1.1 [13]

1) If a(X) = 0, then 1 ≤ s ≤ g + 1 and s = g + 1 mod 2.

2) If a(X) = 1, then 0 ≤ s ≤ g.

The group Div(X) of divisors on X is the free abelian group generated by the
closed points of X . If D is a divisor on X , we will denote by O(D) its associated
invertible sheaf. The dimension of the space of global sections of this sheaf will be
denoted by ℓ(D). Since a principal divisor has an even degree on each connected
component of X(R) (e.g. [10] Lem. 4.1), the number δ(D) (resp. β(D)) of connected
components C of X(R) such that the degree of the restriction of D to C is odd (resp
even) is an invariant of the linear system |D| associated to D. If ℓ(D) > 0, the
dimension of the linear system |D| is dim |D| = ℓ(D) − 1. Let K be the canonical
divisor. If ℓ(K − D) = dimH1(X,O(D)) > 0, D is said to be special. If not, D is
said to be non-special. By Riemann-Roch, if deg(D) > 2g − 2 then D is non-special.
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Assume D is effective of degree d. If D is non-special then the dimension of the linear
system |D| is given by Riemann-Roch. If D is special, then the dimension of the
linear system |D| satisfies

dim |D| ≤
1

2
d.

This is the well known Clifford inequality for complex curves that works also for real
curves.

Huisman ([12, Th. 3.2]) has shown that:

Theorem 1.2 Assume X is an M -curve or an (M − 1)-curve. Let D ∈ Div(X) be
an effective and special divisor of degree d. Then

dim |D| ≤
1

2
(d − δ(D)).

Huisman inequality is not valid for all real curves and the author has obtained the
following theorem.

Theorem 1.3 [14, Th. A] Let D be an effective and special divisor of degree d. Then
either

dim |D| ≤
1

2
(d − δ(D)) (Clif1)

or

dim |D| ≤
1

2
(d − β(D)) (Clif2)

Moreover, D satisfies the inequality (Clif 1) if either s ≤ 1 or s ≥ g.

In this note we are interested in special divisors that do not satisfy the inequality
(Clif1) given by Huisman.

Definition 1.4 Let D be an effective and special divisor of degree d. We say that D
is a very special divisor (or |D| is a very special linear system) if D does not satisfy
the inequality (Clif 1) i.e. dim |D| > 1

2 (d − δ(D)).

In the previous cited paper, the author has obtained a result in this direction.

Theorem 1.5 [14, Th. 2.18] Let D be a very special and effective divisor of degree
d on a real curve X such that (Clif 2) is an equality i.e.

r = dim |D| =
1

2
(d − β(D)) >

1

2
(d − δ(D))

then X is an hyperelliptic curve with δ(g1
2) = 2 and |D| = rg1

2 with r odd.

The author wishes to express his thanks to D. Naie and M. Coppens for several
helpful comments concerning the paper.

1.2 Preliminaries

We recall here some classical concepts and notation we will be using throughout the
paper.

Let X be a real curve. We will denote by XC the base extension of X to C. The
group Div(XC) of divisors on XC is the free abelian group on the closed points of XC.
The Galois group Gal(C/R) acts on the complex variety XC and also on Div(XC). We
will always indicate this action by a bar. Identifying Div(X) and Div(XC)Gal(C/R), if
P is a non-real point of X then P = Q + Q̄ with Q a closed point of XC.
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Let D ∈ Div(X) be a divisor with the property that O(D) has at least one nonzero
global section. The linear system |D| is called base point free if ℓ(D − P ) 6= ℓ(D) for
all closed points P of X . If not, we may write |D| = E + |D′| with E a non zero
effective divisor called the base divisor of |D|, and with |D′| base point free. A closed
point P of X is called a base point of |D| if P belongs to the support of the base
divisor of |D|. We note that

dim |D| = dim |D′|.

As usual, a gr
d is an r-dimensional complete linear system of degree d on X . Let |D|

be a base point free gr
d on X . The linear system |D| defines a morphism ϕ : X → Pr

R

onto a non-degenerate (but maybe singular) curve in Pr
R
. If ϕ is birational (resp. an

isomorphism) onto ϕ(X), the gr
d (or D) is called simple (resp. very ample). Let X ′

be the normalization of ϕ(X), and assume D is not simple i.e. |D − P | has a base
point for any closed point P of X . Thus, the induced morphism ϕ : X → X ′ is a
non-trivial covering map of degree k ≥ 2. In particular, there exists D′ ∈ Div(X ′)
such that |D′| is a gr

d

k

and such that D = ϕ∗(D′), i.e. |D| is induced by X ′. If g′

denote the genus of X ′, |D| is classically called compounded of an involution of order
k and genus g′. In the case g′ > 0, we speak of an irrational involution on X .

The reader is referred to [1] and [11] for more details on special divisors. Concern-
ing real curves, the reader may consult [10]. For a ∈ R we denote by [a] the integral
part of a, i.e. the biggest integer ≤ a.

2 Non-simple very special divisors

We first characterize the very special pencils.

Proposition 2.1 Let D be a very special divisor of degree d > 0 such that dim |D| =
1. Then D = P1 + . . . + Ps with P1, . . . , Ps some real points of X such that no two of
them belong to the same connected component of X(R) i.e. d = δ(D) = s. Moreover
D is base point free.

Proof : Since D is special, we may assume that D is effective. Consequently,
d ≥ δ(D) and since dim |D| = 1 > 1

2 (d − δ(D)) we have d = δ(D) and dim |D| = 1 =
1
2 (d − δ(D)) + 1.

Since d = δ(D), D = P1 + . . . + Pd with P1, . . . , Pd some real points of X such
that no two of them belong to the same connected component of X(R).

Assume d < s. Choose a real point P in one of the s−d real connected components
that do not contain any of the points P1, . . . , Pd. Since ℓ(D) = 2 then O(D−P ) has a
nonzero global section and D−P should be linearly equivalent to an effective divisor
D′ of degree d − 1 satisfying δ(D′) = d + 1. This is impossible.

So d = s and suppose |D| is not base point free. If |D| has a real base point P , then
dim |D−P | = 1 and deg(D−P ) = δ(D−P ) = s− 1, contradicting the case d < s. If
|D| has a non-real base point Q, then ℓ(D−Q) > 0 and D−Q is linearly equivalent to
an effective divisor D′ of degree s− 2 satisfying δ(D′) = s, which is again impossible.

⊓⊔

From the previous proposition, we get the the following corollary:

Corollary 2.2 Let D be a divisor of degree d > 0 such that D = P1 + . . . + Pd with
P1, . . . , Pd real points of X such that no two of them belong to the same connected
component of X(R). Then dim |D| = 0 if d < s and dim |D| ≤ 1 if d = s.
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The following lemma will allow us to restrict the study to base point free linear
systems.

Lemma 2.3 Let D ∈ Div(X) be an effective divisor of degree d. Let E be the
base divisor of |D|. Let |D′| = |D − E| be the degree d′ base point free part of
|D|. If dim |D′| ≤ 1

2 (d′ − δ(D′)) + k for a non-negative integer k, then dim |D| ≤
1
2 (d − δ(D)) + k.

Proof : Write D = D′ + E where E is the base divisor of |D|. Assume D′ ∈ Div(X)
is an effective divisor of degree d′ satisfying

dim |D′| ≤
1

2
(d′ − δ(D′)) + k

for a non-negative integer k. Since dim |D| = dim |D′| and E is effective, we have
δ(D′ + E) ≤ δ(D′) + deg(E). Then dim |D| = dim |D′ + E| ≤ 1

2 (d′ − δ(D′)) + k ≤
1
2 (deg(D′)+deg(E)− δ(D′)−deg(E))+ k ≤ 1

2 (deg(D′ +E)− δ(D′ +E))+ k proving
the lemma. ⊓⊔

Let D be a special divisor. Recall that δ(D) = δ(K − D) and that β(D) =
β(K − D). The next lemma will allow us to study very special divisors of degree
≤ g − 1.

Lemma 2.4 Let D ∈ Div(X) be an effective and special divisor of degree d. If
dim |D| = 1

2 (d − δ(D)) + k for a positive integer k, then dim |K − D| = 1
2 (deg(K −

D) − δ(K − D)) + k.

Proof : It is a straightforward calculation using Riemann-Roch. ⊓⊔

We can establish one of the main result of the paper.

Theorem 2.5 Let D be a non-simple very special divisor of degree d. Then

δ(D) = s

and

dim |D| =
1

2
(d − δ(D)) + 1.

Moreover D is base point free.

Proof : We prove, by induction on dim |D|, the theorem for a base point free non-
simple very special divisor.

Let D be a base point free non-simple divisors of degree d such that dim |D| =
r > 1

2 (d − δ(D)). Since D is special, we may assume D effective.
If r = 1, Proposition 2.1 gives the result.
Assume r > 1. Consider the map ϕ : X → Pr

R
associated to |D|. Let X ′ be the

normalization of ϕ(X). Then the induced morphism ϕ : X → X ′ is a non-trivial
covering map of degree t ≥ 2 and there is D′ ∈ Div(X ′) such that |D′| is a gr

d

t

and

such that D = ϕ∗(D′).
Assume δ(D) < s. Let P be a point of a connected component of X(R) where the

degree of the restriction of D is even. Since r ≥ 1, we may assume D − P effective.
Since P is real, P ′ = ϕ(P ) is real. Let D1 = D − ϕ∗(P ′) and denote by d1 = d − t
its degree. Then D1 is non-simple and effective since D1 = ϕ∗(D′ − P ′). Moreover
dim |D1| = dim |D − P | = r − 1. Since dim |D − P | = r − 1 = 1

2 (d − δ(D)) + 1 − 1 =

4



1
2 (d − 1 − (δ(D) + 1)) + 1 = 1

2 (deg(D − P ) − δ(D − P )) + 1, we see that D − P is
a very special divisor. By Lemma 2.3, D1 is also very special. Since D is base point
free, then D′ is base point free. Choosing P such that D′ −P ′ is base point free then
D1 is base point free since dim |D1 = ϕ∗(D′ − P ′)| = dim |D′ − P ′|. By induction,
δ(D1) = s and dim |D1| = r − 1 = 1

2 (d1 − s) + 1 i.e.

r =
1

2
(d1 − s) + 2. (1)

Remark that d ≥ d1 + 2 (ϕ is non-trivial) and δ(D) ≤ s − 1. If δ(D) = s − 1 then
d ≥ d1 + 3, since δ(D1) = s and deg(ϕ∗(P ′)) ≥ 2. Hence we get r > 1

2 (d − δ(D)) ≥
1
2 (d1 +3−δ(D)) = 1

2 (d1 +3−s+1) = 1
2 (d1−s)+2 contradicting (1). If δ(D) < s−1,

we get r > 1
2 (d − δ(D)) ≥ 1

2 (d1 + 2 − δ(D)) ≥ 1
2 (d1 + 2 − s + 2) = 1

2 (d1 − s) + 2
contradicting (1).

We have just proved that δ(D) = s. Now assume r ≥ 1
2 (d − s) + 2. Let P be a

real point. Let D1 be the divisor of degree d1 constructed as in the above proof that
δ(D) = s. Since dim |D−P | = r− 1 ≥ 1

2 (d− s)+ 2− 1 = 1
2 (d− 1− (δ(D)− 1))+ 1 =

1
2 (deg(D−P )−δ(D−P ))+1, we see that D−P is a very special divisor. By Lemma
2.3, D1 is also very special. For a general choice of P , D1 is also base point free. By
induction, δ(D1) = s and dim |D1| = r − 1 = 1

2 (d1 − s) + 1 since D1 is non-simple
and base point free. Since d ≥ d1 + 2 then r = 1

2 (d1 − s) + 2 = 1
2 (d1 + 2 − s) + 1 ≤

1
2 (d − δ(D)) + 1, impossible.

We have proved the theorem in the case of base point free divisors. Let D be a
non-simple very special divisor. If D has base point, with the previous notation, it
means that D′ has base point. Write D = D2 + E where E is the base divisor of |D|.
Since D = ϕ∗(D′) and dim |D| = dim |D′|, we have E = ϕ∗(E′) where E′ is the base
divisor of |D′|, it means that D2 is also non-simple. By Lemma 2.3 and the proof for
base point free divisors, D2 ∈ Div(X) is an effective divisor of degree d2 satisfying
dim |D2| = r = 1

2 (d2 − δ(D2))+1 and δ(D2) = s. Let e denote the degree of E. Since
dim |D2| = 1

2 (d2− δ(D2))+1 and since D is very special, we have r = 1
2 (d− δ(D))+1

by Lemma 2.3. But r = 1
2 (d2−s)+1, hence d−d2 = e = δ(D)−s ≤ 0. Consequently,

e = 0 and δ(D) = s, i.e. D is base point free. ⊓⊔

3 Very special nets

A net is a linear system of dimension 2 i.e. a g2
d.

We recall some classical definitions concerning real curves in projective spaces.
Let X ⊆ Pr

R
, r ≥ 2, be a real curve. X is non-degenerate if X is not contained in

any hyperplane of Pr
R
. In what follows, X is supposed to be non-degenerate. Let C

be a connected component of X(R). The component C is called a pseudo-line if the
canonical class of C is non-trivial in H1(P

r
R
(R), Z/2). Equivalently, C is a pseudo-line

if and only if for each real hyperplane H , H(R) intersects C in an odd number of
points, when counted with multiplicities (see [12]).

Before looking at very special nets, we need some lemmas concerning morphisms
between real curves and very special divisors.

Lemma 3.1 Let ϕ : X → X ′ be a covering map of degree t between two real curves
X and X ′.

(i) If P ′ is a real point of X ′ then ϕ−1(P ′) can contain real and non-real points.

(ii) If Q′ is a non-real point of X ′ then ϕ−1(Q′) is totally non-real.
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(iii) The image by ϕ of a connected component C of X(R) is either a connected com-
ponent of X ′(R), or a compact connected semi-algebraic subset of a connected
component C′ of X ′(R) corresponding topologically to a closed interval of C′.

The proof of the lemma is trivial.

Lemma 3.2 Let ϕ : X → X ′ be a covering map of degree t between two real curves
X and X ′. Let P be a real point of X(R) contained in a connected component C of
X(R). Let C′ denote the connected component of X ′(R) containing P ′ = ϕ(P ). If
deg(ϕ∗(P ′) ∩ C) is odd then ϕ(C) = C′.

Proof : Suppose ϕ(C) is not a connected component of X ′(R). Then ϕ(C),
corresponds topologically to a closed interval of a connected component of X ′(R).
Let P ′

1 be one of the two end-points of this interval. Let P1 ∈ ϕ−1(P ′
1)∩C. Then the

ramification index eP1
is even since C is clearly on one side of the fiber ϕ−1(P ′

1). Hence
deg(ϕ∗(P ′

1) ∩ C) is even. It is impossible since deg(ϕ∗(P ′
1) ∩ C) = deg(ϕ∗(P ′) ∩ C)

mod 2. ⊓⊔

The following lemma is a generalization of a lemma due to Huisman [12].

Lemma 3.3 Let D ∈ Div(X) be a divisor of degree d such that ℓ(D) > 0. Assume
that d + δ(D) < 2s + 2k with k ∈ N. Then

dim |D| ≤
1

2
(d − δ(D)) + k.

Proof : We proceed by induction on k. The case k = 0 is given by Lemma [12]. So,
assume that k > 0 and that d+ δ(D) < 2s+2k. Since ℓ(D) > 0, we may assume that
D is effective. If d+δ(D) < 2s+2k−2, the proof is done by the induction hypothesis.
Since d = δ(D) mod 2, we assume that d + δ(D) = 2s + 2k− 2. Let Q be a non-real
point. Since deg(D−Q)+δ(D−Q) < 2s+2k−2 and δ(D−Q) = δ(D), if ℓ(D−Q) > 0
then, using the induction hypothesis, dim |D−Q| ≤ 1

2 (deg(D−Q)−δ(D−Q))+k−1 =
1
2 (d − 2 − δ(D)) + k − 1. Hence dim |D| ≤ dim |D − Q| + 2 ≤ 1

2 (d − δ(D)) + k. If
ℓ(D−Q) = 0 then dim |D| ≤ 1 ≤ 1

2 (d− δ(D)) + k, since we have k > 0 and d ≥ δ(D)
(D is effective). ⊓⊔

The following proposition shows that the excess can be bounded in terms of r for
linear systems of dimension r which do not satisfy (Clif 1).

Proposition 3.4 Let D be an effective and special divisor of degree d on a real curve
X. Assume that r = dim |D| = 1

2 (d − δ(D)) + k + 1. Then k ≤ [ r−1
2 ].

Proof : Assume r = 2n − ε with ε ∈ {0, 1}. We proceed by induction on n.
If r = 1, we get 2 = d − δ(D) + 2k + 2. Since d ≥ δ(D), we have k = 0 and

d = δ(D).
If r = 2, we get 4 = d − δ(D) + 2k + 2 i.e. 2 = d − δ(D) + 2k. If k ≥ 1, we

must have d = δ(D), hence d + δ(D) ≤ 2s. But Lemma 3.3 says that k = 0, which is
impossible. So k = 0 and d = δ(D) + 2.

Assume n > 1 and k > 0. Choose two real points P1, P2 in the same real connected
component such that dim |D − P1 − P2| = r − 2. Then r − 2 = 2(n − 1) − ε =

1
2 ((d−2)−δ(D−P1−P2))+(k−1)+1. By the induction hypothesis, (k−1) ≤

[

(r−2)−1
2

]

i.e.

k ≤

[

r − 1

2

]

.
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⊓⊔

The following theorem is the main result of this section.

Theorem 3.5 If D is a very special divisor then dim |D| 6= 2.

Proof : Let D be a very special divisor such that dim |D| = 2. By Lemma 2.3, we
can assume D is base point free. By Proposition 3.4 we get 2 = 1

2 (d − δ(D)) + 1,
i.e. d = δ(D) + 2. By Lemma 3.3, we have d + δ(D) ≥ 2s. Hence δ(D) ≥ s − 1 and
we have two possibilities: either d = s+2 and δ(D) = s, or d = s+1 and δ(D) = s−1.

First, assume D is simple. In this case, X is mapped birationally by ϕ—associated
to |D|—onto a curve of degree d in P2

R
. By the genus formula,

g =
1

2
(d − 1)(d − 2) − µ,

with µ the multiplicity of the singular locus of ϕ(X). If d = s+2, we know that ϕ(X)
has exactly s pseudo-lines. Since any two distinct pseudo-lines of ϕ(X) intersect each
other, we have µ ≥ 1

2 (s−1)(s). By the genus formula, g ≤ 1
2 (s+1)(s)− 1

2 (s−1)(s) = s.
Hence X is an M -curve or an (M − 1)-curve and Theorem 1.2 gives a contradiction.
If d = s + 1, we similarly find g ≤ s − 1. Hence X is an M -curve and Theorem 1.2
leads again to a contradiction.

Second, assume D is not simple. By Theorem 2.5, δ(D) = s and 2 = 1
2 (d − s) + 1

i.e. d = s + 2. Consider the map f : X → Pr
R

associated to |D|. Let X ′ be the
normalization of f(X). Then the induced morphism ϕ : X → X ′ is a non-trivial
covering map of degree t ≥ 2 and there is D′ ∈ Div(X ′) such that |D′| is a gr

d

t

and

such that D = ϕ∗(D′). Let C1, . . . , Cs denote the connected components of X(R).
Since dim |D| = 2, we may assume D = P1 + . . . + Ps + R1 + T1 with Pi, Ri, Ti ∈ Ci.
Since the support of D is totally real, Lemma 3.1 implies that the support of D′ is
totally real. By Lemma 3.2, ϕ(Ci) is a connected component of X ′(R) for i ≥ 2.

Suppose t = 2. The points P1, R1, T1 verify that no two of them belong to the
same fiber over the points of D′ because if it is not the case the degree mod 2 of the
restriction of the fiber to C1 is not constant. Hence we may assume that we have 3
points P ′

1, R′
1, T ′

1 of the support of D′ contained in the same connected component
C′ of X ′(R) such that ϕ∗(P ′

1) = P1 + P2, ϕ∗(R′
1) = R1 + P3, ϕ∗(T ′

1) = T1 +P4. Then
by Lemma 3.2, ϕ(C1) = ϕ(C2) = ϕ(C3) = ϕ(C4) = C′ which is clearly impossible
since it would imply that P2, P3, P4 belong to the same connected component.

Suppose t ≥ 3. Arguing similarly to the case t = 2, we conclude that ϕ(P1) =
ϕ(R1) = ϕ(T1). Hence the degree of the restriction to a connected component of
X(R) of a fiber over a point from the support of D′ is either empty or of odd degree.
By Lemma 3.2, ϕ(X(R)) is a union of connected components of X ′(R). Moreover,
since ϕ(P1) = ϕ(R1) = ϕ(T1) and since no two points among P1, . . . , Ps belong to
the same connected component of X(R), we get that deg(D′) = δ(D′). The support
of D′ consists on a single point in each connected component of ϕ(X(R)). Corollary
2.2 says that dim |D′| = dim |D| ≤ 1, which is again impossible. ⊓⊔
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4 Construction of the non-simple very special divi-

sors

We recall the definition of a g′-hyperelliptic curve (see [9, p. 249]). A curve X is called
g′-hyperelliptic if there exists ϕ : X → X ′ a non-trivial covering map of degree 2 such
that the genus of X ′ is g′. Classical hyperelliptic curves correspond to 0-hyperelliptic
curves.

In this section, we prove that the non-simple very special linear systems of
dimension r > 1 are lying on some “very special” g′-hyperelliptic curves and its
converse.

Theorem 4.1 Let D be a non-simple very special divisor of degree d such that
dim |D| = r > 1. Let ϕ : X → X ′ be the non-trivial covering map of degree t ≥ 2
induced by |D| such that there is D′ ∈ Div(X ′) of degree d′ such that |D′| is a gr

d

t

and such that D = ϕ∗(D′). Let g′ denote the genus of X ′ and let s′ be the number of
connected components of X ′(R). Then

(i) D is base point free, r = 1
2 (d − s) + 1 and δ(D) = s;

(ii) t = 2 i.e. X is a g′-hyperelliptic curve;

(iii) s is even, s′ = s
2 , ϕ(X(R)) = X ′(R), the inverse image by ϕ of each connected

component of X ′(R) is a disjoint union of 2 connected components of X(R);

(iv) r is odd and δ(D′) = s′;

(v) D′ is a base point free non-special divisor and X ′ is an M -curve;

(vi) D′ is linearly equivalent to an effective divisor P ′
1 + . . . + P ′

s′ + R′
1,2 + · · ·+ R′

1,r

with P ′
i , R

′
i,j ∈ C′

i such that dim |P ′
1 + . . .+P ′

s′ | = 1 and such that R′
1,2, . . . , R

′
1,r

are general in C′
1, where C′

1, . . . , C
′
s′ = C′

s

2

denote the connected components of

X ′(R);

(vii) a(X) = 0 and g is odd;

(viii) there is a very special pencil on X: |ϕ∗(P ′
1 + . . . + P ′

s′)|.

Proof : We keep the notation and the hypotheses of the theorem. Theorem 2.5 gives
statement (i).

Assume t ≥ 3. Let Q′ be a non-real point of X ′. Since r > 2 (by Theorem
3.5), we may assume Q′ in the support of D′. By Lemma 3.1, δ(ϕ∗(Q′)) = 0. Let
D1 = D − ϕ∗(Q′) and let d1 denote its degree. We have dim |D1| = dim |D′ − Q′| =
r−2 = 1

2 (d−s)+1−2 = 1
2 (d−4−s)+1 > 1

2 (d−2t−s)+1 = 1
2 (deg(D1)−δ(D1))+1.

Theorem 2.5 says that this is not possible and then statement (ii) is proved.
Since t = 2 then d = 2d′. Since r = 1

2 (d − s) + 1 we see that s is even. Suppose
ϕ(X(R)) 6= X ′(R). Using Lemma 3.2, there exists a real point P ′ of X ′(R) such that
ϕ−1(P ′) is non-real. Let D1 = D−ϕ∗((r−2)P ′) and let d1 denote its degree. Choosing
P ′ sufficiently general, dim |D1| = dim |D′ − (r − 2)P ′| = 2 = 1

2 (d− s) + 1− (r− 2) =
1
2 (d − 2r + 4 − s) + 1 = 1

2 (deg(D1) − δ(D1)) + 1. Theorem 3.5 says that this is not
possible, hence ϕ(X(R)) = X ′(R).

If C′ is a connected component of X ′(R), we have two possibilities for the inverse
image by ϕ of C′: either ϕ−1(C′) is a disjoint union of 2 connected components of
X(R), or ϕ−1(C′) is a connected component of X(R). In the second case, choosing
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a real point P ′ of C′, we can prove as above that D1 = D − ϕ∗((r − 2)P ′) is a very
special divisor such that dim |D1| = 2, contradicting Theorem 3.5. Hence the inverse
image by ϕ of each connected component of X ′(R) is a disjoint union of 2 connected
components of X(R). Consequently s′ = s

2 and δ(D) = 2δ(D′). Since δ(D) = s, we
have δ(D′) = s′.

We claim that r is odd. Indeed, if r is even, choosing a non-real point Q′ of X
then we can prove as above that D1 = D − ϕ∗( r−2

2 Q′) is a very special divisor such
that dim |D1| = 2, again impossible by Theorem 3.5 establishing the claim.

So r is odd. We can choose general points R′
1,2, . . . , R

′
1,r in C′

1 such that
ℓ(D′−(R′

1,2+· · ·+R′
1,r)) = 2. Since deg(D′−(R′

1,2+· · ·+R′
1,r)) = r−1+ s

2−(r−1) = s′,
we may assume that there are real points P ′

1, . . . , P
′
s′ such that P ′

i ∈ C′
i, D′ =

P ′
1+. . .+P ′

s′+R′
1,2+· · ·+R′

1,r and dim |P ′
1+. . .+P ′

s′ | = 1. Moreover, |ϕ∗(P ′
1+. . .+P ′

s′)|
is a very special pencil. We have proved the statements (vi) and (viii).

The divisor D′ is non-special. If D′ were special, D′
1 = P ′

1 + . . .+P ′
s′ +R′

1,2 would
be special as a subdivisor of D′. Moreover dim |D′

1| = 2 by the above construction.
But dim |D′

1| = 1
2 (deg(D′

1) − δ(D′
1)) + 1, hence D′

1 would be a very special divisor
such that dim |D′

1| = 2, a contradiction.
Since D′ is non-special, dim |D′| = r = 1

2d − 1
2s + 1 = d′ − s′ + 1 = d′ − g′ by

Riemann-Roch. Hence s′ = g′ + 1 and X ′ is an M -curve.
Since X ′ is an M -curve, a(X ′) = 0 (see Proposition 1.1). Since ϕ−1(X ′(R)) =

X(R) then ϕ(X(C) \X(R)) = X ′(C) \X ′(R). If X(C) \X(R) is connected then also
X ′(C) \ X ′(R), impossible. Hence a(X) = 0. Since a(X) = 0 and s is even then g is
odd by Proposition 1.1. ⊓⊔

Corollary 4.2 If X has a non-simple very special divisor then a(X) = 0.

Proof : Let D be a non-simple very special divisor of degree d such that dim |D| = r.
If r > 1, Theorem 4.1 gives the result. If r = 1, let ϕ : X → P1

R
be the morphism

induced by |D|. By Lemma 2.1, we have ϕ−1(P1
R
(R)) = X(R). Since a(P1

R
) = 0, we

easily get a(X) = 0. ⊓⊔

Remark 4.3 By Theorem 4.1, if there is a non-simple very special divisor D on X
such that dim |D| > 1 then there is a very special pencil on X . The converse is not
true. For example, let X be real trigonal curve such that δ(g1

3) = 3. By [10, p. 179],
such a trigonal curve exists. The g1

3 is very special and we get s = 3 by Proposition
2.1. Since s is odd, Theorem 4.1 says that there is not a non-simple very special
divisor D on X such that dim |D| > 1.

Remark 4.4 In the situation of Theorem 4.1, if in addition the genus of X ′ is 0,
then X is an hyperelliptic curve with δ(g1

2) = 2 and |D| = rg1
2 with r odd. Such

hyperelliptic curves exist (see [14, Rem. 2.11]) for any odd genus g ≥ 3 and such very
special divisors have already been studied in this particular case, they correspond to
the extremal cases in [14, Th. 2.18].

In the rest of the section, we prove the converse of Theorem 4.1. We first put a
name on the curves appearing in Theorem 4.1.

Definition 4.5 A curve X of genus g is a very special g′-hyperelliptic curve if g is
odd and if there exists ϕ : X → X ′ a non-trivial covering map of degree 2 such that
X ′ is an M -curve of genus g′ and the inverse image by ϕ of any connected component
of X ′(R) is the union of two connected components of X(R) i.e. X satisfies all the
topological properties of Theorem 4.1.
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The existence of very special g′-hyperelliptic curves of odd genus g is proved in
[3].

Proposition 4.6 [3]
Let g′, g be natural numbers, g ≥ 2. For each odd g, and each g′ verifying
2g′ + 2 ≤ g + 1, there exists a very special g′-hyperelliptic curve of genus g.

Proof : The existence of very special g′-hyperelliptic curves of odd genus g is not
explicitely written in [3]. We explain here how to deduce from [3, Th. 2] and from
the proof of [3, Thm. 2] the existence of these curves.

Let g′, g be natural numbers, g ≥ 2. By [3, Th. 2], if 2g′ + 2 ≤ g + 1, there
exists a g′-hyperelliptic curve X of genus g whose real part has s = 2g′ + 2 connected
components. Furthemore a(X) = 0.

Now assume g odd. We have to look at the proof of [3, Th. 2] in order to
see if wether or not the curve X built in this proof is very special. The curve X
is very special if the number of connected components of X ′(R) is g′ + 1 and if
ϕ : X → X ′ has no real branch point. These two conditions are satisfied (see the case
(b1) p. 280 of the proof of [3, Th. 2] and see [2] for an explanation of the notations).

⊓⊔

Since we have the existence of very special g′-hyperelliptic curves of odd genus g
verifying 2g′ + 2 ≤ g + 1, we prove now the converse of Theorem 4.1 on these very
special curves.

Proposition 4.7 Let X be a very special g′-hyperelliptic curves of odd genus g
such that 2g′ + 2 ≤ g. Let ϕ : X → X ′ denote the corresponding non-trivial
covering map of degree 2. Let C′

1, . . . , C
′
g′+1 denote the connected components of

X ′(R). Let P ′
1, . . . , Pg′+1 be some real points of X ′(R) such that P ′

i ∈ C′
i. If

r ≥ 2, let R′
1,2, . . . , R

′
1,r be general points in C′

1. We set D′
1 = P ′

1 + . . . + P ′
g′+1,

D′
r = P ′

1 + . . . + P ′
g′+1 + R′

1,2 + · · · + R′
1,r for r ≥ 2, and Dr = ϕ∗(D′

r).
For any odd r such that

1 ≤ r ≤ g − 2g′ − 1

choosing the general points R′
1,2, . . . , R

′
1,r such that the two real points of ϕ−1(R′

1,j)
are not base points of K − Dj−1, 2 ≤ j ≤ r, then Dr is a non-simple very special
divisor such that dim|Dr| = r.

Proof : If g′ = 0 i.e. X is hyperelliptic and ϕ is the hyperelliptic map, then [14,
Prop. 2.10] gives the result for any choice of R′

1,2, . . . , R
′
1,r.

For the rest of the proof, we assume g′ > 0.
Claim 1: |D1| is a very special pencil since 2g′ + 2 ≤ g.
We consider the linear system |D1|. By Riemann-Roch, we have dim|D′

1| ≥ 1 hence
dim|D1| ≥ 1. In fact dim|D1| = 1 by Corollary 2.2 and since the support of D1 consists
of exactly one point in each connected component of X(R). If D1 is non-special, then

dim|D1| = 1 = s − g = 2g′ + 2 − g

by Riemann-Roch. We get a contradiction with the hypothesis 2g′ + 2 ≤ g.
Claim 2: If 2 ≤ r ≤ g − 2g′ − 1 then Dr is special for any choice of R′

1,2, . . . , R
′
1,r.

By Riemann-Roch dim|Dr| ≥ dim|D′
r| ≥ r. Hence dim|Dr| = r + l with an integer

l ≥ 0. Assume Dr non-special. We get r + l = 2g′ + 2r − g by Riemann-Roch, i.e.
r = g − 2g′ + l, a contradiction.

10



Now we prove by induction on r ≥ 1 that dim|Dr| = r.
If r = 1, Claim 1 gives the result. Now suppose 2 ≤ r + 1 ≤ g − 2g′ − 1. By Claim 2,
Dr+1 is special. Notice that Dr is also special since Dr is an effective subdivisor of
Dr+1. By the induction hypothesis, we get dim|Dr| = r. Let ϕ∗(R′

1,r+1) = R1 + R2

then Dr+1 = Dr +R1+R2. Assume dim|Dr+1| > r+1 then clearly dim|Dr+1| = r+2.
Moreover dim|Dr +R1| = r+1 and Dr +R1 is special since it is an effective subdivisor
of Dr+1. Let K denote the canonical divisor of X . Since dim|Dr +R1| = dim|Dr|+1,
then R1 is a base point of |K − Dr| contradicting the general choice of R′

1,r+1 and
finishing the induction.

If
1 ≤ r ≤ g − 2g′ − 1,

then, by Claim 1, Claim 2 and the induction argument with the points R′
1,2, . . . , R

′
1,r

general, Dr is special and non-simple such that dim|Dr| = r. If r is odd, it is easy to
see that dim|Dr| = 1

2 (deg(Dr) − δ(Dr)) + 1 and the proof is done. ⊓⊔

Coppens has made the following remark concerning a consequence of Proposition
4.7.

Corollary 4.8 For any odd g ≥ 2 and any even 0 < d < g, there exists a real curve
X of genus g with a very special pencil of degree d.

One interesting question of Coppens is wether the result of Corollary 4.8 is also
valid for even genus. Using a result in [4], we give a partial answer to that question.

Proposition 4.9 Let g ≥ 2. For any 0 < d < g such that there exists an integer
k ≥ 2 with g = (k − 1)(d − 1), there exists a real curve X of genus g with a very
special pencil of degree d.

Proof : If
g − 1 − (k − 1)d + k = 0

i.e. if g = (k − 1)(d − 1), by [4][Prop. 2], there exists a real curve X of genus g
with d real connected components with a cyclic morphism f : X → P1

R
having only

ramification points of index d over k non-real points of P1
R
. Clearly, f corresponds to

a very special pencil of degree d. ⊓⊔

A consequence of the previous Proposition is a different proof of a Gross and
Harris [10, p. 179] result mentioned in Remark 4.3 of the previous section, concerning
the existence of trigonal curves with a very special pencil.

Corollary 4.10 For every even g ≥ 4, there exists a real trigonal curves of genus g
with a g1

3 very special.

5 Simple very special divisors and very special

curves in some projective spaces

In this section, we prove the existence of simple very special divisors.

Proposition 5.1 Let X be a real trigonal curve and let D be a divisor on X such
that:
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(i) |D| = g1
3,

(ii) δ(g1
3) = 3,

(iii) g ≥ 5.

Then, the base point free part D′ of K − D is a simple very special divisor with
dim |D′| = g − 3. Moreover g is even and s = 3.

Proof : As we have already noticed in Corollary 4.10 such a trigonal curve with
δ(g1

3) = 3 exists. Since g ≥ 5, the g1
3 is unique. By Proposition 2.1, we get s = 3.

Since a(X) = 0, we see that g is even. If |D| = g1
3 then D is a non-simple very special

divisor. Let D′ be the base point free part of K −D. Since ℓ(K−D′) ≥ ℓ(D) = 2, D′

is a special divisor. By Lemmas 2.4 and 2.3, D′ is also very special. By Riemann-Roch

dim |D′| = dim |K − D| = (2g − 5) − g + 2 = g − 3 ≥ 2.

Since s is odd, Theorem 4.1 forces D′ to be simple. ⊓⊔

Let X ⊆ Pr
R
, r ≥ 2, be a smooth real curve. We assume, in what follows, that X is

non-degenerate. We say that X is special (resp. very special) if the divisor associated
to the sheaf of hyperplane sections OX(1) is special (resp. very special).

Corollary 5.2 For every odd r ≥ 3, there exists a very special curve in Pr
R
.

Proof : Let r ≥ 3 be an odd integer. Let X be a real trigonal curve and let D be a
divisor on X such that:

(i) |D| = g1
3 ,

(ii) δ(g1
3) = 3,

(iii) g = r + 3.

By Proposition 5.1 the base point free part D′ of K − D is a simple very special
divisor with dim |D′| = r. Hence ϕ|D′|(X) is a very special curve in Pr

R
. ⊓⊔
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