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SHORTENING ALL THE SIMPLE CLOSED GEODESICS

ON SURFACES WITH BOUNDARY

ATHANASE PAPADOPOULOS AND GUILLAUME THÉRET

Abstract. We give a proof of an unpublished result of Thurston show-
ing that given any hyperbolic metric on a surface of finite type with
nonempty boundary, there exists another hyperbolic metric on the same
surface for which the lengths of all simple closed geodesics have are
shorter. Furthermore, we show that we can do the shortening in such
a way that it is bounded below by a positive constant. This improves
a recent result obtained by Parlier in [2]. We include this result in a
study of the weak metric theory of the Teichmüller space of surfaces
with nonempty boundary. The weak metrics that we consider are de-
fined using lengths of closed geodesics and lengths of geodesic arcs. We
prove an equality between two such weak metrics.
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1. Introduction

Let S be a connected orientable surface of finite topological type and of
negative characteristic. All the hyperbolic structures that we shall consider
on S are metrically complete, of finite area with totally geodesic boundary.
Unless explicitly specified, we shall assume that the boundary ∂S of S is
nonempty. From the assumptions, it follows that the boundary components
of S are closed geodesics.

Let T(S) denote the Teichmüller space of S, that is, the space of hyper-
bolic structures on S (of the required type) up to homeomorphisms homo-
topic to the identity. (In this paper, homotopies of a surface fix setwise the
boundary components but not necessarily pointwise.)

Let C = C(S) be the set of simple closed geodesics in S, boundary compo-
nents included. This set is defined relative to a hyperbolic structure which
is understood, and it is known that there exists a natural correspondence
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between any two such sets relative to different underlying hyperbolic struc-
tures.

A weak metric on a set is a structure that satisfies all the axioms of a
metric except the symmetry axiom.

We consider the following function on T(S) × T(S):

(1) k(X,Y ) = log sup
γ∈C

lY (γ)

lX(γ)
.

A result of Thurston (Proposition 2.1 of [4]) says that in the case where ∂S
is empty, the function k defines a weak metric on the Teichmüller space of S.
We shall see in the following section that for any surface S with boundary,
in contrast with the case of surfaces without boundary, there exist hyper-
bolic structures X and Y on S satisfying k(X,Y ) < 0. In other words, it is
possible, on hyperbolic surfaces with boundary, to contract the length of all
simple closed geodesics by a uniform amount. In particular, the function k
is not a weak metric.

We shall call a simple geodesic arc in S a geodesic segment which is
properly embedded in that surface, that is, the arc has no self-intersection,
the interior of the arc is in the interior of S and the endpoints of the arc
are on ∂S. Let B = B(S) be the union of the set of geodesic boundary
components of S with the set of simple geodesic arcs that are perpendicular
to the boundary. (Again, the set B is defined relative to some hyperbolic
structure, but there exists a natural correspondence between two such sets
relative to different hyperbolic structures.)

We set

K(X,Y ) = log sup
γ∈B

lY (γ)

lX(γ)
.

We proved in [1] that the function K is a weak metric on Teichmüller
space.

In the paper [4], Thurston defined a weak metric on the Teichmüller space
of a surface of finite type without boundary by the formula

L(X,Y ) = log inf
φ

L(φ),

where the infimum is taken over the set of orientation-preserving homeomor-
phisms φ homotopic to the identity, and where L(φ) denotes the Lipschitz

constant of φ, defined as

L(φ) = sup
x∈y

(
d(φ(x), φ(y))

d(x, y)

)

where d is the distance function on S. Thurston’s weak metric is asymmetric
in the sense that there exist two elements X and Y satisfying L(X,Y ) 6=
L(Y,X). We shall see that L is also a weak metric in the context of surfaces
with boundary, and we shall prove an analogue of a result of Thurston
(Theorem 8.5 of [4]), namely that

K = L.
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2. Shrinking all simple closed geodesics

Consider a foliation E of the hyperbolic plane H2 by the set of curves that
are equidistant from a given geodesic, and consider the foliation G of H2 by
the curves that are orthogonal to the leaves of E (Figure 1). The leaves of
G are geodesics. We start with the following:

Lemma 2.1 (Projection along equidistant curves). The projection map from

H2 to some leaf of G along the leaves of E is distance non-increasing. Fur-

thermore, the distance between any two points is equal to the distance between

their projections if and only if the two points are on some leaf of G.

Proof. Let γ be the geodesic line in H2 of which E is the set of equidistant
curves. The curves that are orthogonal to the curves of the family E are
precisely the geodesic lines that are orthogonal to γ.

Let x, y be two points in the hyperbolic plane H2. If these points lie on
the same leaf of E, their projection is a point, and the result follows in this
case. Thus we can assume that the points x and y lie on distinct leaves
of the foliation E. Consider the geodesic segment, σ, joining x to y. By
assumption, σ is transverse to the leaves of E. The goal is to compare the
length of σ with the length of any geodesic arc which is perpendicular to E

and whose endpoints lie on the same equidistant curves as the endpoints of
σ. If the segment σ is itself contained in a leaf of G, then the projection of σ
keeps the length of σ constant. Thus, we can assume that σ is not contained
in a leaf of G.

Up to dividing σ in two geodesic segments, we can assume that the interior
of σ lies in a single component of H2 \ γ. Furthermore, the geodesic arcs
on which we project σ have all the same length, we can assume that the
geodesic arc, k, on which we project σ has a unique endpoint in common
with σ.

There are two possibilities for choosing the arc k, which correspond to the
two possibilities for the common endpoint between k and σ. Let us specify a
choice for this common endpoint that we call A. Consider the two leaves of
E passing through x and y. Since the segment σ lies in a single component

Figure 1. In the upper-half plane model of the hyperbolic plane,
the foliation by Euclidean circles is the foliation G by geodesic lines,
and the orthogonal foliation in the quarter plane to the right is the
orthogonal foliation E by equidistant lines to the vertical geodesic
line. (Only the part of E in the right-quarter plane is drawn.)
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of H2 \ γ, one of these two leaves is farther from γ than the other. Let us
choose the arc k so that the common point A lies on this farthest leaf.

AA
B

B

B′

B′

CC

OO

σ

σ

γγ

k

k

Figure 2. In these two figures we have represented a geodesic
segment σ which is transverse to the foliation E whose leaves are
equidistant curves from the geodesic γ. There are two natural
candidates for the geodesic segment k onto which one can project σ.
We consider the one for which the geodesic segment perpendicular
to k through C cuts σ in its interior. In the left-hand side picture,
k lies below σ whereas it lies above σ in the right-hand side picture.

We are led to consider the curvilinear triangle (ABC) having two geodesic
edges, namely [AB] = σ and the geodesic segment [AC] = k on which we
project σ, and whose third edge [BC] is the arc of an equidistant curve that
connects the endpoint B of σ to the endpoint C of k (see Figure 2). Note

that the angle B̂CA is a right angle.
Consider the geodesic passing through C perpendicularly to k. By con-

vexity and thanks to our choice for k (see Figure 2), this geodesic intersects
the segment σ in an interior point B′. Hence,

AB ≥ AB′.

Now consider the geodesic triangle AB′C. Since the angle B̂′CA is a right
angle, we have, by hyperbolic trigonometry,

cosh(AB′) = cosh(B′C) cosh(AC).

Hence,
AB′ > AC,

since B′C > 0 by assumption. Thus, we have

AB > AC,

that is, the length of σ is strictly greater than the length of k. All the cases
have been dealt with. This concludes the proof. �

We recall a few facts about Nielsen extensions of hyperbolic surfaces with
boundary. Let X be a hyperbolic structure on S. With the above require-
ments on S, the Nielsen extension X̂ of X can be defined as the unique
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complete hyperbolic surface which contains X and which retracts on X.
Another description of X̂ is that this surface is obtained from X by glu-
ing a semi-infinite cylinder with geodesic boundary along each boundary
components of X. Note that the isometry type of each semi-infinite cylin-
der we glue is completely determined by the length of its unique boundary
component, and that the hyperbolic structure X̂ does not depend upon the
way these cylinders are glued to ∂S (that is, the twist parametes have no

contribution). Note also that the hyperbolic surface X̂ has infinite area.

Let us remark that the Nielsen extension X̂, although it is a natural
complete hyperbolic structure on a surface homeomorphic to the interior to
S, is distinct from the unique (Poincaré) complete hyperbolic structure on
the interior of S that is in the conformal class of the restriction of the metric
X to that interior.

The convex core of a complete infinite-area hyperbolic structure on a
surface of finite type is the hyperbolic surface with boundary obtained by
cutting out each infinite half-cylinder along the unique geodesic on which it
retracts. The convex core of the Nielsen extension X̂ of X is the hyperbolic
surface X that we started with.

At the level of the universal coverings, we have the following picture: The
universal covering of the hyperbolic surface X with boundary is a subset of
the hyperbolic plane bounded by the preimage of the boundary ∂S. This
preimage consists in infinitely many disjoint geodesic lines. (If one identifies
the hyperbolic plane with the unit disk, the limit set of the corresponding
Fuchsian group is a Cantor set of the unit circle.) The universal covering of

the Nielsen extension X̂ of X is the hyperbolic plane H2, and it naturally
contains the universal covering of X. The infinite half-cylinders in X̂ lift to
the closed half-planes in the complement of the universal covering of X.

Consider two hyperparallel geodesic lines in H2 and let α̃ be their common
perpendicular geodesic segment. Let ǫ be a positive number. An ǫ-strip Sǫ

around α̃ is a strip containing α and bounded by two hyperparallel geodesics
which are at a distance at most ǫ apart (See Figure 3). The core of the ǫ-
strip Sǫ is the geodesic segment joining the boundary components of Sǫ

perpendicularly. Note that the core, cǫ of Sǫ has length ǫ. We shall equip
an ǫ-strip with the foliation by arcs that are equidistant from the core.
This foliation induced an isometric correspondence between the boundary
geodesics of the ǫ-strip, which we shall refer to as the canonical isometry
between these geodesics.

Let α be a simple geodesic arc joining perpendicularly a boundary com-
ponent γ1 of the hyperbolic surface X to a boundary component γ2. (We
may have γ1 = γ2. Consider lifts γ̃1, γ̃2 of γ1, γ2 to the universal covering.
The lifts γ̃1, γ̃2 are hyperparallel geodesic lines and there is a unique lift
α̃ of α that joins them perpendicularly. For any small enough ǫ > 0, the
ǫ-strip around α̃ projects to an embedded strip containing α in the Nielsen
extension X̂ of X. We call such a strip an ǫ-strip in X̂.

We now define a construction that we call peeling an ǫ-strip from a hy-

perbolic surface with boundary. Start from a hyperbolic structure X on the
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surface with boundary S and consider X as embedded in its Nielsen exten-
sion X̂. Consider an ǫ-strip, B, in X̂ . Consider the hyperbolic structure ŶB

on X̂ obtained by cutting out the strip B from X̂ and by gluing back the ge-
odesic sides of the closure of X̂ \B by the canonical isometry that identifies

the endpoints of the core of B. Another way of obtaining ŶB is by collapsing
the strip B along the leaves of the foliation of this strip by equidistant arcs
defined above. Let f̂B : X̂ → ŶB be the collapsing map. Let YB be the
hyperbolic structure on S obtained by restricting the hyperbolic structure
ŶB to its convex core.

The image, α̂B of the strip B by f̂B is an infinite geodesic.

Proposition 2.2. The map f̂B : X̂ → ŶB is 1-Lipschitz and it is homotopic

to the identity map of S. More precisely, f̂B is length-preserving in the

complement of B and it strictly decreases, by a uniform amount, distances

between points that are “separated by” B and contained in X, that is, points

that are joined by a geodesic of shortest length which intersects the strip B
transversely and is contained in X.

Proof. The assertion regarding the homotopy between f̂B and the identity
map is clear. Also, it is clear that the map f̂B restricted to X̂ \B is length-
preserving. Thus, it remains to show that the map strictly decreases the
distances between points separated by B by a uniform amount.

Let x, y ∈ X ⊂ X̂ be two points separated by B and let [xy] be a shortest
geodesic segment joining x to y. The length xy of this segment equals
d

X̂
(x, y). By the assumptions made on x and y, the intersection [xy] ∩ B

has only one component, and we denote it by [x′y′]. The image of [xy] by

f̂B is a piecewise geodesic curve, namely, [f̂B(x)f̂B(x′)] ∪ [f̂B(x′)f̂B(y′)] ∪

[f̂B(y′)f̂B(y)]. Hence,

d
ŶB

(f̂B(x), f̂B(y)) ≤ f̂B(x)f̂B(x′) + f̂B(x′)f̂B(y′) + f̂B(y′)f̂B(y).

We already noted that the lengths of the segments outside B are preserved
by f̂B. Therefore, it suffices to show that the length f̂B(x′)f̂B(y′) is strictly

γ̃1

γ̃2

Sǫ

Figure 3. The segment α̃ is the geodesic segment joining per-
pendicularly the two hyperparallel geodesics γ̃1 and γ̃2. The ǫ-strip
Sǫ is bounded by two other hyperparallel geodesics drawn.
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smaller than x′y′ by a uniform amount. Thus, we can assume that the points
x and y lie on distinct boundary components of B.

First, suppose that the images of the points x and y under f̂B coincide,
that is, suppose that x and y are on the same equidistant curve from the
core of B. Then,

d
X̂

(x, y) − d
ŶB

(f̂B(x), f̂B(y)) = d
X̂

(x, y) ≥ ǫ.

This proves the lemma in this case, and we are left to consider a pair of
points x andy that do not lie on the same equidistant curve from the core of
B, that is, curves whose images under ŶB are non-trivial geodesic segments.

Both projections of [xy] on any side of B along the arcs equidistant to the
core give rise to a geodesic segment with exactly one endpoint in common
with [xy], and whose length equals that of [f̂B(x)f̂B(y)]. We now follow the
same proof as that of Lemma 2.1, but taking care this time of the difference
between the length of the curve [xy] and the length of its projection. In
order to lighten the reading, we keep the notation used in the proof of 2.1.
Thus, we denote the segment [xy] by σ and we shall specify a choice for the
projection k of σ.

Before explaining how to choose k, we remark that there is a uniform
upper bound M = M(X) > 0 to the length of such a projection k. To see
this, refer to Figure 3. Any geodesic contained in X and intersecting B is
contained in the big strip in Sǫ bounded by γ̃1 and γ̃1. This implies that
there is an upper bound for the length of σ which only depends upon X and
and the choice of the ǫ-strip B in X̂. Since the projection is 1-Lipschitz,
this implies the same result for the length of k.

If σ intersects the core cǫ of Sǫ, then we subdivide σ into two segments
such that they both lie in different components of Sǫ \ cǫ. It then suffices
to show the property for each of these segments. We can therefore assume
that σ is contained in Sǫ and that it does not intersect the core cǫ of Sǫ. We
are now back to the situation studied in the proof of Lemma 2.1, but with
the constraint on σ of being contained in a strip of width ǫ. We keep the
same choice for k as the one settled in that proof and we refer the reader to
Figure 2 for what follows.

Consider the triangle ABC as shown in Figure 2, but where now the three
edges are now taken to be geodesics, namely, the edge [AB] is the geodesic
segment σ, the edge [AC] is the geodesic segment k, and the third edge is
the geodesic segment joining the points B and C. Not that since the angle

at C of the triangle ÂCB′ of Figure 2 is equal to π/2, the angle ÂCB′ of the
triangle that we consider now is greater than or equal to π/2. We must show
that the difference AB − AC is bounded from below by a uniform positive

constant. Since the angle ÂCB is greater or equal to π/2, we have

cosh(AB) = cosh(AC) cosh(CB) − sinh(AC) sinh(CB) cos(ÂCB)

≥ cosh(AC) cosh(CB).

Since CB ≥ ǫ, we get

cosh(AB) ≥ cosh(AC) cosh(ǫ).
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Now

cosh(AB) ≥ cosh(AC) cosh(ǫ)

≥ cosh(AC)(1 + ǫ2/2).

Hence,

cosh(AB) − cosh(AC) ≥ cosh(AC)ǫ2/2

≥ ǫ2/2.

Multiplying the inequality by 2 and expanding cosh with exponentials, we
get

eAB − eAC ≥ ǫ2 − (e−AB − e−AC)

≥ ǫ2.

The last inequality comes from the fact that AB ≥ AC, that is, e−AB −
e−AC ≤ 0. We get

eAB−AC ≥ 1 + e−ACǫ2,

or,

AB − AC ≥ log(1 + e−ACǫ2).

We saw that there exists a positive number M = M(X) > 0 such that
AC ≤ M . Finally we get

AB − AC ≥ log(1 + e−M ǫ2) > 0.

This concludes the proof. �

The method used in the proof of Proposition 2.2 is due to Thurtson [4].
We need the following corollary in order to obtain the main result of this

section (Theorem 2.4 below).

Corollary 2.3. Let λ be a measured geodesic lamination of S. Then lYB
(λ) ≤

lX(λ), with strict inequality if and only if λ ∩ B 6= ∅.

Proof. Embed X and YB isometrically in their respective Nielsen exten-
sions. Note that all the leaves of the lamination λ that intersect B do it
transversely. Cover the support of the lamination λ by finitely many rect-
angles, R1, · · · , Rn, small enough so that every intersection of B with one of
them is either empty or a quadrilateral. Up to reordering the rectangles, we
can assume that the rectangles R1, · · · , Rm, m ≤ n, intersect B effectively
and that the other rectangles do not intersect B. The length of λ is given
by

lX(λ) =

n∑

i=1

∫

λi

lX(x)dλ(x) =

n∑

i=1

∫

λi

l
X̂

(x)dλ(x),

where for each i = 1, . . . , n, λi denotes the set of leaves of λ∩Ri and where
for x ∈ λi, lX(x) = l

X̂
(x) denotes the length of the leaf of λ∩Ri containing

x.
We have

lYB
(λ) = l

ŶB
(λ) =

n∑

i=1

∫

λi

l
ŶB

(f̂B(x))dλ(x).
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By Proposition 2.2, there exists a constant C = C(B,X) > 0 such that,
for all x ∈ λi with Ri ∩ B 6= ∅,

l
X̂

(x) − l
ŶB

(f̂B(x)) ≥ C.

Therefore,

lYB
(λ) =

n∑

i=1

∫

λi

l
ŶB

(f̂B(x))dλ(x)

≤
n∑

i=1

∫

λi

l
X̂

(x)dλ(x) − C
m∑

i=1

∫

λi

dλ(x)

≤ lX(λ) − Ci(λ,B).

This concludes the proof. �

Theorem 2.4. For any point X in Teichmüller space T(S), there exists a

point Y in T(S) such that k(X,Y ) < 0.

Proof. Choose a finite collection of geodesic arcs, A, joining the boundary
of S to itself such that any simple closed geodesic is intersected by one of
these arcs. Choose a collection of ǫ-strip, one around each arc of A. Peel
the ǫ-strips, one after the other. We thus get a new hyperbolic structure Y
on S and a 1-Lipschitz map from the Nielsen extension of X to that of Y .

Since any measured geodesic lamination of X is intersected by an arc of
A, the length of a measured geodesic lamination decreases when we pass
from X to Y .

Since PML(S) is compact, the supremum

sup
α∈PML(S)

lY (α)

lX(α)

is attained by a measured geodesic lamination. Since the length of such a
geodesic lamination has been strictly decreased, this shows that k(X,Y ) < 0.
This concludes the proof. �

Remark 2.5. The preceding result improves a theorem by Parlier [2] which
says that for any surface S of finite type with non-empty boundary and for
any hyperbolic structure X on S, there exists a hyperbolic structure Y on

S such that for every γ in C, we have
lX(γ)

lY (γ)
< 1. (Parlier’s result only

proves that k(X,Y ) ≤ 0). Note that whereas pariler’s result shows that the
function k defined in (1), in the case of a surface with nonempty boundary,
is not a weak metric because it does not separate points, Theorem 2.4 shows
that for any surface with boundary, this function can even take negative
values.

Remark 2.6. Consider the peeling map f̂B described above. This map
strictly decreases any elements of C∪B which intersects the strip B, and it
leaves the lengths of the elements that are disjoint from B unchanged. In
the paper [1], we defined the following function on the space T(S) × T(S)
associated to a surface with boundary S:

d(X,Y ) = log sup
γ∈B∪C

lX(γ)

lY (γ)
.



10 ATHANASE PAPADOPOULOS AND GUILLAUME THÉRET

and we showed that this function defines a weak metric. Thus, using The-
orem 2.4 above, there necessarily exists an arc on S whose length increases
when we pass from X to YB. This arc is necessarily the arc α contained
in the strip B. It this therefore possible to compute the distance d(X,YB)
explicitly.

3. Lipschitz metric

We consider the function defined by

L(X,Y ) = log inf
φ

L(φ),

where the supremum is taken over all orientation-preserving homeomor-
phisms φ homotopic to the identity and where L(φ) denotes the Lipschitz
constant of φ. This definition is due to Thurston, who proved that this func-
tion is a weak metric in the case of surfaces of finite type without boundary.

Theorem 3.1. The function L is a weak metric on Teichmüller space.

Proof. The point is to prove that L(X,Y ) = 0 ⇒ X = Y . It should be
possible to use Thurston’s argument for the analogous result on surfaces
without boundary (this is Proposition 2.1 in [4]), but the result also follows
from Theorem 3.3 below. �

The following is then a consequence of Theorem 2.4.

Corollary 3.2. For surfaces with boundary, we have L 6= k.

On the other hand, we have

Theorem 3.3. For any surface of finite type S, we have

L = K

Proof. Let φ be a homeomorphism of S homotopic to the identity. Consider
the doubled homeomorphism, φd, of Sd. By definition, we have

L(φd) = sup
x 6=y∈Sd

dY d(φ(x), φ(y))

dXd(x, y)
≥ L(φ) = sup

x 6=y∈S

dY (φ(x), φ(y))

dX(x, y)
.

Hence, by taking the infimum in the right hand side over all homeomor-
phisms of S and then in the left hand side over all homeomorphisms of Sd,
we get

L(Xd, Y d) ≥ L(X,Y ).

Now we have the following sequence of inequalities

L(Xd, Y d) = K(Xd, Y d) = K(X,Y ) ≤ L(X,Y ),

where the first equality is Thurston’s Theorem 8.5 in [4], where the second
equality is established in [1] (Corollary 2.8) and where the last inequality
follows easily from the definitions. Putting everything together, we obtain
the result. �

Remark 3.4. It is not clear whether the infimum over the Lipschitz con-
stants is realized by a homeomorphism of S.

We conclude with the following questions:
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Question 3.5. Given a hyperbolic metric X on a surface S with nonempty
boundary , can we always find another hyperbolic metric Y such that every
geodesic arc in X is contracted when we pass from X to Y ? Of course, the
boundary curves cannot all be contracted, by a result in [1] that we already
quoted above.

Question 3.6. We can ask the same question above, concerning geodesic
arcs and interior geodesic closed curves, instead of only geodesic arcs.
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