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both the Kullback-Leibler divergence. We use this approximation to es-
tablish convergence rates for a Bayesian mixture model with priors on the
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1. Introduction

When the number of components in a mixture model can increase with the sam-
ple size, it can be used for nonparametric density estimation. Such models were
called mixture sieves by Grenander [15] and Geman and Hwang [7]. Although
originally introduced in a maximum likelihood context, there has been a large
number of Bayesian papers in recent years; among many others, see [25], [5],
and [6]. Whereas much progress has been made regarding the computational
problems in nonparametric Bayesian inference (see for example the review by
Marin et al.[22]), results on convergence rates were found only recently, espe-
cially for the case when the underlying distribution is not a mixture itself. Also
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the approximative properties of mixtures needed in the latter case are not well
understood.

In this paper we find conditions under which a probability density of any
Hölder-smoothness can be efficiently approximated by a location-scale mixture.
Using these results we then considerably generalize existing results on posterior
convergence of location-scale mixtures. In particular our results are adaptive to
any degree of smoothness, and allow for more general kernels and priors on the
mixing distribution. Moreover, the bandwidth prior can be any inverse-gamma
distribution, whose support neither has to be bounded away from zero, nor to
depend on the sample size.

We consider location-scale mixtures of the type

m(x; k, µ, w, σ) =

k∑

j=1

wjψσ(x− µj), (1)

where σ > 0, wj ≥ 0,
∑k
j=1 wj = 1, µj ∈ R and, for p ∈ N,

ψσ(x) =
1

2σΓ
(
1 + 1

p

)e−(|x|/σ)p . (2)

Approximation theory (see for example [3]) tells us that for a compactly
supported kernel and a compactly supported β-Hölder function, being not nec-
essarily nonnegative, the approximation error will be of order k−β , provided
σ ∼ k−1 and the weights are carefully chosen. This remains the case if both
the kernel and the function to be approximated have exponential tails, as we
consider in this work. If the function is a probability density however, this raises
the question whether the approximation error k−β can also be achieved using
nonnegative weights only. To our knowledge, this question has been little studied
in the approximation theory literature.

Ghosal and Van der Vaart [13] approximate twice continuously differentiable
densities with mixtures of Gaussians, but it is unclear if their construction can be
extended to other kernels, or densities of different smoothness. In particular, for
functions with more than two derivatives, the use of negative weights seems at
first sight to be inevitable. A recent result by Rousseau [26] however does allow
for nonnegative approximation of smooth but compactly supported densities by
beta-mixtures. We will derive a similar result for location-scale mixtures of a
kernel ψ as in (2), for any p ∈ N. Although the same differencing technique
is used to construct the desired apprimations, there are various differences.
First, we are dealing with a noncompact support, which required investigation
of the tail conditions under which approximations can be established. Second,
we are directly dealing with location-scale mixtures, hence there is no need for
a ’location-scale mixture’ approximation as in [26].

The parameters k, σ, w and µ in (1) can be given a prior distribution Π;
when there are observations X1, . . . , Xn from an unknown density f0, Bayes’
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formula gives the posterior

Π(A | X1, . . . , Xn) =

∫
A

∏n
i=1m(Xi; k, µ, w, σ)dΠ(k, µ, w, σ)∫ ∏n
i=1m(Xi; k, µ, w, σ)dΠ(k, µ, w, σ)

.

The posterior (or its mean) can be used as a Bayesian density estimator of f0.
Provided this estimator is consistent, it is then of interest to see how fast it
converges to the Dirac-mass at f0. More precisely, let the convergence rate be a
sequence ǫn tending to zero such that nǫ2n → ∞ and

Π(d(f0, f) > Mǫn | X1 . . . , Xn) → 0 (3)

in Fn0 -probability, for some sufficiently large constant M , d being the Hellinger-
or L1-metric. The problem of finding general conditions for statistical models
under which (3) holds has been studied in among others [11], [13], [32], [17],
[8] and [29]. In all these papers, the complexity of the model needs to be con-
trolled, typically by verifying entropy conditions, and at the same time the prior
mass on Kullback-Leibler balls around f0 needs to be lower bounded. It is for
the latter condition that the need for good approximations arises. Our approx-

imation result allows to prove (3) with ǫn = n−
β

2β+1 (log n)t for location-scale
mixtures of the kernel ψ, provided p is even and f0 is locally Hölder and has
tails bounded by ψ. The constant t in the rate depends on the choice of the
prior. We only consider priors independent of β, hence the posterior adapts to
the unknown smoothness of f0, which can be any β > 0. The adaptivity relies on
the approximation result that allows to approximate f0 with f1∗ψ, for a density
f1 that may be different from f0. In previous work on density estimation with
finite location-scale mixtures (see e.g. [27], [8] and [13]) f0 is approximated with
f0 ∗ ψ, which only gives minimax-rates for β ≤ 2. For regression-models based
on location-scale mixtures, fully adaptive posteriors have recently been obtained
by De Jonge and Van Zanten [2]; their work was written at the same time and
independently of the present work. For continuous beta-mixtures (near)-optimal
1 rates have been derived by Rousseau [26]. Another related work is [28], where
also kernels of type (2) are studied; however it is assumed that the true density
is a mixture itself . In a clustering and variable selection framework using multi-
variate Gaussian mixtures, Maugis and Michel [23] give non-asymptotic bounds
on the risk of a penalized maximum likelihood estimator. Finally, for a general
result on consistency of location scale mixtures, see [31].

Notation Let Cp denote the normalizing constant
(
2Γ
(
1 + 1

p

))−1

. The

inverse ψ−1
σ (y) = σ

(
log

Cp

y

)1/p
is defined on (0, Cp]. When σ = 1 we also write

ψ(x) = ψ1(x) = Cp exp{−|x|p} and ψ−1(y) = ψ−1
1 (y). For any nonnegative α,

let

να =

∫
xαψ(x)dx. (4)

1In the sequel, a near optimal rate is understood to be the minimax rate with an additional
factor (logn)c.
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For any function h, let Kσh denote the convolution h ∗ ψσ, and let ∆σh denote
the error (Kσh)− h.

The (k − 1)-dimensional unit-simplex and the k-dimensional bounded quad-
rant are denoted

∆k = {x ∈ R
k : xi ≥ 0,

k∑

i=1

xi = 1}, Sk = {x ∈ R
k : xi ≥ 0,

k∑

i=1

xi ≤ 1}

and Hk[b, d] = {x ∈ R
k | xi ∈ [bi, di]}, where b, d ∈ R

k. When no confusion can
result we write Hk[b, d] := Hk[(b, . . . , b), (d, . . . , d)] for real numbers b and d. For
positive numbers c and ǫ,

Tc,ǫ = [−c| log ǫ|1/p, c| log ǫ|1/p]. (5)

Given ǫ > 0 and fixed points x ∈ R
k and y ∈ ∆k, define the l1-balls

Bk(x, ǫ) =
{
z ∈ R

k;

k∑

i=1

| zi − xi |≤ ǫ
}
,

∆k(y, ǫ) =
{
z ∈ ∆k;

k∑

i=1

| zi − yi |≤ ǫ
}
.

Inequality up to a multiplicative constant is denoted with . and & (for .

we also use O). The number of integer points in an interval I ∈ R is denoted
N(I). Integrals of the form

∫
gdF0 are also denoted F0g.

2. Main results

We now state our conditions on f0 and the prior. Note that some of them will
not be used in some of our results. For instance in Theorem 1 below, (C3) is
not required.
Conditions on f0. The observations X1, . . . , Xn are an i.i.d. sample from a
density f0 satisfying the following conditions.

(C1) Smoothness. log f0 is assumed to be locally β-Hölder, with derivatives

lj(x) = dj

dxj log f(x). We assume the existence of a polynomial L and a
constant γ > 0 such that

|lr(x)− lr(y)| ≤ r!L(x)|x− y|β−r (6)

for all x, y with |y − x| ≤ γ.
(C2) Tails. There exists ǫ > 0 such that the functions lj and L satisfy

F0|lj |
2β+ǫ

j <∞, j = 1, . . . , r, F0L
2+ ǫ

β <∞, (7)

and there exist constants α > 2, T > 0 and c > 0 such that when |x| > T ,

f0(x) ≤ cx−α. (8)
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(C3) A stronger tail condition: f0 has smaller tails than the kernel, i.e. there
exist constants T and Mf0 such that

f0(x) ≤Mf0ψ(x), |x| ≥ T. (9)

(C4) Monotonicity. f0 is strictly positive, and there exist xm < xM such that
f0 is nondecreasing on (−∞, xm) and nonincreasing on (xM ,∞). Without
loss of generality we assume that f0(xm) = f0(xM ) = c and that f0(x) ≥ c
for all xm < x < xM . The monotonicity in the tails implies that Kσf0 &

f0; see the remark on p. 149-150 in [9].

Assumption (C3) is only needed in the proofs of Lemma 4 and Theorem 2.
We can now state the approximation result which will be the main ingredient

in the proof of Theorem 2, but which is also interesting on its own right.

Theorem 1. Let f be a density satisfying conditions (C1),(C2) and (C4), and
let Kσ denote convolution over the kernel ψ defined in (2), for any p ∈ N. Then
there exists a density hk such that for all small enough σ,

∫
f log

f

Kσhk
= O(σ2β),

∫
f

(
log

f

Kσhk

)2

= O(σ2β). (10)

The construction of the approximation hk is detailed in section 3. As our smooth-
ness condition is only local, the class of densities satisfying (C1),(C2) and (C4)
is quite large. In particular, all (log)-spline densities are permitted, provided
they are sufficiently differentiable at the knots. Condition (7) rules out super-
exponential densities like exp{− exp{x2}}. In fact the smallest possible L̃(x)
such that (6) holds, does not have to be of polynomial form, but in that case it
should be bounded by some polynomial L for which (7) holds. Note that when

β = 2, L is an upper bound for d2

dx2 log f0(x) = f
′′

0 (x)/f0(x)−(f ′(x)/f(x))2, and
apart from the additional ǫ in (7), this assumption is equivalent to the assump-
tion in [13] that F0(f

′′

0 /f0)
2 and F0(f

′

0/f0)
4 be finite. Also the monotonicity

condition can be weakened, as in fact it suffices to have an upper and lower
bound on f0 for which (C4) hold. For the clarity of presentation however we
assume monotonicity of f0 itself.

We now describe the family of priors we consider to construct our estimate.
Prior (Π) The prior on σ is the inverse Gamma distribution with scale pa-

rameter λ > 0 and shape parameter α > 0, i.e. σ has prior density λα

Γ(α)x
−(α+1)e−λ/x

and σ−1 has the Gamma-density λα

Γ(α)x
α−1e−λx.

The other parameters have a hierarchical prior, where the number of compo-
nents k is drawn, and given k the locations µ and weights w are independent.
The priors on k, µ and w satisfy the conditions (11)-(14) below.

The prior on k is such that for all integers k > 0

B0e
−b0k(log k)

r ≤ Π(k) ≤ B1e
−b1k(log k)

r

, (11)

for some constants 0 < B0 ≤ B1, 0 < b1 ≤ b0 and r ≥ 0. The constant r affects
the logarithmic factor in the convergence rate in Theorem 2 if it is smaller than
one.
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Given k, the locations µ1, . . . , µk are drawn independently from a prior den-
sity pµ on R satisfying

pµ(x) & ψ(x), (12)

pµ(x) . e−a1|x|
a2

for constants a1 > 0 and a2 ≤ p . (13)

Given k, the prior distribution of the weight vector w = (w1, . . . , wk) is
independent of µ, and there is a constant d1 such that for ǫ < 1

k , and w0 ∈ ∆k,

Π(w ∈ ∆k(w0, ǫ) | K = k) & exp
{
−d1k(log k)b log

1

ǫ

}
, (14)

for some nonnegative constant b, which affects the logarithmic factor in the
convergence rate.

Theorem 2. Let the bandwidth σ be given an inverse-gamma prior, and assume
that the prior on the weights and locations satisfies conditions (11)-(14). Given
a positive even integer p, let ψ be the kernel defined in (2), and consider the
family of location-scale mixtures defined in (1), equipped with the prior described
above. If f0 satisfies conditions (C1)-(C4), then Π(· | X1, . . . , Xn) converges
to f0 in Fn0 -probability, with respect to the Hellinger or L1-metric, with rate
ǫn = n−β/(1+2β)(log n)t, where r and b are as in (11) and (14), and t > (2 +
b+ p−1)/(2 + β−1) + max(0, (1− r)/2).

The proof is based on Theorem 5 of Ghosal and van der Vaart [13], which is
included here in appendix A.

Condition (11) is usual in finite mixture models, see for instance [10], [20]
and [26] for beta-mixtures. It controls both the approximating properties of the
support of the prior and its entropy. For a Poisson prior, we have r = 1 and for
a geometric prior r = 0.

Conditions (12) and (14) translate the general prior mass condition (41)
in Theorem 3 to conditions on the priors for µ and w. The prior is to put
enough mass near µ0 and w0, which are the locations and weights of a mixture
approximating f0. Since µ0 and w0 are unknown, the conditions in fact require
that there is a minimal amount of prior mass around all their possible values.
The restriction to kernels with even p in Theorem 2 is assumed to discretize
the approximation hk obtained from Theorem 1. Results on minimax-rates for
Laplace-mixtures (p = 1) (see [18]) suggest that this assumption is in fact
necessary. Note that also [2] and [28] require analytic kernels.

3. Approximation of smooth densities

In many statistical problems it is of interest to bound the Kullback-Leibler
divergence DKL(f0,m) =

∫
f0 log

f0
m between f0 and densities contained in the

model under consideration, in our case finite location-scale mixtures m. When
β ≤ 2, the usual approach to find an m such that DKL(f0,m) = O(σ2β), is
to discretize the continuous mixture Kσf0, and show that ‖Kσf0 −m‖∞ and
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‖f0 −Kσf0‖∞ are both O(σβ). Under additional assumptions on f0, this then
gives a KL-divergence of O(σ2β). But as ‖f0−Kσf0‖∞ remains of order σ2 when
β > 2, this approach appears to be inefficient for smooth f0. In this section
we propose an alternative mixing distribution f̃0 such that DKL(f0,Kσ f̃0) =
O(σ2β). To do so, we first construct a not necessarily positive function fk such
that under a global Hölder condition, ‖f0 −Kσfk‖∞ = O(σβ). However, as we
only assume the local Hölder condition (C1), the approximation error of O(σβ)
will in fact include the local Hölder constant, which is made explicit in Lemma
1. Modifying fk we obtain a density which still has the desired approximative
properties (Lemma 2). Using this result we then prove Theorem 1. Finally we
prove that the continuous mixture can be approximated by a discrete mixture
(Lemmas 3 and 4). In the remainder of this section, we write f instead of f0 for
notational convenience, unless stated otherwise.

To illustrate the problem that arises when approximating a smooth density
f with its convolution Kσf , let us consider a three times continuously differen-
tiable density f such that ‖f ′′‖∞ = L.2 Then ‖f −Kσf‖∞ ≤ 1

2ν2Lσ
2, where ν2

is defined as in (4). Although the regularity of f is larger than two, the approx-
imation error remains order σ2. The following calculation illustrates how this
can be improved if we take f1 = f − ∆σf = 2f − Kσf as the mixing density
instead of f . The approximation error is

|(Kσf1)(x)− f(x)| =
∣∣∣∣
∫
ψσ(x− µ) {(f −∆σf)(µ)− f(x)} dµ

∣∣∣∣

=

∣∣∣∣
∫
ψσ(x− µ)

{
(f(µ)− f(x))−

∫
ψσ(ǫ− µ)(f(ǫ)− f(µ))dǫ

}
dµ

∣∣∣∣

=

∣∣∣∣
σ2ν2
2

f
′′

(x) +O(σ3)− σ2

2

∫
ψσ(x− µ)f

′′

(µ)dµ−O(σ3)

∣∣∣∣ = O(σ3).

Likewise, the error is O(σβ) when f is of Hölder regularity β ∈ (2, 4]. When
β > 4, this procedure can be repeated, yielding a sequence

fj+1 = f −∆σfj , j ≥ 0, f0 := f. (15)

Once the approximation error O(σβ) is achieved with a certain fk, the approx-
imation clearly doesn’t improve any more for fj with j > k. In the context of a
fixed β > 0 and a density f of Hölder regularity β, fk will be understood as the
first function in the sequence {fi}i∈N for which an error of order σβ is achieved,
i.e. k is such that β ∈ (2k, 2k + 2]. The construction of the sequence {fi}i∈N is
related to the use of superkernels in kernel density estimation (see e.g. [30] and
[4]), or to the twicing kernels used in econometrics (see [24]). However, instead
of finding a kernel ψk such that ‖f−ψk ∗f‖∞ = O(σβ), we construct a function
fk fow which ‖f − ψ ∗ fk‖∞ = O(σβ).

In Lemma 11 in appendix B we show that for any β > 0, ‖f − Kσfk‖∞ =
O(σβ) when f is (globally) β-Hölder. In Theorems 1 and 2 however we have

2We emphasize that this global condition is only considered here as a motivation for the
construction of fk; in the rest of the paper smoothness condition (C1) is assumed
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instead the local Hölder condition (C1) on log f , along with the tail and mono-
tonicity conditions (C2) and (C4). With only a local Hölder condition, the ap-
proximation error will depend in some way on the local Hölder constant L(x)
as well as the derivatives lj(x) of log f . This is made explicit in the following
approximation result, whose proof can be found in Appendix C. A similar result
for beta-mixtures is contained in Theorem 3.1 in [26].

Lemma 1. Given β > 0, let f be a density satisfying condition (C1), for
any possible function L, not necessarily polynomial. Let k be such that β ∈
(2k, 2k + 2], and let fk be defined as in (15). Then for all sufficiently small σ
and for all x contained in the set

Aσ = {x : |lj(x)| ≤ Bσ−j | log σ|− j
p , j = 1, . . . , r, |L(x)| ≤ Bσ−β | log σ|− β

p }
(16)

we have

(Kσfk)(x) = f(x)
(
1 +O(R(x)σβ)

)
+O

(
(1 +R(x))σH

)
, (17)

where H > 0 can be chosen arbitrarily large and

R(x) = rr+1|L(x)|+
r∑

i=1

ri|li(x)|β/i, (18)

for nonnegative constants ri.

Compared to the uniform result that can be obtained under a global Hölder
condition (Lemma 11 in appendix B) the approximation error (Kσfk)(x)−f(x)
depends on R(x). The good news however, is that on a set on which the lj ’s are
sufficiently controlled, it is also relative to f(x), apart from a term σH where H
can be arbitrarily large. Note that no assumptions were made regarding L, but
obviously the result is only of interest when L is known to be bounded in some
way. In the remainder we require L to be polynomial.

Since Kσfj is a density when fj is a density, we have that for any nonnegative
integer j (f0 denoting the density f itself) fj integrates to one. For j > 0 the
fj ’s are however not necessarily nonnegative. To obtain a probability density,
we define

Jσ,j = {x : fj(x) >
1

2
f(x)}, (19)

gj(x) = fj(x)1Jσ,j +
1

2
f(x)1Jc

σ,j
, (20)

hj(x) = gj(x)/

∫
gj(x)dx. (21)

The constant 1
2 in (19) and (20) is arbitrary and could be replaced by any other

number between zero and one. In the following lemma, whose proof can be found
in Appendix D, we show that the normalizing constant

∫
gk is 1 + O(σβ). For

this purpose, we first control integrals over the sets Aσ defined in (16) and

Eσ = {x : f(x) ≥ σH1}, (22)
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for a sufficiently large constant H1.

Lemma 2. Let f be a density satisfying conditions (C1),(C2) and (C4). Then
for all small enough σ and all nonnegative integers m and all K > 0,

∫

Ac
σ

(Km
σ f)(x)dx = O(σ2β),

∫

Ec
σ

(Km
σ f)(x)dx = O(σK), (23)

provided that H1 in (22) is sufficiently large. Furthermore, Aσ ∩ Eσ ⊂ Jσ,k for
small enough σ. Consequently,

∫
gk(x)dx = 1 +

∫

Jc
σ,k

(
1

2
f − fk)dx = 1 +O(σ2β). (24)

Finally, when β > 2, and fk is defined as in Lemma 1 and hk as in (21),

Kσhk(x) = f(x)
(
1 +O(R(x)σβ)

)
+O

(
(1 +R(x))σH

)
(25)

for all x ∈ Aσ ∩ Eσ, i.e. in (17) we can replace fk by hk, provided we assume
that x is also contained in Eσ.

Remark 1. From (20), (21) and (24) it follows that hk ≥ f/(2(1 + O(σβ))).
The fact that Kσf is lower bounded by a multiple of f then implies that the
same is true for Kσhk.

Remark 2. The integrals over Acσ in (23) can be shown to be O(σ2β) only using
conditions (C1) and (C2), whereas for the integrals over Ecσ also condition (C4)
is required.

Using this result we can now prove Theorem 1:

Proof. Since

∫

S

p log
p

q
≤
∫

S

p
p− q

q
=

∫

S

(p− q)2

q
+

∫

S

(p− q) =

∫

S

(p− q)2

q
+

∫

Sc

(q − p)

for any densities p and q and any set S, we have the bound

∫
f(x) log

f(x)

Kσhk(x)
dx ≤

∫

Aσ∩Eσ

(f(x)−Kσhk(x))
2

Kσhk(x)
dx

+

∫

Ac
σ∪E

c
σ

f(x) log
f(x)

Kσhk(x)
dx+

∫

Ac
σ∪E

c
σ

(Kσhk(x)− f(x))dx.

(26)

The first integral on the right can be bounded by application of (25) and Remark
1 following Lemma 2. On Aσ∩Eσ the integrand is bounded by f(x)O(σβR(x))−
2O(σβ+HR(x)) +O((1 +R(x))2)σ2H/f(x). Let H1 be such that the second in-
tegral in (23) is O(σ2β) (i.e. K = 2β), and choose H ≥ H1 + β. It follows
from the definition of R(x) and (7) that the integral over Aσ ∩ Eσ is O(σ2β)
for each of these terms. For example,

∫
(1 + R(x))2σ2H/f(x)dx =

∫
f(x)(1 +
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R(x))2σ2H/f2(x)dx . σ2(H−H1), as f(x) ≥ σH1 on Eσ and the Lebesgue mea-
sure of this interval is at most σ−H1 . To bound the second integral in (26) we
use once more that Kσhk & f , and then apply (23) with m = 0. For the last
integral we use (23) with m = 0, . . . , k+1; recall that hk is a linear combination
of Km

σ f , m = 0, . . . , k.
The second integral in (10) is bounded by

∫

Ac
σ∪E

c
σ

f(x)

(
log

f(x)

Kσhk(x)

)2

dx+

∫

Aσ∩Eσ

(f(x)−Kσhk(x))
2

Kσhk(x)
dx,

which is O(σ2β) by the same arguments.

The continuous mixture approximation of Theorem 1 is discretized in Lemma 4
below. Apart from the finite mixture derived from hk we also need to construct
a set of finite mixtures close to it, such that this entire set is contained in a
KL-ball around f . For this purpose the following lemma is useful. A similar
result can be found in Lemma 5 of [13]. The inequality for the L1-norm will be
used in the entropy calculation in the proof of Theorem 2.

Lemma 3. Let w, w̃ ∈ ∆k, µ, µ̃ ∈ R
k and σ, σ̃ ∈ R

+. Let ψ be a differ-
entiable symmetric density such that xψ′(x) is bounded. Then for mixtures
m(x) = m(x; k, µ, w, σ) and m̃(x) = m(x; k, µ̃, w̃, σ̃) we have

‖m− m̃‖1 ≤ ‖w − w̃‖1 + 2‖ψ‖∞
k∑

i=1

wi ∧ w̃i
σ ∧ σ̃ | µi − µ̃i | +

| σ − σ̃ |
σ ∧ σ̃ ,

‖m− m̃‖∞ .

k∑

i=1

| wi − w̃i |
σ ∧ σ̃ +

k∑

i=1

wi ∧ w̃i
(σ ∧ σ̃)2 | µi − µ̃i | +

| σ − σ̃ |
(σ ∧ σ̃)2 .

Proof. Let 1 ≤ i ≤ k and assume that w̃i ≤ wi. By the triangle inequality,

‖wiψσ(· − µi)− w̃iψσ̃(· − µ̃i)‖ ≤ ‖wiψσ(· − µi)− w̃iψσ(· − µi)‖
+ ‖w̃iψσ(· − µi)− w̃iψσ(· − µ̃i)‖+ ‖w̃iψσ(· − µ̃i)− w̃iψσ̃(· − µ̃i)‖

for any norm. We have the following inequalities:

‖ψσ(z − µi)− ψσ(z − µ̃i)‖1 = 2

∣∣∣∣Ψ
(
µi − µ̃i
2σ

)
−Ψ

(
µ̃i − µi
2σ

)∣∣∣∣

≤ 2‖ψ‖∞
| µ̃i − µi |

σ
≤ 2‖ψ‖∞

σ ∧ σ̃ | µ̃i − µi |,

‖ψσ − ψσ̃‖1 ≤ 1

σ ∧ σ̃

∫
| ψ(x

σ
)− ψ(

x

σ̃
) | dx ≤ 1

σ ∧ σ̃ | σ − σ̃ |,

‖ψσ − ψσ̃‖∞ ≤ 1

(σ ∧ σ̃)2 ‖
d

dz
gx‖∞ | σ − σ̃ |, (27)

‖ψσ(z − µi)− ψσ(z − µ̃i)‖∞ .
1

(σ ∧ σ̃)2 | µ̃i − µi | .
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To prove (27), let σ = z−1 and σ̃ = z̃−1, and for fixed x define the function
gx : z → zψ(zx). By assumption, d

dz gx(z) = ψ(zx) + zxψ′(zx) is bounded, and

‖ψσ−ψσ̃‖∞ = sup
x

| gx(z)−gx(z̃) |≤| z−z̃ | ‖ d
dz
gx‖∞ ≤ 1

(σ ∧ σ̃)2 ‖
d

dz
gx‖∞ | σ−σ̃ | .

Applying the mean value theorem to ψ itself, the last inequality is obtained.

The approximation hk defined by (21) can be discretized such that the result
of Lemma 1 still holds. The discretization relies on Lemma 3.13 in [19], which
is included in Appendix F. As in [2] and [28] (XXX), we require the kernel ψ to
be analytic. i.e. p needs to be even.

Lemma 4. Let the constant H1 in the definition of Eσ be at least 4(β+p). Given
β > 0, let f be a density that satisfies conditions (C1)-(C4) and for p = 2, 4, . . .
let ψ be as in (2). Then there exists a finite mixture m = m(·; kσ, µσ, wσ, σ)
with kσ = O(σ−1| log σ|1+p−1

) support points contained in Eσ, such that

∫
f log

f

m
= O(σ2β),

∫
f

(
log

f

m

)2

= O(σ2β). (28)

Furthermore, (28) holds for all mixtures m′ = m(·; kσ, µ, w, σ′) such that σ′ ∈
[σ, σ + σδ

′H1+2], µ ∈ Bkσ (µσ, σ
δ′H1+2) and w ∈ ∆kσ (wσ, σ

δ′H1+1), where δ′ ≥
1 + β/H1.

The proof can be found in Appendix E. A discretization assuming only (C1),(C2)
and (C4) could be derived similarly, but to have sufficient control of the number
of components in Theorem 2, we make the stronger assumption (C3) of expo-
nential tails . Together with the monotonicity condition (C4) this implies the
existence of a finite constant cf such that for all sufficiently small ǫ,

{x : f(x) ≥ ǫ} ⊂ [−cf | log ǫ|1/p, cf | log ǫ|1/p] = Tcf ,ǫ. (29)

The constant cf depends on f by the constant Mf in (9). This property is used
in the proof of Lemma 4.

4. The proof of Theorem 2

We first state a lemma needed for the entropy calculations.

Lemma 5. For positive vectors b = (b1, . . . , bk) and d = (d1, . . . , dk), with
bi < di for all i, the packing numbers of ∆k and Hk[b, d] satisfy

D(ǫ,∆k, l1) ≤
(
5

ǫ

)k−1

, (30)

D(ǫ,Hk[b, d], l1) ≤ k!
∏k
i=1(di − bi + 2ǫ)

(2ǫ)k
. (31)
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Proof. A proof of (30) can be found in [11]; the other result follows from a
volume argument. For λk the k-dimensional Lebesgue measure, λk(Sk) = 1

k!

and λk(Bk(y,
ǫ
2 , l1)) =

ǫk

k! , where Bk(y,
ǫ
2 , l1) is the l1-ball in R

k centered at y,
with radius ǫ

2 . Suppose x1, . . . , xN is a maximal ǫ-separated set in Hk[b, d]. If
the center y of an l1-ball of radius

ǫ
2 is contained in Hk[b, d] then for any point

z in this ball, | zi − yi |≤ ǫ
2 for all i. Because for each coordinate we have the

bounds | zi |≤| yi | + | zi − yi |≤ di +
ǫ
2 and | zi |≥ bi − ǫ

2 , z is an element of
Hk[b− ǫ

2 , d+
ǫ
2 ]. The union of the balls Bk(x1,

ǫ
2 , l1), . . . , Bk(xN ,

ǫ
2 , l1) is therefore

contained in Hk[b− ǫ
2 , d+

ǫ
2 ].

Proof of Theorem 2. The proof is an application of Theorem 3 in [13] (stated be-
low in appendix A), with sequences ǫ̃n = n−β/(1+2β)(log n)t1 and ǭn = n−β/(1+2β)(log n)t2 ,
where t1 and t2 ≥ t1 are determined below. Let kn be the number of com-
ponents in Lemma 4 when σ = σn = ǫ̃

1/β
n . This lemma then provides a kn-

dimensional mixture m = m(·; kn, µ(n), w(n), σn) whose KL-divergence from f0
is O(σn

2β) = O(ǫ̃2n). The number of components is

kn = O(σn
−1| log σn|1+p

−1

) = O
(
n1/(1+2β)(log n)1+p

−1−t1/β
)
, (32)

their locations being contained in the set Eσn defined in (22). By the same lemma
there are l1-balls Bn = Bkn(µ

(n), σn
δ′H1+2) and ∆(n) = ∆kn(w

(n), σn
δ′H1+1)

such that the same is true for all kn-dimensional mixtures m = m(·; kn, µ, w, σ)
with σ ∈ [σn, σn + σn

δ′H1+2] and (µ,w) ∈ Bn ×∆(n). It now suffices to lower
bound the prior probability on having kn components and on Bn, ∆(n) and
[σn, σn + σn

δ′H1+2].
Let b = δ′H1 + 2; as σ−1 is inverse-gamma, it follows from the mean value

theorem that

Π(σ ∈ [σn, σn + σn
b]) =

∫ σn+σn
b

σn

λα

Γ(α)
x−(α+1)e−λ/xdx

≥
∫ σn+σn

b

σn

λα

Γ(α)
e−2λ/xdx ≥ 4

λα+1

Γ(α)
σn

b−2e−λσn
−1

,

(33)

which is larger than exp{−nǫ̃2n} for any choice of t1 ≥ 0. Condition (11) gives a
lower bound of B0 exp{−b0kn logr kn} on Π(kn), which is larger than exp{−nǫ̃2n}
when (2+β−1)t1 > 1+ p−1 + r. Given that there are kn components, condition
(14) gives a lower bound on Π(∆(n)), which is larger than exp{−nǫ̃2n} when
(2+β−1)t1 > 2+ b+ p−1. The required lower-bound for Π(Bn) follows from (9)

and the fact that µ
(n)
1 , . . . , µ

(n)
kn

are independent with prior density pµ satisfying

(12). The ’target’ mixture given by Lemma 4 has location vector µ(n), whose
elements are contained in Eσn

. By (9), Eσn
is contained in the interval Tcf ,ǫ

defined in (29), with ǫ = σn
H1 . Since pµ & ψ, pµ is lower bounded by a multiple

of σn
cpfH1 at the boundaries of this interval. Consequently, for all i = 1, . . . , kn,

Π

(
| µi − µ

(n)
i |≤ σn

δ′H1+2

kn

)
&
σn

δ′H1+2+cpfH1

kn
.
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As the l1-ball Bkn(µ
(n), σn

δ′H1+2) contains the l∞-ball {µ ∈ R
kn : | µi−µ

(n)
i |≤

σn
δ′H1+2

kn
, 1 ≤ i ≤ kn}, we conclude that

Π (µ ∈ Bn) & exp{−dkn log n}

for some constant d > 0. Combining the above results it follows that Π(KL(f0, ǫ̃n)) ≥
exp{−nǫ̃2n} when t1 > (2 + b+ p−1)/(2 + β−1).

We then have to find sets Fn such that (40) and (42) hold. For rn =

n
1

1+2β (log n)tr (rounded to the nearest integer) and a polynomially increasing
sequence bn such that ba2n > n1/(1+2β), with a2 as in (13), we define

Fn =
{
m(·; k, µ, w, σ)|k ≤ rn, µ ∈ Hk[−bn, bn], σ ∈ Sn

}
.

The bandwidth σ is contained in Sn = (σn, σ̄n], where σn = n−A and σ̄n =
exp{nǫ̃2n(log n)δ}, for arbitrary constants A > 1 and δ > 0. An upper bound on
Π(Scn) can be found by direct calculation, for example

∫ ∞

σ̄n

λα

Γ(α)
x−(α+1)e−

λ
x dx =

∫ σ̄−1
n

0

λα

Γ(α)
xα−1e−λxdx

≤
∫ σ̄−1

n

0

λα

Γ(α)
xα−1dx = O(exp{−αnǫ̃2n(log n)δ}).

Hence Π(Scn) ≤ e−cnǫ̃
2
n for any constant c, for large enough n. The prior mass

on mixtures with more than rn support points is bounded by a multiple of
exp{−b1kn logrn kn}. The prior mass on mixtures with at least one support
point outside [−bn, bn] is controlled as follows. By conditions (11) and (13), the
probability that a certain µi is outside [−bn, bn], is

Π(| µi |> bn) =

∫

[−bn,bn]c
pµ(x)dx . bmax{0,1−a2}

n e−b
a2
n . (34)

Since the prior on k satisfies (11), k clearly has finite expectation. Consequently,
(34) implies that

Π(N([−bn, bn]c) > 0) =

∞∑

k=1

Π(K = k) Π( max
i=1,...,k

| µi |> bn | K = k)

≤
∞∑

k=1

Π(k)k Π(| µi |> bn) . e−|bn|
a2
.

(35)

Combining these bounds, we find

Π(Fc
n) ≤ Π(Scn) +

∞∑

k=rn

ρ(k) + Π(N([−bn, bn]c > 0)) . e−b1rn(logn)
r

.

The right hand side decreases faster than e−nǫ̃
2
n if tr + r > 2t1.
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To control the sum in (40), we partition Fn using

Fn,j =
{
m(·; k, µ, w, σ)|k ≤ rn, µ ∈ Hk[−bn, bn], σ ∈ Sn,j

}
,

Sn,j = (sn,j−1, sn,j ] = (σn(1 + ǫ̃n)
j−1, σn(1 + ǫ̃n)

j ], j = 1, . . . , Jn,

Jn =

(
log

σ̄n
σn

)
/ log(1 + ǫn) = O

(
nǫ̃n(log n)

δ
)
.

An upper bound on the prior probability on the Fn,j is again found by direct
calculation:

Π(Fn,j) ≤ Π(Sn,j) = Π(σ−1 ∈ [σ−1
n (1 + ǫ̃n)

−j , σ−1
n (1 + ǫ̃n)

1−j))

=

∫ σ−1
n (1+ǫ̃n)

1−j

σ−1
n (1+ǫ̃n)−j

yα−1e−λydy

≤ λ−1 max{(σ−1
n (1 + ǫ̃n)

−j)α−1, (σ−1
n (1 + ǫ̃n)

1−j)α−1} exp{−λσ−1
n (1 + ǫ̃n)

−j}
. σ1−α

n (1 + ǫ̃n)
−(α−1)j exp{−λσ−1

n (1 + ǫ̃n)
−j}.

(36)

As the L1-distance is bounded by the Hellinger-distance, condition (40) only
needs to be verified for the L1-distance. We further decompose the Fn,j ’s and
write

Fn,j = ∪rnk=1Fn,j,k = ∪rnk=1

{
m(·; k, µ, w, σ)|µ ∈ Hk[−bn, bn], σ ∈ Sn,j

}
.

It will be convenient to replace the covering numbers N in (40) by their corre-
sponding packing numbersD, which are at least as big. Since for any pair of met-
ric spaces (A, d1) and (B, d2) we haveD(ǫ, A×B, d1+d2) ≤ D( ǫ2 , A, d1)D( ǫ2 , B, d2),
Lemma 3 implies that for all k ≥ 1, D(ǭn,Fn,j,k, ‖ · ‖1) is bounded by

D
( ǭn
3
,∆k, l1

)
D
( ǭnsn,j−1

6‖ψ‖∞
, Hk[−bn, bn], l1

)
D
( ǭnsn,j−1

3
, (sn,j−1, sn,j ], l1

)
.

Lemma 5 provides the following bounds:

D
( ǭn
3
,∆k, l1

)
≤

(
15

ǭn

)k−1

,

D
( ǭnsn,j−1

6‖ψ‖∞
, Hk[−bn, bn], l1

)
≤ k!

( ǭnsn,j−1

3‖ψ‖∞

)−k k∏

i=1

(
2bn +

ǭnsn,j−1

3‖ψ‖∞

)
,

D
( ǭnsn,j−1

3
, (sn,j−1, sn,j ], l1

)
≤

(
sn,j−1ǭn/3

)(
(sn,j − sn,j−1) + ǭnsn,j−1/3

)
.

For some constant C, we find that

D(ǭn,Fn,j , ‖ · ‖1) ≤ rnD(ǭn,Fn,j,rn , ‖ · ‖1)
. rnC

rnrn!(ǭn)
−2rnsn,js

−rn+1
n,j−1 (max(bn, ǭnsn,j−1))

rn .
(37)
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If bn ≥ ǭnsn,j−1, we have (1+ ǫ̃n)
−j ≥ ǭnσn

bn(1+ǫ̃n)
, and the last exponent in (36) is

bounded by −λb−1
n ǭn/(1+ ǫ̃n). A combination of (36), (37) and Stirling’s bound

on rn! then imply that
√
Π(Fn,j)

√
N(ǭn,Fn,j , d) is bounded by a multiple of

σ(1−α)/2
n (1 + ǫ̃n)

−(α−1)j/2√rnCrn/2rrn/2+1/2
n (ǭn)

−rn√sn,j

s
−rn/2+1/2
n,j−1 brn/2n exp{−λ

2
σ−1
n (1 + ǫ̃n)

−j}

. n
A
2 rn+

α−3
2 A(1 + ǫ̃n)

− 1
2 (j−1)(rn+α−2)+ 1−α

2 (rn + 1)rn+1C
rn
2 ǭ−rnn b

rn
2
n exp{−λb−1

n

ǭn
1 + ǫ̃n

}

. K0 exp{K1rn(log n)},

for certain constants C, K0 and K1. If bn < ǭnsn,j−1 we obtain similar bound

but with an additional factor ǭ
−rn/2
n n−Arn/2(1 + ǫ̃n)

(j−1)rn/2, where the fac-
tor (1 + ǫ̃n)

(j−1)rn/2 cancels out with (1 + ǫ̃n)
−(j−1)rn/2 on the third line of

the above display. There is however a remaining factor (1 + ǫ̃n)
1
2 (j−1)(2−α).

Since Jn is defined such that n−A(1 + ǫ̃n)
Jn = exp{nǫ̃2n(log n)δ}, the sum of√

Π(Fn,j)
√
N(ǭn,Fn,j , d) over j = 1, . . . , Jn is a multiple of exp{K1rn(log n)+

nǫ̃2n(log n)
δ}, which increases at a slower rate than exp{nǭ2n} if 2t2 > max(tr +

1, 2t1 + δ). Combined with the requirement that tr + r > 2t1 this gives t2 >
t1 + 1−r

2 . Hence the convergence rate is ǫn = n−β/(1+2β)(log n)t, with t >
(2 + b+ p−1)/(2 + p−1) + max(0, (1− r)/2).

5. Examples of priors on the weights

Condition (14) on the weights-prior is known to hold for the Dirichlet distri-
bution. We now address the question whether it also holds for other priors.
Alternatives to Dirichlet-priors are increasingly popular, see for example [16].
In this section two classes of priors on the simplex are considered. In both cases
the Dirichlet distribution appears as a special case. The proof of Theorem 2
requires lower bounds for the prior mass on l1-balls around some fixed point in
the simplex. These bounds are given in Lemmas 6 and 8 below.

Since a normalized vector of independent gamma distributed random vari-
ables is Dirichlet distributed, a straightforward generalization is to consider
random variables with an alternative distribution on R

+. Given independent
random variables Y1, . . . , Yk with densities fi on [0,∞), define a vector X with
elements Xi = Yi/(Y1 + . . .+ Yk), i = 1, . . . , k. For (x1, . . . , xk−1) ∈ Sk−1,

P (X1 ≤ x1, . . . , Xk−1 ≤ xk−1) =

∫ ∞

0

P (Y1 ≤ x1y, . . . Yk−1 ≤ xk−1y) dP
Y1+...+Yk(y)

=

∫ ∞

0

∫ x1y

0

∫ x2y

0

· · ·
∫ xk−1y

0

fk(y −
k−1∑

i=1

si)

k−1∏

i=1

fi(si)ds1 · · · dsk−1dy.

(38)
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The corresponding density is

fX1,...,Xk−1(x1, . . . , xk−1) =

∫ ∞

0

yk−1fk(y −
k−1∑

i=1

xiy)

k−1∏

i=1

fi(xiy)dy

=

∫ ∞

0

yk−1
k∏

i=1

fi(xiy)dy,

(39)

where xk = 1−∑k−1
i=1 xi. We obtain a result similar to lemma 8 in [13].

Lemma 6. Let X1, . . . , Xk have a joint distribution with a density of the form
(39). Assume there are positive constants c1(k), c2(k) and c3 such that for i =
1, . . . , k, fi(z) ≥ c1(k)z

c3 if z ∈ [0, c2(k)]. Then there are constants c and C

such that for all y ∈ ∆k and all ǫ ≤ ( 1k ∧ c1(k)c2(k)c3+1
)

P
(
X ∈ ∆k(y, 2ǫ)

)
≥ Ce−ck log( 1

ǫ ).

Proof. As in [13] it is assumed that yk ≥ k−1. Define δi = max(0, yi − ǫ2)

and δ̄i = min(1, yi + ǫ2). If xi ∈ (δi, δ̄i) for i = 1, . . . , k − 1, then
∑k
i=1 |

xi − yi |≤ 2
∑k−1
i=1 | xi − yi |≤ 2(k − 1)ǫ2 ≤ ǫ. Note that (x1, . . . , xk−1) ∈ Sk, as∑k−1

j=1 xj ≤ k−1
k + (k − 1)ǫ2 < 1. Since all xi in (39) are at most one,

f(x1, . . . , xk−1) ≥
∫ c2(k)

0

yk−1
k∏

i=1

(
c1(k)(xiy)

c3
)
dy =

(
c2(k)

c3+1
c1(k)

)k

(c3 + 1)k
(x1·. . .·xk)c3 .

Because

xk =

∣∣∣∣∣∣
1−

k−1∑

j=1

xj

∣∣∣∣∣∣
=

∣∣∣∣∣∣
yk +

k−1∑

j=1

(yj − xj)

∣∣∣∣∣∣
≥ k−1 − (k − 1)ǫ2 ≥ ǫ2 ≥ 1

k2
,

P
(
X ∈ Bk(y, ǫ)

)
≥ 1

k2c3

(
c2(k)

c3+1
c1(k)

)k

(c3 + 1)k

k−1∏

j=1

∫ δ̄j

δj

xc3j dxj ≥
(
c2(k)

c3+1
c1(k)

)k

(c3 + 1)2k
ǫ2k(c3+1)−2

≥ exp

{
k log(c2(k)

c3+1
c1(k))− log(c3 + 1)− log(k)− 2k log(

√
2

ǫ
)

}
.

As ǫ ≤ ( 1k ∧ c1(k)c2(k)
c3+1

), there are constants c and C for which this quantity

is lower-bounded by Ce−ck log( 1
ǫ ).

Alternatively, the Dirichlet distribution can be seen as a Polya tree. Following
Lavine [21] we use the notation E = {0, 1}, E0 = ∅ and for m ≥ 1, Em =
{0, 1}m. In addition, let Em∗ = ∪mi=0{0, 1}i. It is assumed that k = 2m for some
integerm, and the coordinates are indexed with binary vectors ǫ ∈ Em. A vector
X has a Polya tree distribution if

Xǫ =

m∏

j=1,ǫj=0

Uǫ1···ǫj−1

m∏

j=1,ǫj=1

(
1− Uǫ1···ǫj−1

)
,
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where
(
Uδ, δ ∈ Em−1

∗

)
is a family of beta random variables with parameters(

(αδ1 , αδ2), δ ∈ Em−1
∗

)
. We only consider symmetric beta densities, for which

αδ = αδ1 = αδ2 . Adding pairs of coordinates, lower dimensional vectors Xδ can
be defined for δ ∈ Em−1

∗ . For δ ∈ Em−1
∗ , let Xδ0 = UδXδ and Xδ1 =

(
1−Uδ

)
Xδ,

and X∅ = 1 by construction. If αδ = 1
2αδ1···δi−1

for all 1 ≤ i ≤ m and δ ∈ Ei,
X is Dirichlet distributed.

Lemma 7. Let X have a Polya distribution with parameters αδ, δ ∈ Em−1
∗ .

Then for all y ∈ ∆2m and η > 0,

pm(y, η) = P
(
X ∈ ∆k(y, η)

)
= P (

∑

ǫ∈Em

| Xm
ǫ − ymǫ |≤ η)

≥
m∏

i=1

P ( max
∂∈Ei−1

| Uδ −
yδ0
yδ

|≤ η

2m−i+2
).

Proof. For all i = 1, . . . ,m and δ ∈ Ei−1,

| UδXδ − yδ0 | ≤ Uδ | Xδ − yδ | +yδ | Uδ −
yδ0
yδ

|,

| (1− Uδ)Xδ − yδ1 | ≤ (1− Uδ) | Xδ − yδ | +yδ | (1− Uδ)−
yδ − yδ0
yδ

| .

Consequently,

∑

δ∈Em

| Xδ − yδ | =
∑

δ∈Em−1

| Xδ0 − yδ0 | + | Xδ1 − yδ1 |

≤
∑

δ∈Em−1

| Xδ − yδ | + 2
∑

δ∈Em−1

yδ | Uδ −
yδ0
yδ

|

≤
∑

δ∈Em−1

| Xδ − yδ | + 2 max
δ∈Em−1

| Uδ −
yδ0
yδ

| .

Hence,

pm(y, η) ≥ pm−1(y,
η

2
)P ( max

∂∈Em−1
| Uδ −

yδ0
yδ

|≤ η

4
)

≥
m∏

i=2

P ( max
∂∈Ei−1

| Uδ −
yδ0
yδ

|≤ η

2m−i+2
)P (| U∅ − y0 |≤ η

2m
)

≥
m∏

i=1

P ( max
∂∈Ei−1

| Uδ −
yδ0
yδ

|≤ η

2m−i+2
),

as

p1(η2
−m) = P (| X0 − y0 | + | X1 − y1 |≤ η2−m)

= P (| U0 − y0 | + | (1− U0)− (1− y0) |≤ η2−m) = P (| U0 − y0 |≤ η2−m−1).
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With δ ∈ Ei−1 fixed, we can lower-bound P (| Uδ − yδ0
yδ

|≤ η
2m−i+2 ) for various

values of the αδ. In the remainder we will assume that αδ = αi, for all δ ∈ Ei−1,
with i = 1, . . . ,m. For increasing αi ≥ 1, Uδ has a unimodal beta-density, and
without loss of generality we can assume the most unfavorable case, i.e. when
yδ0
yδ

= 0. If the αi are decreasing, and smaller than one, this is when yδ0
yδ

= 1
2 .

In both cases Lemma 9 in appendix A is used to lower bound the normalizing
constant of the beta-density.

If αi ↑ ∞, i = 1, . . . ,m when m→ ∞, then

P (| Uδ |≤ η2−m+i−2) =

∫ η2−m+i−2

0

Γ(2αi)

Γ2(αi)
xαi−1(1− x)αi−1dx

&

∫ η2−m+i−2

0

αi
− 1

2 22αi−
1
2
1

2
xαi−1dx = 2−(m−i)αi−

3
2αi

− 3
2 ηαi .

At the ith level there are 2i−1 independent variables Uδ with the Beta(αi, αi)
distribution, and therefore

log
(
pm(y, η)

)
& log

m∏

i=1

(
2−(m−i)αi−

3
2αi

− 3
2 ηαi

)2i−1

=

m∑

i=1

2i−1
{
−αi log

1

η
− 3

2
log(αi)− αi(m− i) log(2)

}
.

If αi ↓ 0, i = 1, . . . ,m when m→ ∞, we have

P (| Uδ −
1

2
|≤ η2−m+i−2) =

∫ 1/2+η2−m+i−2

1/2−η2−m+i−2

Γ(2αi)

Γ2(αi)
xαi−1(1− x)αi−1dx

& αiη2
−m+i−1

(1
4

)αi−1
,

log
(
pm(y, η)

)
&

m∑

i=1

2i−1
{
log(αi)−

(
2αi + (m− i− 1)

)
log(2)− log

1

η

}
.

We have the following application of these results.

Lemma 8. Let Xm
δ be Polya distributed with parameters αi. If αi = ib for

b > 0,

P (X ∈ ∆k(y, η)) ≥ C exp{−ck(log k)b log 1

η
},

for some constants c and C. By a straightforward calculation one can see that
this result is also valid for b = 0. In the Dirichlet case αi = 1

2αi−1 for i =
1, . . . ,m,

P (X ∈ ∆k(y, η)) ≥ C exp{−ck log 1

η
},

in accordance with the result in [11].
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6. Conclusion

We obtained posteriors that adapt to the smoothness of the underlying density,
that is assumed to be contained in a nonparametric model. It is of interest to
obtain, using the same prior, a parametric rate if the underlying density is a
finite mixture itself. This is the case in the location-scale-model studied in [19],
and the arguments used therein could be easily applied in the present work.
The result would however have less practical relevance, as the variances σ2

j of
all components are required to be the same.

Furthermore, the prior on the σj ’s used in [19] depends on n, and this seems
to be essential if the optimal rates and adaptivity found in the present work are
to be maintained. In the lower bound for the prior mass on a KL-ball around
f0, given by (33), we get an extra factor kn in the exponent, and the argument
only applies if λ = λn ≈ σn. This suggests that the restriction to have the same
variance for all components is necessary to have a rate-adaptive posterior based
on a fixed prior, but we have not proved this. The determination of lower bounds
for convergence rates deserves further investigation; some results can be found
in [33]. Full adaptivity over the union of all finite mixtures and Hölder densities
could perhaps be established by putting a hyperprior on the two models, as
considered in [12].
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Appendix A

The following theorem is taken from [13] (Theorem 5), and slightly adapted to
facilitate the entropy calculations in the proof of Theorem 2. Their condition
Π(Fn|X1, . . . , Xn) → 0 in Fn0 -probability is a consequence of (41) and (42)
below. This follows from a simplification of the proof of Theorem 2.1 in [11],
p.525, where we replace the complement of a Hellinger-ball around f0 by Fc

n. If
we then take ǫ = 2ǭn in Corollary 1 in [13], with ǭn ≥ ǫ̃n and ǭn → 0, the result
of Theorem 5 in this paper still holds.

Theorem 3 (Ghosal and van der Vaart, 2006). Given a statistical model F ,
let {Xi}i≥1 be an i.i.d. sequence with density f0 ∈ F . Assume that there exists

a sequence of submodels Fn that can be partitioned as
∞∪

j=−∞
Fn,j such that, for
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sequences ǫ̃n and ǭn ≥ ǫ̃n with ǭn → 0 and nǫ̃2n → ∞,

∞∑

j=−∞

√
N(ǭn,Fn,j , d)

√
Πn(Fn,j)e−nǭ

2
n → 0, (40)

Πn(KL(f0, ǫ̃n)) ≥ e−nǫ̃
2
n , (41)

Πn(Fc
n) ≤ e−4nǫ̃2n , (42)

where KL(f0, ǫ̃n) is the Kullback-Leibler ball

{f : F0 log(f0/f) ≤ ǫ̃2n, F0 log
2(f0/f) ≤ ǫ̃2n}.

Then Πn(f ∈ F : d(f, f0) > 8ǭn | X1, . . . , Xn) → 0 in Fn0 -probability.

The advantage of the above version is that (42) is easier to verify for a faster
sequence ǫ̃n. The use of the same sequence ǫn in (40) and (42) would otherwise
pose restrictions for the choice of Fn.

The following asymptotic formula for the Gamma function can be found in
many references, see for example Abramowitz and Stegun [1].

Lemma 9. For any α > 0,

Γ(α) =
√
2πe−ααα−

1
2 eθ(α), (43)

where 0 < θ(α) < 1
12α . If α → ∞, this gives the bound Γ(2α)

Γ(α)Γ(α) & α− 1
2 22α−

1
2

for the beta function. For α → 0, the identity αΓ(α) = Γ(α + 1) gives the
bounds Γ(α) ≤ 1

α and Γ(α) ≥ c
α , where c = 0.8856 . . . is the local minimum

of the gamma function on the positive real line. Consequently, Γ(2α)
Γ(α)Γ(α) & α.

From (43) it follows that for all α > 0 and all integers j ≥ 1,

√
Γ
(
2j+1
1+α

)

j!
≤ 1√

2π
e

α
1+α (j+1)

( 2

1 + α

) j
1+α (j + 1)−

αj
1+α , (44)

Γ
(
j+1
1+α

)

j!
≤ e

α
1+α (j+1)+ 1

12
( 1

1 + α

) j
1+α (j + 1)−

αj
1+α . (45)

The following lemma will be required for the proof of Lemma 1 in the next
section.

Lemma 10. Given a positive integer m and ψ(p)(x) = Cpe
−|x|p , let ϕ be the m-

fold convolution ψ∗· · ·∗ψ. Then for any α ≥ 0 there is a number k′ = k′(p, α,m)
such that for all sufficiently small σ > 0,

∫

|x|>k′| log σ|1/p
ϕ(x)|x|αdx = σH . (46)
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Proof. For any p > 0 and a random variable Z with density ψ(p),

P (Z > y) =

∫ ∞

y

ψ(p)(x)dx ≤ p−1y1−p
∫ ∞

y

pxp−1ψ(p)(x)dx = p−1y1−pψ(p)(y).

For m = 1, we have

∫ ∞

y

xαψ(p)(x)dx =

∫ ∞

y1+α

ψ(p)

(
z1/(1+α)

)
dx =

Cp
Cp/(1+α)

∫ ∞

y1+α

ψ(p/(1+α))(z)dz

=
Cp

Cp/(1+α)
PZ∼ψ(p/(1+α))

(Z > k′
(1+α)| log σ| 1+α

p )

for any α > 0 and y > 0.
Now let m > 1, and X =

∑m
i=1 Zi for i.i.d. random variables Zi with density

ψ(p). If α ≥ 1 then, by Jensen’s inequality applied to the function x 7→ xα,

E
(
|Z|α1|Z|>k′| log σ|1/p

)
≤ E

(
mα−1

(
m∑

i=1

|Zi|α
)
1|Z|>k′| log σ|1/p

)

≤ mα−1
m∑

i=1

E


|Zi|α

m∑

j=1

1|Zj |>
k′

m | log σ|1/p


 = σH ,

where we used (46) with α = 0 and the independence of the Zi’s to bound the
terms with i 6= j. If α < 1, we bound |Z|α by |Z| and apply the preceding
result.

Appendix B: Approximation under a global Hölder condition

For L > 0, β > 0 and r the largest integer smaller than β, let H(β, L) be the
space of functions h such that supx 6=y |h(r)(x)− h(r)(y)|/|y − x|β−r ≤ L, where

h(r) is the rth derivative of h. Let Hβ be the Hölder-space ∪L>0H(β, L), and
given some function h ∈ Hβ , let Lh,β−r = supx 6=y |h(r)(x)− h(r)(y)|/|y− x|β−r.
When β − r = 1, this equals ‖h(r+1)‖∞.

Lemma 11. Let f ∈ Hβ, where 2k < β ≤ 2k + 2 for some nonnegative integer
k. Then ‖f − fk ∗ ψσ‖∞ = O(σβ), where fk is defined recursively by f0 = f ,
f1 = f −∆σf = 2f −Kσf and fj+1 = f −∆σfj, j ≥ 1.

Proof. By induction it follows that

fk =

k∑

i=0

(−1)i
(
k + 1

i+ 1

)
Ki
σf, ∆k

σf =

k∑

i=0

(−1)k−i
(
k

i

)
Ki
σf. (47)

The proof then depends on the following two observations. First, note that
if f ∈ Hβ then f1, f2, . . . are also in Hβ , even if ψ itself is not in Hβ (e.g.
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when ψ is the Laplace kernel). Second, it follows from the symmetry of ψ that
Kσf

(r) = dr

dxrKσf , i.e. the rth derivative of the convolution of f equals the

convolution of f (r).
When k = 0 and β ≤ 2 the result is elementary. When k = 1 we haveKσ(f1)−

f = ∆σ(f −∆σ(f))−∆σ(f) = −∆σ∆σf , and ‖∆σ∆σf‖∞ ≤ ν2σ
2‖(∆σf)

′′‖∞.
Because differentiation and the ∆σ operator can be interchanged, we also have
‖(∆σf)

′′‖∞ = ‖(∆σf
′′)‖∞. Since f ′′ ∈ Hβ−2, the latter quantity is O(σβ−2).

Consequently, ‖∆σ∆σf‖∞ = O(σβ). For k > 1, we repeat this step and use
that, as a consequence of (47), ‖Kσfk − f‖∞ = ‖∆k+1

σ f‖∞. From the following
induction argument it follows that for any positive integer k, β ∈ (2k, 2k +
2] and f ∈ Hβ , ‖∆k+1

σ f‖∞ = O(σβ). Suppose this statement holds for k =
0, 1, . . . ,m − 1, and that f ∈ Hβ with β ∈ (2m, 2m + 2]. Then ‖∆m

σ f‖∞ =
O(‖∆σf

(2m)‖∞σ2m) and ‖∆σf
(2m)‖∞ = O(σβ−2m) as f (2m) ∈ Hβ−2m.

Appendix C: Proof of Lemma 1

The smoothness condition (6) in (C1) implies that

log f0(y) ≤ log f0(x) +

r∑

j=1

lj(x)

j!
(y − x)j + L(x)|y − x|β (48)

log f0(y) ≥ log f0(x) +

r∑

j=1

lj(x)

j!
(y − x)j − L(x)|y − x|β , (49)

again for all x, y with |y − x| ≤ γ.
Let f be a function for which these conditions hold, r being the largest integer

smaller than β. We define

Bf,r(x, y) =

r∑

j=1

lj(x)

j!
(y − x)j + L(x)|y − x|β .

First we assume that β ∈ (1, 2] and r = 1. The case β ∈ (0, 1] is easier
and can be handled similarly; the case β > 2 is treated below. Using (48) we
demonstrate below that

Kσf(x) ≤ (1 +O((|L(x)|+ |lβ1 (x)|)σβ))f(x) +O(1 + |L(x)|+ |lβ1 (x)|)σH . (50)

We omit the proof of the inequality in the other direction, which can be obtained
similarly using (49). To prove (50), we define, for any x ∈ R,

Dx = {y : |y − x| ≤ k′σ| log σ|1/p},

for a large enough constant k′ to be chosen below. Assuming that k′σ| log σ|1/p ≤
γ, for γ as in condition (C1), we can rewrite (48) as f(y) ≤ f(x) exp{Bf,1(x, y)},
and

Kσf(x) ≤ f(x)

∫

Dx

eBf,r(x,y)ψσ(y − x)dy +

∫

Dc
x

f(y)ψσ(y − x)dy. (51)
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Furthermore, if x ∈ Aσ and y ∈ Dx, then forM = 1
(r+1)! exp{supx∈Aσ,y∈Dx

|Bf,r(x, y)|}
and some ξ ∈ (0, B),

eBf,r(x,y) =

r∑

m=0

1

m!
Bmf,r(x, y)+

eξ

(r + 1)!
Br+1
f,r (x, y) ≤

r∑

m=0

1

m!
Bmf,r(x, y)+M |Bf,r|r+1(x, y).

(52)
In the present case, β ∈ (1, 2] and r = 1, hence

eBf,r(x,y) ≤ 1 +Bf,r(x, y) +MB2
f,r(x, y) = 1 + l1(x)(y − x) + L(x)|y − x|β

+M
(
l21(x)(y − x)2 + 2l1(x)L(x)(y − x)|y − x|β + L2(x)|y − x|2β

)
.

(53)

Integrating over Dx, the terms with a factor (y− x) disappear, so that the first
term on the right in (51) is bounded by

f(x)

∫

Dx

ψσ(y−x)
{
1 + L(x)|y − x|β +M(k′B)2−β |l1(x)(y − x)|β +Mk′

β
B|L(x)(y − x)|β

}
dy,

(54)

since |l1(x)(y−x)| ≤ k′B and |L(x)||(y−x)|β ≤ k′
β
B when x ∈ Aσ and y ∈ Dx.

Because
∫
Dc

x
ψσ(y − x)|y − x|αdy = σH for any α ≥ 0, when k′ in the definition

of Dx is sufficiently large (see Lemma 10 in Appendix A), (51), (53) and (54)

imply that for constants k1 =M(k′B)2−β and k2 = 1 +Mk′
β
B,

(Kσf)(x) ≤ f(x)

∫

R

ψσ(y − x){1 + k1|l1(x)|β |y − x|β + k2|L(x)||y − x|β}dy

+ (‖f‖∞ + 1 + k1|l1(x)|β + k2|L(x)|)O(σH),

(55)

which completes the proof of (50) for β ∈ (1, 2]. Using the same arguments
the inequality in the other direction (with different constants) can be obtained
when we define Bf,1(x, y) = l1(x)(y−x)−L(x)|y−x|β , and use that eBf,r(x,y) ≥∑r
m=0

1
m!B

m
f,r(x, y) −M |Bf,r|r+1(x, y) instead of (52). This finishes the proof

of (17) for k = 0.
Now let f be a function for which (48) and (49) hold with β ∈ (3, 4] and r = 3;

the case β ∈ (2, 3] being similar and simpler. Before looking atKσf1 we first give
an expression forKσf . When x ∈ Aσ and y ∈ Dx, e

B ≤ 1+B+ 1
2B

2+ 1
6B

3+MB4

and for some constantM , with B(x, y) = l1(x)(y−x)+ 1
2 l1(x)(y−x)+ 1

6 l3(x)(y−
x)3 + L(x)|y − x|β . Using this bound on eB we can redo the calculations given
in (51), (52), (54) and (55); again by showing inequality in both directions we
find that

Kσf(x) = f(x)
(
1 +

ν2
2
(l21(x) + l2(x))σ

2 +O(R(x)σβ)
)
+O

(
(1 +R(x))σH

)
.

(56)

This follows from the fact that for x ∈ Aσ and y ∈ Dx we can control the terms
containing a factor |y − x|k with k > 2, similar to (54). All these terms can be
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shown to be a multiple of σβ by taking out a factor |y − x|β and matching the
remaining factor |y − x|k−β by a certain power of the |lj |’s or |L|.

The proof of (17) for f1 can now be completed by the observation that (56) de-
pends on the kernel ψ only through the values of να. In fact it holds for any sym-
metric kernel such that

∫
ψ(x)|x|αdx = να <∞ and

∫
|x|>k′| log σ|1/p ψ(x)|x|αdx =

σH when k′ is large enough. For the kernel ψ ∗ ψ these properties follow from
Lemma 10 in Appendix A. Consequently, (56) still holds when Kσf is replaced
by KσKσf and ν2 by νψ∗ψ,2 =

∫
(ψ ∗ ψ)(x)|x|αdx. As f1 = 2f − Kσf and

νψ∗ψ,2 = 2ν2, this proves (17) for k = 1.
The same arguments can be used when k > 1 and β ∈ (2k, 2k + 2]; in that

case all terms with σ2, σ4, . . . , σ2k cancel out. This can be shown by expressing
the moments νm,2, . . . , νm,2k of the kernels Km

σ , m = 2, . . . , k + 1 in terms of
ν2, . . . , ν2k and combining this with (47) in the proof of Lemma 11 in Appendix
B.

Appendix D: Proof of Lemma 2

To show that the first integral in (23) is of order σ2β , consider the sets

Aσ,δ = {x : |lj(x)| ≤ δBσ−j | log σ|−j/p, j = 1, . . . , r, |L(x)| ≤ δBσ−β | log σ|−β/p},

indexed by δ ≤ 1. For notational convenience, let
∑β
j=1 denote sums over (r+1)

terms containing respectively the functions l1, . . . , lr and lβ = L. First letm = 0.
It follows from (7) in (C2) and Markov’s inequality that

∫

Ac
σ

(K0
σf)(x)dx ≤

β∑

j=1

P
(
|lj(X)| 2β+ǫ

j ≥ (δB)
2β+ǫ

j σ−2β−ǫ| log σ|− 2β+ǫ
p

)
= O(σ2β),

provided that σ−ǫ| log σ|− 2β+ǫ
p > 1, which is the case if σ is sufficiently small.

If m = 1, consider independent random variables X and U with densi-
ties f and ψ, respectively. Then X + σU has density Kσf . Because P (|U | ≥
k′| log σ|1/p) = O(σ2β) if the constant k′ is sufficiently large, we have

P (X + σU ∈ Acσ) ≤ P (X + σU ∈ Acσ, | U |≤ k′| log σ|1/p) + P (|U | ≥ k′| log σ|1/p)
= O(σ2β) + P (X + σU ∈ Acσ, X ∈ Aσ,δ, | U |≤ k′| log σ|1/p)
+ P (X + σU ∈ Acσ, X ∈ Acσ,δ, | U |≤ k′| log σ|1/p)

(57)

The last term is bounded by P (X ∈ Acσ,δ), which is O(σ2β) for any 0 < δ ≤ 1.
We show that the last term on the second line is zero for sufficiently small δ.
This can be shown by contradiction: together with the conditions on f , the
fact that X ∈ Aσ,δ and X + σU ∈ Acσ,1 implies that |U | is large, contradicting
| U |≤ k′| log σ|1/p.

To see this, note that since X ∈ Aσ,δ, |L(X)| ≤ δBσ−β | log σ|−β/p and
|lj(X)| ≤ δBσ−j | log σ|−j/p for j = 1, . . . , r. On the other hand, X + σU ∈
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Acσ,1 implies that |L(X + σU)| ≥ Bσ−β | log σ|−β/p or that |li(X + σU)| ≥
δBσ−i| log σ|−i/p for some i ∈ {1, . . . , r}. From (6) it follows that for all i =
1, . . . , r

|li(X + σU)| ≤

∣∣∣∣∣∣

r−i∑

j=0

li+j(X)

j!
(σU)j +

r!

(r − i)!
|L(X)||σU |β−i

∣∣∣∣∣∣
≤ Bσ−i| log σ|−i/p

if δ is sufficiently small. Therefore it has to be a large value of |L(X + σU)|
that forces X + σU to be in Acσ. Hence it suffices to show that |L(X)| ≤
δBσ−β | log σ|−β/p and | U |≤ k′| log σ|1/p is in contradiction with |L(X+σU)| ≥
Bσ−β | log σ|−β/p. We now derive the contradiction from the assumption that L
is polynomial. Let q be its degree, and let η = max |zi|, zi being the roots of L.
First, suppose that |X| > η + 1. Then

U jσjL(j)(X) = O
(
|U jσjL(X)|

)
= O

(
σ−(β−j)| log σ|− β−j

p

)
, j = 1, . . . , q.

This implies

|L(X + σU)| ≤ |L(X)|+

∣∣∣∣∣∣

q∑

j=1

σjU jL(j)(X)

j!

∣∣∣∣∣∣
+
σq|U |q
q!

∣∣∣L(q)(ξ)− L(q)(X)
∣∣∣

≤ δBσ−β | log σ|− β
p +O(σ−(β−1)| log σ|− β−1

p ),

which is smaller than Bσ−β | log σ|− β
p when σ and δ < 1 are small enough. If

|X| ≤ η + 1, note that this implies |X + σU | ≤ η + 2 for sufficiently small σ, as

|U | ≤ k′| log σ| βp . Consequently,

|L(X + σU)| ≤ max
|x|≤η+2

|L(x)| = L̄ ≤ Bσ−β | log σ|− β
p ,

again for sufficiently small σ.
If m = 2 in (23), note that the above argument remains valid if X has density

Kσf instead of f . The last term in (57) is then bounded by P (X ∈ Acσ,δ), which

is O(σ2β) by the result for m = 1. This step can be repeated arbitrarily often,
for some decreasing sequence of δ’s.

To bound the second integral in (23) for m = 0, we need the tail condition
f(x) ≤ c|x|−α in (C2). In combination with the monotonicity of f required in
(C4), this implies that

∫

Ec
σ

f(x)dx ≤ σH1/2

∫

Ec
σ

√
f(x)dx = O(σ2β), (58)

which is O(σ2β) when H1 ≥ 4β.
For m = 1, we integrate over the sets Ecσ ∩ Acσ and Ecσ ∩ Aσ. The integral

over the first set is O(σ2β) by the preceding paragraph. To bound the second
integral, consider the sets

Eσ,δ = {x : log f(x) ≥ δH1 log σ}, (59)
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indexed by δ ≤ 1. We can use the inequality (57) with Acσ, Aσ,δ and A
c
σ,δ replaced

by respectively Ecσ ∩ Aσ, Eσ,δ ∩ Aσ and Ecσ,δ ∩ Aσ. The probability PX∼f (X ∈
Ecσ,δ) can be shown to be O(σ2β) as in (58), provided that δH1/2 ≥ 2β. The

probability that |U | ≤ k′| log σ|1/p, X + σU ∈ Ecσ ∩ Aσ and X ∈ Eσ,δ ∩ Aσ is
zero: due to the construction of Aσ we have | l(X+σU)− l(X) |= O(1), whereas
| l(X + σU)− l(X) |≥ (1− δ)H1 | log σ |. This step can be repeated as long as
the terms PX∼f (X ∈ Ecσ,δ) remain O(σ2β), which is the case if the initial H1 is
chosen large enough. This finishes the proof of (23).

To prove (25), let β > 2 and k ≥ 1 be such that 2k < β ≤ 2k + 2, l = log f
being β-Hölder. It can be seen that Lemma 1 still holds if we treat l as if it was
Hölder smooth of degree 2. Instead of (17), we then obtain

(Kσf)(x) = f(x)
(
1 +O(R(2)(x)σ2)

)
+O

(
(1 +R(2)(x))σH

)
, (60)

where L(2) = l2 and R(2) is a linear combination of l21 and |L(2)|. The key
observation is that R(2) = o(1) uniformly on Aσ when σ → 0. Combining (60)
with the lower bound for f on Eσ, can find a constant ρ close to 1 such that

f1(x) = 2f(x)−Kσf(x) = 2f(x)−(1+O(R(2)(x))σ2)f(x)−O(1+R(2)(x))σH > ρf(x)

for small enough σ. Similarly, when l is treated as being Hölder smooth of degree
4, we find that

f2(x) = 2f1(x)−Kσf1(x) = 2f1(x)−(1+O(R(4)(x))σ4)f(x)−O(1+R(4)(x))σH > ρ2f(x).

Continuing in this manner, we find a constant ρk such that fk(x) > ρkf(x) for
x ∈ Aσ ∩ Eσ and σ sufficiently small. If initially ρ is chosen close enough to 1,
ρk > 1

2 and hence Aσ ∩Eσ ⊂ Jσ,k. To see that (23) now implies (24), note that
the integrand 1

2f − fk is a linear combination of Km
σ f , m = 0, . . . , k.

Appendix E: Proof of Lemma 4

We bound the second integral in (28); the first integral can be bounded similarly.
For h̃k the normalized restriction of hk to Eσ and m the finite mixture to be
constructed, we write

∫
f

(
log

f

m

)2

=

∫

Eσ

f

(
log

f

Kσhk
+ f log

Kσhk

Kσh̃k
+ f log

Kσh̃k
m

)2

+

∫

Ec
σ

f

(
log

f

Kσhk
+ log

Kσhk
m

)2

.

(61)

The integral of f(log(f/Kσhk))
2 over Eσ is O(σ2β) by Theorem 1. To show

that the integral of f(log(Kσhk/Kσh̃k))
2 over Eσ is O(σ2β) as well, recall the

definition of gk and hk in (20) and (21). Combining (23) and (24) in Lemma
2 with the fact that fk is a linear combination of Ki

σf , i = 0, . . . , k (see (47)
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in appendix B), we find that
∫
Ec

σ
hk = O(σ2β). Consequently, Kσhk/Kσh̃k) =

O(σ2β) and the required bound for
∫
Eσ
f(log(Kσhk/Kσh̃k))

2 follows. To bound

the integral of f(logKσh̃k/m)2 over Eσ, let m = m(·; kσ, µσ, wσ, σ) be the finite
mixture obtained from Lemmas 12 and 13, with ǫ = σδ

′H1+1 and δ′ ≥ 1+2β/H1.
The requirement that a . ψ−1(ǫ) in Lemmas 12 and 13 is satisfied by the
monotonicity and tail conditions on f (see (29)). The number of components kσ
in Lemma 13 is O(σ−1| log σ|1+p−1

). We have

∫

Eσ

f

(
log

Kσh̃k
m

)2

≤
∫

Eσ

f

(
m−Kσh̃k
σH1 − σδ′H1

)2

≤ σ2(δ′−1)H1 = O(σ2β),

provided that δ′ ≥ 1 + β
H1

. The cross-products resulting from the square in

the integral over Eσ can be shown to be O(σ2β) using the Cauchy-Schwartz
inequality and the preceding bounds.

To bound the integral over Ecσ, we add a component with weight σ2β and
mean zero to the finite mixture m. From Lemma 3 it can be seen that this does
not affect the preceding results. Since f and hk are uniformly bounded, so is
Kσhk. If C is an upper bound for Kσhk, then
∫

Ec
σ

f(x)

(
log

Kσhk
m

(x)

)2

dx ≤
∫

Ec
σ

f(x)

(
log

C

σ2βψσ(x)

)2

dx

=

∫

Ec
σ

f(x)

(
log(C−1

p C) + 2β| log σ|+ |x|p
σp

)2

dx.

(62)

This is O(σ2β) if
∫

Ec
σ

f(x)|x|2pdx ≤ σH1/2

∫

Ec
σ

√
f(x)|x|2pdx = O(σ2β+2p),

which is the case if H1 ≥ 4(β + p). The integral of f(log f/Kσhk)
2 over Ecσ is

O(σ2β) by Lemma 1, and the integral of f(log f/Kσhk)(logKσhk/m) over Ecσ
can be bounded using Cauchy-Schwartz.

If m′ = m(·; kσ, µ, w, σ′) is a different mixture with σ′ ∈ [σ, σ + σδ
′H1+2],

µ ∈ Bkσ (µσ, σ
δ′H1+2) and w ∈ ∆kσ (wσ, σ

δ′H1+1), the L∞-norm between m and

m′ is σδ
′H1 by Lemma 3, and

∫
Eσ
f
(
log Kσh̃k

m′

)2
= O(σ2β). The integral over

Ecσ can be shown to be O(σ2β) as in (62), where the |x− σ2β |2p that comes in
the place of |x|2p can be handled with Jensen’s inequality.

Appendix F: Discretization

The following lemmas can be found in [19], p.59-60. They are straightforward
extensions of the corresponding results for normal mixtures, contained in lemma
3.1 of [14] and lemma 2 of [13]. Lemma 13 is used in the proof of Lemma 4 in
the present work.
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Lemma 12. Given p = 2, 4, . . ., let ψ(x) = Cp e
−|x|p . Let F be a probability

measure on [−a, a], where a . ψ−1(ǫ), and assume that σ ∈ [σn, σ̄n] and ǫ <
(1 ∧ Cp). Then there exists a discrete distribution F ′ on [−a, a] with at most

N = pe2 log
Cp

ǫ support points such that ‖F ∗ ψσ − F ′ ∗ ψσ‖∞ . ǫ.

Lemma 13. Given σ ∈ [σn, σ̄n] and F ∈ M[−a, a], let F ′ be the discrete
distribution from the previous lemma. Then ‖F ∗ ψσ − F ′ ∗ ψσ‖1 . ǫ ψ−1(ǫ).
Moreover, for any σ > 0 there exists a discrete F ′ with a multiple of (aσ−1 ∨
1) log ǫ−1 support points, for which ‖F ∗ψσ−F ′ ∗ψσ‖1 . ǫψ−1(ǫ) and ‖F ∗ψσ−
F ′ ∗ ψσ‖∞ . ǫ

σ .
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