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GROUP ACTIONS ON AFFINE CONES

TAKASHI KISHIMOTO, YURI PROKHOROV, AND MIKHAIL ZAIDENBERG

To Peter Russell on the occasion of his 70th birthday

Abstract. We address the following question:

For which smooth projective varieties, the corresponding affine cone admits an action
of a connected algebraic group different from the standard C∗-action by scalar matrices
and its inverse action?

We show in particular that the affine cones over anticanonically embedded smooth
del Pezzo surfaces of degree ≥ 4 possess such an action. Besides, we give some
examples of rational Fano threefolds which have this property. A question in [FZ1]
whether this property holds also for smooth cubic surfaces, occurs to be out of reach
for our methods. Nevertheless, we provide a general geometric criterion that could
be helpful in this case as well.
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Introduction

All varieties in this paper are defined over C. By Corollary 1.13 in [FZ1], an isolated
Cohen-Macaulay singularity (X, x) of a normal quasiprojective variety X is rational
provided that X admits an effective action of the additive group C+, in particular of a
connected non-abelian algebraic group. In the opposite direction, let us observe that,
for instance, the singularity at the origin of the affine Fermat cubic in A4

x31 + x32 + x33 + x34 = 0

is rational. The question was raised [FZ1, Question 2.22] whether it also admits a
non-diagonal action of a connected algebraic group, in particular, a C+-action. So far,
we do not know the answer. However, we answer in affirmative a similar question for
all del Pezzo surfaces of degree d ≥ 4.

Theorem 0.1. Let Yd be a smooth del Pezzo surface of degree d anticanonically em-
bedded into Pd, and let Xd = AffCone(Yd) ⊆ Ad+1 be the affine cone over Yd. If
4 ≤ d ≤ 9 then Xd admits a nontrivial C+-action. Consequently, the automorphism
group Aut (Xd) is infinite dimensional. Moreover, the Makar-Limanov invariant of Xd

is trivial.

Recall [Dol1, 10.1.1] that for d ≤ 5 the group Aut (Yd) is finite. By definition, the
Makar-Limanov invariant of an affine variety X is the subring of O(X) of common
invariants of all C+-actions on X . It is trivial when it consists of the constants.

One of our main results (Theorem 3.9) provides a necessary and sufficient condition
for the existence of a nontrivial C+-action on an affine cone. As a corollary, for affine
cones of dimension 3 we obtain the following geometric criterion.

Theorem 0.2. Let Y be a smooth projective rational surface with a polarization ϕ|H| :
Y →֒ Pn, and let X = AffConeH(Y ) ⊆ An+1 be the affine cone over Y ⊆ Pn. Then
X admits a nontrivial C+-action if and only if Y contains an H-polar cylinder i.e., a
cylindrical Zariski open set

U = Y \ supp(D) ≃ Z × A1,

where Z is an affine curve and D ∈ |dH| is an effective divisor on Pn.

Using this criterion, we show in Proposition 3.13 that for every smooth projective
rational surface Y there exists a polarization ϕ|H| : Y →֒ Pn such that Y contains
an H-polar cylinder and so the corresponding affine cone possesses an effective action
of C+. It would be interesting to classify in any dimension all pairs (Y,H), where
Y is a smooth projective variety and H an ample divisor on Y , such that the affine
cone X = AffConeH(Y ) admits an effective C+-action. We recover this classification
for dimC(Y ) = 1 and give some concrete examples in higher dimensions, especially in
dimensions 2 and 3.

A theorem due to Matsumura, Monsky and Andreotti (see [MM], or [GH, §I.4], or
Section 1 below) claims that any automorphism of a smooth hypersurface Y in Pn

of degree d, where d, n ≥ 3 and (d, n) 6= (4, 3), is restriction of a unique projective
linear transformation, and Aut(Y ) is a finite group. In Corollary 2.4 we show that
the automorphism group Aut(X) of the affine cone X over a smooth, non-birationally
ruled projective variety Y is a linear group, and actually a central extension of a finite
group by C∗. Consequently, among the affine cones over smooth projective surfaces
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in P3, only those of degree ≤ 3 can admit a nontrivial action of a connected algebraic
group, and their automorphism groups can be infinite-dimensional. Actually, the 3-fold
affine quadric cone possesses an effective linear action of the additive group C2

+, see
Example 3.3 below or [AS], [Sh].

In Section 1 we give a short overview of the known results on the automorphism
groups. In Section 2 we collect generalities on automorphisms of affine cones. Theorems
0.1 and 0.2 are proven in Section 3. In Section 4 we summarize some geometric facts
that could be useful (in view of the criterion of Theorem 0.2) in order to answer
Question 2.22 in [FZ1] cited above. In the final section 5 we describe two families of
rational Fano threefolds such that the affine cones over their anti-canonical embeddings
possess effective C+-actions.

Acknowledgements: We thank Alvaro Liendo, who participated in discussions on
early stages of this work, for his attention and comments. Our thanks also to Dmitry
Akhiezer, Michel Brion, and Dimitri Timashev for providing useful information on
homogeneous varieties, to Dmitry Akhiezer and Ivan Arzhantsev for reading some
chapters and valuable remarks.

1. Group actions on projective varieties

In this section we recall some well known facts about the automorphism groups of
projective or quasiprojective varieties; see e.g., [GH, §I.4], [LZ, §II.3]. For an algebraic
variety Y , we let Aut(Y ) denote the group of all biregular automorphisms of Y and
Bir(Y ) the group of all birational transformations of Y into itself. For a projective or
an affine embedding Y →֒ Pn (Y →֒ An, respectively) we let Lin(Y ) denote the group
of all automorphisms of Y which extend linearly to the ambient space.

1.1. Automorphisms of smooth projective hypersurfaces. In the following the-
orems we gather some results concerning the groups Lin, Aut, and Bir for projective hy-
persurfaces; see Matsumura and Monsky [MM], Iskovskikh and Manin [IM], Pukhlikov
[Pu1]-[Pu3], Cheltsov [Chel], de Fernex, Ein and Musta̧tă [DEM].

Theorem 1.1. Let Y be a smooth hypersurface in Pn of degree d. Then for all d, n ≥ 3
except for (d, n) = (4, 3),

Aut(Y ) = Lin(Y )

and this group is finite. It is trivial for a general hypersurface of degree d ≥ 3.

There is a similar result for Schubert hypersurfaces in flag varieties, see Theorem 8.8
in [Te]. For the group of birational transformations, the following hold.

Theorem 1.2. For Y ⊆ Pn as above and for all d > n ≥ 2 except for (d, n) = (3, 2),

Bir(Y ) = Aut(Y ) .

This group is finite except in the case (d, n) = (4, 3) of a smooth quartic surface Y ⊆ P3,
where it is discrete, but can be infinite and different from Lin(Y ) which is finite. The
group Bir(Y ) of a very general quartic surface Y ⊆ P3 is trivial.

The case d ≤ n is much more complicated. However, in this case there are deep
partial results, see e.g., [IM, Pu1, DEM].
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Let us indicate briefly some ideas used in the proofs. In case d 6= n + 1 the proof is
easy and exploits the fact that the canonical divisor KY = OY (d − n − 1) is Aut(Y )-
stable. In case d = n + 1 the equalities Bir(Y ) = Aut(Y ) = Lin(Y ) follow since
such hypersurfaces represent Mori minimal models. Indeed a birational map between
minimal models is an isomorphism in codimension 1, see e.g., [KM], hence it induces
an isomorphism of the corresponding Picard groups. If n ≥ 4 then Pic(Y ) ≃ Z by the
Lefschetz Hyperplane Section Theorem. Therefore any birational transformation ϕ of
Y acts trivially on Pic(Y ) and so preserves the complete linear system of hyperplane
sections |OY (1)|. Since Y is linearly normal1, ϕ is induced by a projective linear
transformation of the ambient projective space Pn. For the proof of finiteness of the
group Lin(Y ) and its triviality for general hypersurfaces, we refer to the classical paper
of Matsumura and Monsky [MM].

By virtue of the Noether-Lefschetz Theorem, these arguments can be equally applied
to very general smooth surfaces in P3 of degree d ≥ 4. For an arbitrary smooth surface
Y in P3, the minimality of Y should be combined with the fact that Pic(Y ) is torsion
free. Indeed, any smooth surface in P3 of degree d ≥ 4 represents a minimal model
and so is not birationally ruled, hence its birational automorphisms are biregular; see
e.g., [Mat, Theorem 1-8-6]. For d > 4 the canonical class KY defines an equivariant
polarization of Y , and OY (1) ∼

1
d−4

KY . Since Pic(Y ) is torsion free and H0(OP3(1)) →

H0(OY (1)) is a surjection, all automorphisms of Y are linear. This is not true, in
general, in the case of a smooth quartic surface in P3. An example of such a surface
with infinite automorphism group due to Fano and Severi is discussed in [MM, Theorem
4]. A non-linear biregular involution exists on any smooth quartic in P3 containing skew
lines, for instance, on the Fermat quartic x4 + y4 + z4 + u4 = 0; see Takahashi [Ta].

For a quadric hypersurface X ⊆ An+1 of dimension n ≥ 2, the group Aut(X) is
infinite-dimensional [To, Lemma 1.1], cf. also example 3.3 below. For n = 2 this group
has an amalgamated product structure [DG]; cf. also [ML].

For a smooth cubic surface Y ⊆ P3 the group Aut(Y ) = Lin(Y ) is finite, while the
Cremona group Bir(Y ) ≃ Bir(P2) is infinite-dimensional. The automorphism groups
of such surfaces were listed by Hosoh [Ho1] who corrected an earlier classification by
Segre [Se]; see also Manin [Man] and Dolgachev [Dol1]. The largest order of such a
group is 648. This upper bound is achieved only for the Fermat cubic surface, see
[Ho2]. The least common multiple of the orders of all these automorphism groups is
3240 = 23 · 34 · 5 (Gorinov [Gor]).

The Fermat quartic x4+ y4+ z4+u4 = 0 and the smooth quartic x4+ y4+ z4+u4+
12xyzu = 0 in P3 can be also characterized in terms of the orders of their automorphism
groups, see Mukai [Mu], Kondo [Ko1], and Oguiso [Og].

1.2. Automorphisms of smooth projective varieties. According to the well known
Matsumura Theorem2 the group Bir(Y ) of a smooth projective variety Y of general
type is finite, hence also the group Aut(Y ) is. In particular, this holds if c1(Y ) < 0.
See e.g., Xiao [Xi1, Xi2] for effective bounds of orders of automorphism groups for the
general type surfaces. A vast literature is devoted to automorphism groups of K3 and
Enriques surfaces. These groups are discrete, and infinite in many cases. Finite groups

1I.e., H0(OPn(1)) → H0(OY (1)) is a surjection.
2Which generalizes earlier results by Andreotti for surfaces of general type; see Kobayashi-Ochiai

[KO] and Noguchi-Sunada [NS] for further generalizations.
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of automorphism of K3-surfaces were classified e.g., in [Dol2], [IS], [Ko2], [Mas], [Ni],
[Xi2].

For varieties of non-general type we have the following result due to Kalka-Shiffman-
Wong [KSW] and Lin [LZ, Theorem II.3.1.2].

Theorem 1.3. Let Y be a smooth projective variety of dimension n. Suppose that not
all Chern numbers of Y vanish and either c1(Y ) ≤ 0 or Hn,0(Y ) 6= 0. Then Aut(Y ) is
a discrete group.

The first assumption is fulfilled, for instance, if e(Y ) = cn(Y ) 6= 0, or e(OY ) 6= 0,
or cn1 (Y ) 6= 0, where e stands for the Euler characteristic. However, this assumption
does not hold for an abelian variety Y = A. For any projective embedding A →֒ PN ,
the group Lin(A) is finite, see [GH, §II.6], while the group Aut(A) ⊇ A is infinite.
Conversely, by Théorème Principale I of Blanchard [Bl] for any finite subgroup G ⊆
Aut(A) there exists a projective embedding A →֒ PN which linearizes G. A general
form of Blanchard’s Theorem is as follows (cf. [Ak3, Theorem 3.2.1]).

Theorem 1.4. Let Y be a smooth projective variety and G ⊆ Aut(Y ) a subgroup which
acts finitely on Pic(Y ). Then there is a G-equivariant projective embedding Y →֒ PN .

Indeed, such an embedding corresponds to a very ample G-invariant divisor class.
However, if G acts finitely on Pic(Y ) then the orbit of any ample class is an ample
G-invariant class.

For instance, if Pic(Y ) is discrete and G is connected then G acts trivially on Pic(Y ).
Hence there exists a G-equivariant projective embedding Y →֒ PN .

As another example, consider a smooth Fano variety Y embedded by a pluri-anticanonical
system ϕ|−mKY | : Y →֒ PN for a suitable m > 0. The canonical bundle KY being stable
under the action of the automorphism group Aut(Y ) on Y , this embedding is equi-
variant and realizes Aut(Y ) as a closed subgroup of PGLN+1(C). In particular, this
applies to the anticanonical embeddings of del Pezzo surfaces Yd →֒ Pd of degree d ≥ 3.
A rauch description of the automorphisms groups of these surfaces is as follows, see
Proposition 10.1.1 in [Dol1] (cf. e.g., [De], [dF], [Ho3], [DI1, DI2], , [BB], [Bla] for more
delicate properties).

Theorem 1.5. Let Y = Yd be a del Pezzo surface of degree d ≥ 3. Then the au-
tomorphism group Aut(Y ) acts on the lattice Q = (ZKY )

⊥ ⊆ Pic(Y ) preserving the
intersection form. The image of the corresponding homomorphism ρ : Aut(Y ) → O(Q)
is contained in the Weyl group W (Q). The kernel of ρ is trivial for d ≤ 5 and is a
connected linear algebraic group of dimension 2d − 10 for d ≥ 6. More precisely, the
following hold.

(1) For d ≤ 5 the group Aut(Y ) is finite.
(2) For d ≥ 6 the identity component Aut0 (Y ) = ker(ρ) contains a 2-torus T2 ≃

(C∗)2, and Aut0 (Y ) = T2 for d = 6.
(3) For d ≥ 7 besides the 2-torus T2 the group Aut0 (Y ) contains a subgroup iso-

morphic to A2
+ = (C+)

2. In particular, for d = 7 there are a decomposition

Aut(Y ) ≃ (A2
+ ⋊ T2)⋊ Z/2Z
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and a faithfull presentation Aut0(Y ) →֒ GL3(C) with image



1 0 ∗
0 ∗ ∗
0 0 ∗


 =




1 0 0
0 ∗ 0
0 0 ∗


 ·




1 0 ∗
0 1 ∗
0 0 1


 .

(4) For d = 8 either Y → P2 is a blowup at a point and then Aut(Y ) ≃ GL2⋉A
2
+ ,

or Y ≃ P1 × P1 and then Aut(Y ) ≃ (PGL2(C))
2 ⋊ Z/2Z.

(5) Finally for d = 9, Y ≃ P2 and Aut(Y ) ≃ PGL3(C).

Remark 1.6. An effective A2
+-action on a del Pezzo surface Y of degree d = 7 can be

defined via the locally nilpotent derivations

(1) ∂α,β = αz
∂

∂x
+ βz

∂

∂y
, (α, β) ∈ A2

+ .

Indeed, the induced A2
+-action on A3:

(α, β).(x, y, z) = (x+ αz, y + βz, z)

descends to an action on P2 fixing the line z = 0 pointwise. The blowup at two points
on this line preserves the action. Likewise one defines an A2

+-action on Y for d = 8 or
d = 9.

1.3. Homogeneous and almost homogeneous varieties. By the Borel-Remmert
Theorem [Ak3, 3.9] any connected, compact, homogeneous Kähler manifold V is bi-
holomorphic to the product Alb(V )× Y of the Albanese torus and a (generalized) flag
variety Y = G/P (i.e., Y is the quotient of a connected semisimple linear algebraic
group by a parabolic subgroup)3. It follows that every simply connected homogeneous
compact Kähler manifold is a flag variety and the same is true for a rational pro-
jective homogeneous variety (for homogeneous compact complex manifolds satisfying
both conditions this was established by Goto [Got]). Furthermore, Grauert and Rem-
mert [GR] carried over a result of Chow [Cho] from abstract algebraic to Moishezon
varieties. Namely, they proved that a homogeneous Moishezon variety is projective
algebraic. Thus, if such a variety is simply connected or rational, it is a flag variety.

Every flag variety G/P is a projective rational Fano variety (see [Sn]). Every ample
line bundle L on G/P is very ample (see e.g., [Chev2], [Ja], [La, §3.3.2], or [Te, Theorem
7.52]). The complete linear system |L| defines a G-equivariant embedding Y →֒ Pn with
a projectively normal image [RR, Theorem 1.iii].

For a maximal parabolic subgroup Pmax ⊆ G, the Picard group Pic(G/Pmax) ∼= Z is
generated by the class of a unique Schubert divisorial cycle in G/Pmax, and this class
is very ample. In the case of a Grassmannian this class gives the Plücker embedding.
For an arbitrary flag variety G/P , its Picard group Pic(G/P ) is also generated by the
classes of the Schubert divisorial cycles; see e.g., [Chev2] or [Po2]. The set of maximal
parabolic subgroups Pmax of G which contain P is finite. Every Schubert divisor class
in Pic(G/P ) is lifted via a surjection G/P → G/Pmax, see e.g. [LL] or [Sn]. A linear
combination of these divisors is very ample if and only if its coefficients are all positive
(see [Br] for the case of a full flag variety; the general case is similar [Te, Theorem
7.52]).

For a description of the automorphism groups of flag varieties see e.g., [Ak3, §3.3].

3See also [SDS] for a more general result in the projective case.
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The following “cone theorem” describes certain almost homogeneous complex vari-
eties. It is due to Akhiezer [Ak1, Theorem 3] in algebraic context and to Huckleberry
and E. Oeljeklaus [HO1] in analytic one4.

Theorem 1.7. Let X be an irreducible reduced complex space of dimension ≥ 2. Sup-
pose that a connected complex Lie group acts by biholomorphic transformations on X
with an open orbit Ω ⊆ X such that the complement E = X \ Ω is a proper analytic
subset with an isolated point, say, 0 ∈ E. Then the normalization ν : X̃ → X is one-
to-one and X̃ is biholomorphic to a projective or an affine cone over a flag variety G/P
of some semisimple linear algebraic group G under a certain equivariant projective em-
bedding. The isolated point 0 ∈ E corresponds to the vertex of the cone. In particular,
if (X, 0) is smooth then X ≃ An or X ≃ Pn.

Thus the variety X as in the theorem equipped with an appropriate algebraic struc-
ture carries a regular almost transitive group action. If the initial group is a complex
linear algebraic group, then G is its maximal semisimple subgroup [Ak1]. Given any G-
equivariant projective embedding ϕ|H| : Y = G/P →֒ Pn, where dimY ≥ 1, the affine
cone AffConeH(Y ) over the image admits a regular action transitive off the vertex of a

locally direct product G̃ ·C∗, with C∗ acting by homotheties, where G̃→ G is a finite
group cover.

A similar description exists for the class of quasi-projective G-varieties X , where G
is a connected linear algebraic group acting on X with an open orbit Ω, provided that
there is an equivariant completion X̄ of X with disconnected complement X̄ \Ω [Ak1,
Theorem 2]. See also [Ak2] for the case that X̄ \Ω is a G-orbit of codimension 1 in X
(in this case it is connected).

An explicit description of almost homogeneous 2-dimensional affine cones over smooth
projective curves is due to Popov [Po1] (see also [FZ2] for an alternative proof). We
recall that a Veronese cone Vd is the affine cone over a smooth rational normal curve
Γd ⊂ P

d i.e., a linearly non-degenerate5 smooth curve in Pd of degree d. All such curves
in Pd are projectively equivalent and rational. For normal 2-dimensional cones, Popov’s
Theorem can be stated as follows.

Theorem 1.8 (V. Popov). Let X be the affine cone over a smooth projective curve Y .
If X is normal and admits an algebraic group action transitive in X \ {0}, then X is
a Veronese cone Vd for some d ≥ 1, and Y is a rational normal curve Γd.

Popov [Po1] actually classified all almost homogeneous cones in dimension 2 with
an isolated singularity (not necessarily normal). Every such cone possesses a linear
SL(2,C)-action transitive off the vertex. The group Aut(X) of a Veronese cone is
infinite dimensional and so cannot be linearized under an affine embedding; see Section
2.3 below.

2. Groups acting on affine cones

2.1. Linear automorphisms of affine cones. Let us start with the following result.

4The smooth compact case was done first in [Oe]. See also [HO2, Ch. 2, §3, Theorem 1] for real
groups.

5A projective variety Y ⊆ Pn is linearly non-degenerate if it is not contained in any hyperplane.
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Proposition 2.1. Given two affine cones Xi = AffCone(Yi) ⊆ Ani+1 over smooth,
linearly non-degenerate, projective varieties Yi ⊆ Pni (i = 1, 2) and an isomorphism

ϕ : X1
≃

−→ X2, the differential dϕ(0) provides a linear isomorphism Φ : An1+1 ≃
−→

An2+1 which restricts to an isomorphism Φ|X1
: X1

≃
−→ X2. In particular n1 = n2, and

Y1 and Y2 are projectively equivalent.

Proof. By the linear non-degeneracy assumption

T0Xi = A
ni+1, C0Xi = Xi, and P(C0Xi) = Yi, i = 1, 2 ,

where T0Xi is the Zariski tangent space to Xi at the vertex 0 ∈ Xi, and C0Xi is
the tangent cone in 0 (see e.g., [CLS, §9.7]). Now the assertion follows since dϕ(0)
provides an isomorphism of the Zariski tangent spaces and sends the cone C0X1 onto

the cone C0X2 [Da, §7.3]. In fact dϕ(0) lifts to an isomorphism of blowups Bl0(X1)
≃

−→
Bl0(X2) preserving the exceptional divisors. These divisors are isomorphic to Y1 and

Y2, respectively, and dϕ(0) induces a linear isomorphism Y1
≃

−→ Y2. �

Remark 2.2. The isomorphism ϕ as in Proposition 2.1 does not need to be linear itself.
However, this is the case under the additional assumption that Y1 is not birationally
ruled (see Proposition 2.3 below). A birationally ruled projective variety is a variety
birationally equivalent to a product Z × P1. Recall also that a birational map f̄ :
X̄1 99K X̄2 is said to be isomorphism in codimension one if there are subsets Bi ⊆ X̄i

of codimension at least 2 such that

f̄ |(X̄1 \B1) : X̄1 \B1 → X̄2 \B2

is an isomorphism.

Proposition 2.3. Consider the affine cones Xi = AffCone(Yi) ⊆ A
ni+1 over projective

varieties Yi ( P
ni, i = 1, 2. Suppose that Y1 and Y2 are smooth, irreducible, and linearly

non-degenerate. If Y1 is not birationally ruled then every isomorphism ϕ : X1
≃

−→ X2

extends to a unique linear isomorphism An1+1 ≃
−→ An2+1. In particular n1 = n2, and

Y1 and Y2 are projectively equivalent.

The proposition follows immediately from Lemmas 2.7 and 2.8 below. Before passing
to the lemmas, let us give two corollaries, which are the main results of this subsection.

Corollary 2.4. Let X = AffCone(Y ) ⊆ An+1 be the affine cone over a smooth projec-
tive variety Y ⊆ Pn. If Y is not birationally ruled then Aut (X) = Lin (X). Moreover,
Aut (X) is a central extension of the group Lin (Y ) by C∗.

Indeed, the exact sequence

0 → C∗ → GL(n + 1,C) → PGL(n+ 1,C) → 0

yields the following one:

(2) 0 → C∗ −→ Lin(X)
π

−→ Lin(Y ) → 0 .

Corollary 2.5. Let X = AffCone(Y ) be the affine cone over a smooth projective 3-fold
Y . Suppose that Y is rationally connected and non-rational. Then Aut(X) = Lin(X).

Proof. Indeed if Y were birationally ruled i.e., birational to a product Z × P1, then Z
would be rationally connected and so a rational surface. Hence Y would be rational too,
contrary to our assumption. Thus Corollary 2.4 applies and gives the assertion. �
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Example 2.6. For instance, if Y ⊆ Pn is a non-rational Fano 3-fold and X =
AffCone(Y ), then Aut(X) = Lin(X). As an example, one can consider any smooth
cubic or quartic 3-fold Y ⊆ P4.

For the proof of the next lemma we refer the reader to [To, Theorem 2.2] or [Co,
Proposition 2.7].

Lemma 2.7. Let Xi = X̄i \Di, i = 1, 2, where X̄i is a projective variety and Di an
irreducible divisor on X̄i. Suppose that Xi is regular near Di for i = 1, 2. If D1 is
not birationally ruled then any isomorphism f : X1 → X2 extends to a birational map
f̄ : X̄1 99K X̄2 which is an isomorphism in codimension 1. If in addition the divisors

D1 and D2 are ample then f̄ : X̄1
≃

−→ X̄2 is an isomorphism.

Proposition 2.3 is now a direct consequence of the following lemma.

Lemma 2.8. Consider two projective varieties Yi ( Pni, where ni ≥ 2, i = 1, 2.
Suppose that Y1 and Y2 are smooth, irreducible, and linearly non-degenerate. Consider
also the affine cones Xi = AffCone(Yi) ⊆ A

ni+1 over Yi and the projective cones X̄i ⊆

Pni+1, i = 1, 2. Let ϕ : X1
≃

−→ X2 be an isomorphism such that the induced birational
map ϕ̄ : X̄1 99K X̄2 is an isomorphism in codimension 1. Then ϕ extends to a unique

linear isomorphism Φ : An1+1 ≃
−→ An2+1. In particular n1 = n2, and Y1 and Y2 (X̄1

and X̄2, respectively) are projectively equivalent.

Proof. We let Di = X̄i \ Xi denote the divisor at infinity; it is a scheme-theoretic
hyperplane section. Since D1 and D2 are ample then (similarly as in Lemma 2.7) ϕ
extends to an isomorphism ϕ̄ : X̄1 → X̄2, which sends 0 ∈ An1+1 to 0 ∈ An2+1. Indeed,
these points are the only singular points of the projective cones X̄1 and X̄2. Moreover,
ϕ̄ sends the generators of the cone6 X̄1 into generators of X̄2. Indeed, every generator
l1 of X̄1 meets D1 transversally in one point. The image l2 = ϕ(l1) ⊆ X̄2 possesses
similar properties, hence l2 is again a projective line through the origin i.e., a generator
of the cone X̄2.

It follows that the orbits of the C∗-action on X̄1 are sent to the orbits of the C∗-
action on X̄2. Furthermore ϕ̄ is C∗-equivariant, hence it induces an isomorphism ϕ∗ :

O(Y2)
≃

−→ O(Y1) of the homogeneous coordinate rings. These graded rings are the
coordinate rings of the affine cones X1 and X2, respectively, generated by their first
graded pieces7. The graded isomorphism ϕ∗ restricts to a linear isomorphism, say,

Ψ : An2+1 ≃
−→ An1+1 between these first graded pieces. The dual isomorphism Φ =

Ψ∨ : An1+1 ≃
−→ An2+1 provides a desired linear extension of ϕ. The uniqueness of

such an extension follows immediately, since Y1 and Y2 are assumed to be linearly
non-degenerate. �

For a projective variety Y ⊆ Pn with affine cone X = AffCone(Y ) it can happen
that Aut(Y ) 6= Lin(Y ), while Aut(X) = Lin(X), as in the following examples.

Examples 2.9. 1. Let A be an abelian variety. Consider a projective embedding
A →֒ Pn (for instance, a smooth cubic in P2) with affine cone X = AffCone(A). By
Corollary 2.4 Aut(X) = Lin(X). While Lin(A) is a finite group (see [GH, §II.6] or

6That is the projective lines on X̄1 passing through the origin.
7Consisting of the restrictions to Xi of linear functions on A

ni+1, i = 1, 2.
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Section 1 above), the group Aut(A) contains the subgroup of translations and so is
infinite. Thus Aut(Y ) 6= Lin(Y ) (cf. Blanchard’s Theorem 1.4).

2. A smooth quartic Y ⊆ P3 is a K3-surface and so is not birationally ruled. Hence
again Aut(X) = Lin(X), where X = AffCone(Y ) ⊆ A4. Moreover, Lin(Y ) is a finite
group, while the group Aut(Y ) can be infinite, see the discussion in §1.1. Clearly,
non-linear automorphisms of Y are not induced by automorphisms of X .

2.2. Lifting G-actions to affine cones. In this subsection we address the following
questions.

(1) When a G-action on Y is induced by a G-action on X?

(2) When a G-action on Y is induced by a G̃-action on X?

A related question is:

Which projective representations can be lifted to linear ones?

Simple examples show that one needs some restrictions on such a projective represen-
tation. In the first example below the group G is finite, and is connected algebraic in
the second.

Examples 2.10. 1. The standard representation on A2 of the group of quaternions
Q8 = {±1,±i,±j,±k} induces a faithful representation of Q8 on any Veronese cone
Vd ≃ A

2/Zd with d odd (cf. Subsection 2.4 below). The latter representation descends
to an effective linear action on P1 of the dihedral group

D2 = Q8/Z(Q8) ≃ (Z/2Z)2 .

However, this D2-action on P1 cannot be lifted to a D2-action on A2 or on any of the
Veronese cones Vd with d odd. Indeed, otherwise the exact sequence

0 −→ Z(Q8) −→ Q8 −→ D2 −→ 0

would split, which is not the case. In other words, the faithful projective representation
D2 → PGLn+1(C) induced by the Veronese embedding ϕ|O

P1
(n)| : P

1 → Pn lifts to a
linear representation D2 → GLn+1(C) if and only if n = 2k > 0 is even and so
OP1(n) = −kKP1 .

2. The standard projective representation of G = PGL2(C) on P1 induces a linear
G-action on the rational normal curve Γd ⊆ P

d. Suppose that the latter action can be
lifted to the Veronese cone Vd = AffCone(Γd) ⊆ A

d+1. This would give an irreducible
representation of G = PGL2(C) of dimension d + 1. However, such a representation
does exist only for d even. Indeed, every irreducible representation of PGL2(C) yields
an irreducible representation of SL2(C) trivial on the center, and vice versa.

Remark 2.11. Concerning question (2), recall that for any perfect group G there
exists a unique universal central extension (or Schur cover) G′ of G such that every
projective representation of G is induced by a linear representation of G′ (see [St, §7]).
For a finite perfect group G, the Schur cover G′ is again finite. For a perfect (e.g.,
semi-simple) connected linear algebraic group G over C, the Schur cover is just the
simply connected universal covering group G′ of G.

Any linear action G→ Lin(X) on the affine cone X = AffCone(Y ) induces (via the
exact sequence (2)) a linear action G → Lin(Y ) on Y . The latter factorizes through
the action on Y of the quotient group G/(G ∩ C∗). Answering question (2) above,
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in the following proposition we provide a simple criterion as to when a G-action on
Y is induced by a G̃-action on X = AffCone(Y ), where G̃ is a central extension of G
(which is not a Schur cover). The proof is straightforward. Let us remind that any
linear action G → Lin(Y ) of a group G on a projective variety Y ⊆ Pn stabilizes the
very ample divisor class [OY (1)] ∈ Pic(Y ).

Proposition 2.12. (a) Let Y be a smooth projective variety and G → Aut(Y )
be a group action on Y . If this action stabilizes a very ample divisor class
|H| ∈ Pic(Y ), then it extends linearly to the ambient projective space Pn =
PH0(Y,OY (H)).

(b) Furthermore, let X = AffConeH(Y ) be the affine cone over ϕ|H|(Y ). Consider

the central extension G̃ = π−1(G) ⊆ Lin(X) of G by C∗, where π : Lin(X) ։
Lin(Y ) is as in (2). Then the group G̃ acts linearly on X inducing the given
G-action on Y .

Corollary 2.13. Let G be a connected linear algebraic group. Then any regular G-
action on a smooth projective variety Y ⊆ Pn is induced by a regular G̃-action on the
affine cone AffCone(Y ), where G̃ = π−1(G) ⊆ Lin(X) is a central extension of G by
C∗.

Proof. Since G is connected, G acts on Pic0(Y ). The group G being a rational variety
[Chev1], every morphism of G to the abelian variety Pic0(Y ) is constant. Hence the
G-action on Pic0(Y ) is trivial, and so is the induced action on the Neron-Severi group
NS(Y ) = Pic(Y )/Pic0(Y ). Thus G acts trivially on Pic(Y ). By Proposition 2.12(a)
the G-action on Y extends linearly to Pn. Now the result follows. �

Remark 2.14. Instead of referring to [Chev1] one can show directly that every mor-
phism f : G → A to an abelian variety A is constant. Clearly, f is constant on any
abelian subgroup of G and on its cosets. Hence f is also constant on any solvable
subgroup. In particular, it is constant on Rad(G) and on its cosets. Thus f induces
a morphism G/Rad(G) → A. So we may assume that G is semisimple. Consider a
maximal torus T ⊆ G and the collection of its root vectors (Hα)α ⊆ TeG = lie(G). The
subset TeT∪(Hα)α consists of the tangent vectors of algebraic one-parameter subgroups
of G and spans the tangent space TeG. Hence the differential df(e) vanishes. Now the
assertion follows. Indeed, applying left shifts one can produce a similar situation in
any point g of G.

A stronger statement holds for pluri-canonical or pluri-anticanonical embeddings.

Proposition 2.15. Let Y be a smooth projective variety. Suppose that for some m ∈ Z
there is an embedding ϕ = ϕ|mKY | : Y →֒ Pn, and let X = AffCone(ϕ(Y )). Then

Lin(X) = C∗ × Lin(ϕ(Y )) ≃ C∗ × Aut(Y ) ,

where C∗ acts on the cone X by scalar matrices.

Proof. Indeed, the group Aut(Y ) acts on the linear system |mKY | yielding an isomor-
phism Aut(Y ) ≃ Lin(ϕ(Y )). Moreover, Aut(Y ) acts on the linear bundle O(mKY ).
Hence it acts linearly on H0(Y,O(mKY )). The dual action on H0(Y,O(mKY ))

∨ pre-
serves the cone X . This gives an embedding Aut(Y ) →֒ Lin(X) and a splitting of the
exact sequence

0 → C∗ → Lin(X) → Lin(ϕ(Y )) ≃ Aut(Y ) → 0 .
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Since the subgroup C∗ ⊆ Lin(X) is central, the assertions follow. �

This proposition can be applied to the anticanonical embeddings of del Pezzo sur-
faces. In the case where there is a C+-action on X the group Aut(X) is infinite
dimensional. For instance, this is so for the cones over del Pezzo surfaces of degree
d ≥ 4. For d ≥ 7 there exists a linear A2

+-action on X . While for 6 ≥ d ≥ 4 the group
Aut(Y ) is finite or toric, hence any C+-action on X is non-linear; cf. Theorem 0.1 in
the Introduction and also Theorems 1.5 and 3.19.

2.3. Groups acting on affine cones. Similarly as in Proposition 2.1, in the case of a
reductive group action a weaker analog of Corollary 2.4 holds without the assumption
of birational non-ruledness.

Lemma 2.16. Suppose that a connected reductive group G acts effectively on the affine
cone X ⊆ An+1 over a smooth linearly non-degenerate projective variety Y ( Pn. Then
there is a faithful representation ρ : G → GL(n + 1,C), which restricts to an effective
linear G-action on X inducing a linear action of G on Y .

Proof. The vertex 0 ∈ X is an isolated singular point of X , hence a fixed point of G.
Since G is reductive, the induced representation ρ of G on the Zariski tangent space
T0X is faithful (see e.g., [Ak3] or [FZ2, Lemma 2.7(b)]) and descends to Y via the
projective representation ρ̄ : G→ PGL(n + 1,C) = GL(n+ 1,C)/C∗. �

Let us note that for a non-reductive group action, ρ as above can be trivial. For
instance, this is the case for the C+-action t.(x, y) = (x+ ty2, y) on X = A2.

The following theorem is complementary to Corollary 2.4; cf. also [HO1] for (a).

Theorem 2.17. We let X ⊆ An (n ≥ 2) be the affine cone over a smooth projective
variety Y ⊆ Pn−1. Suppose that

• The group Aut(Y ) is finite.
• A connected algebraic group G of dimension ≥ 2 acts effectively on X and
contains a 1-dimensional torus T ≃ C∗ acting on An via scalar matrices.

Then the following hold.

(a) G is a solvable group of rank 1.
(b) There exists an A1-fibration θ : X → Z, where Z is an affine variety equipped

with a good C∗-action and θ is equivariant with respect to the standard C∗-action
on X. Furthermore, Z is normal if X is.

(c) Y is uniruled via a family of rational curves parameterized by (Z \ {θ(0)})/C∗.

Proof. Consider a Levi decomposition G = Radu(G) ⋊ L, where L ⊆ G is a Levi
subgroup (i.e., a maximal connected reductive subgroup) containing T. By Lemma
2.16 the induced representation ρ of L on the Zariski tangent space T0X is faithful.
Moreover T (which acts on T0X by scalar matrices) is a central subgroup of L. Since
the group Aut(Y ) is finite and L is connected, the induced action of the quotient group
L/T on Y is trivial. Thus L = T is a maximal torus of G = Radu(G)⋊T, and so G is
solvable of rank 1.

By our assumption dimC(G) ≥ 2. Hence the unipotent radical Radu(G) is non-trivial
and contains a one-parameter subgroup U ≃ Ga. All orbits of U are closed in X , and
the one-dimensional orbits are isomorphic to the affine line A1. Therefore X is affine
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uniruled. Its coordinate ring A = OX is graded by the dual lattice T∨ ≃ Z. This
grading is actually positive:

A =
⊕

k≥0

Ak .

The infinitesimal generator ∂ of the induced Ga-action on A is a homogeneous locally
nilpotent derivation of A (see e.g., [Re] or [FZ2]). The ring of invariants B = ker(∂) =
AGa is a graded subalgebra of A with B0 = A0 = C. Therefore the affine variety
Z = spec(B) is endowed by a T-action with a unique attractive fixed point 0′ = θ(0),
where θ : X → Z is the orbit map of the Ga-action on X . Thus θ is a T-equivariant
surjection induced by the inclusion B ⊆ A of graded rings. If A is integrally closed in
Frac(A) then also B is. Indeed, let Z ′ = spec(B̄) be the normalization of Z, where B̄ is
the integral closure of B in Frac(A). Since X is normal the morphism X → Z factorizes

as X → Z ′ ν
7−→ Z. The locally nilpotent derivation ∂ stabilizes B̄ (see e.g., [Sei], [Vas],

or [FZ1, Lemma 2.15]) and so the morphisms X → Z ′ ν
7−→ Z are equivariant with

respect to the induced C+-actions. The C+-action is trivial on Z, hence also on Z ′

since Z ′ → Z is finite. Thus B ⊆ B̄ ⊆ ker ∂ = B, so B = B̄ is normal as soon as A is.
Since a general one-dimensional orbit of U ≃ Ga in X does not pass through the

vertex 0 ∈ X and is not contained in an orbit closure of T (i.e., in a generator of
the cone), there is a Zariski open subset, say, Ω of Y covered by the images of these
orbits. Taking Zariski closures yields a family of rational curves parameterized by
(Z \ {0′})/C∗. Thus Y is uniruled, as claimed. �

2.4. Group actions on 2-dimensional affine cones. The following corollary is
immediate from Proposition 2.1.

Corollary 2.18. Consider two smooth linearly non-degenerate curves Yi ⊆ Pni (i =
1, 2) of degrees di, and let Xi = AffCone(Yi) ⊆ A

ni+1 be the corresponding affine cones.
Then X1 ≃ X2 if and only if these cones are linearly isomorphic, if and only if n1 = n2,
d1 = d2 and Y1 and Y2 are projectively equivalent.

Similarly, from Corollary 2.4 we deduce the following one.

Corollary 2.19. Let X = AffCone(Y ) ⊆ An+1 be the affine cone over a smooth, non-
rational projective curve Y ⊆ Pn. Then Aut(X) = Lin(X), and this group is a central
extension of the finite group Lin(Y ) by C∗.

Remarks 2.20. 1. However, Aut(Y ) 6= Lin(Y ) for an elliptic curve Y ⊆ Pn, see
Example 2.9(1). Consider further a smooth rational curve Y ⊆ Pn of degree d > n.
Then Y is neither linearly nor projectively normal. Indeed, Y is a linear projection of
the rational normal curve Γd ⊆ P

d, and X = AffCone(Y ) is a linear projection of the
Veronese cone Vd = AffCone(Γd). The letter projection gives a normalization of X .
This is not an isomorphism as it diminishes the dimension of the Zariski tangent space
at the vertex.

2. The normalizations of the affine cones X1 and X2 over two smooth rational curves
Y1 and Y2, respectively, are isomorphic if and only if deg (Y1) = deg (Y2). While in gen-
eral the (non-normal) affine surface X = AffCone(Y ) admits non-trivial equisingular
deformations arising from deformations of the projective embedding Y →֒ Pn. For
instance, smooth rational curves Y of type (1, a) on a quadric P1 × P1 →֒ P3 vary in
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a family of projective dimension 2a + 1. Hence for any a ≥ 3 the group PSO(4,C)
cannot act transitively on this family.

3. Since any group action on an affine cone X lifts to the normalization, it is enough
to restrict to normal cones. For the normal Veronese cone X = Vd ⊆ Ad+1 over a
rational normal curve Y = Γd ⊆ P

d we have Aut(X) 6= Lin(X). Moreover, Vd ≃ A
2/Zd

being a toric surface, for every d ≥ 1 the group Aut(Vd) is infinite dimensional. In
particular this is not an algebraic group. Indeed, the graded coordinate ring O(Vd)
admits a nonzero locally nilpotent derivation ∂ corresponding to an effective C+-action
on Vd [FZ2]. The kernel ker(∂) ⊆ O(Vd) is isomorphic to the polynomial ring C[t]. For
any p ∈ C[t], the derivation p · ∂ is again locally nilpotent. Thus C[t] · ∂ is the Lie
algebra of an infinite dimensional abelian subgroup G ⊆ Aut(Vd).

4. There are actually two independent C+-actions on Vd with different orbits, and
even a continuous family of such actions; see e.g., [FZ2]. Danilov and Gizatullin [DG]
studied the structure of an amalgamated product on the group Aut(Vd), while Makar-
Limanov [ML] provided an explicit description of this group.

5. Similarly, independent C+-actions, and an amalgamated product structure, exist
on any normal affine toric surface different from A1

∗×A
1 or A1

∗×A
1
∗. Every such surface

is of the form Vd,e = A
2/Zd for an appropriate diagonal action

ζ.(x, y) = (ζx, ζey), where ζd = 1 and gcd(e, d) = 1,

of the cyclic group Zd = 〈ζ〉 on the affine plane A2. Choosing a system of homogeneous
generators in the graded coordinate ring O(Vd,e) yields an embedding Vd,e →֒ AN+1,
which is equivariant with respect to a suitable diagonal C∗-action on An+1 with positive
weights w = (w0, . . . , wN). In this way Vd,e can be realized as the affine cone over a
smooth rational curve in the corresponding weighted projective space PNw = (AN+1 \
{0})/C∗.

6. By Popov’s Theorem [Po1]
8 the Veronese cones Vd = Vd,1 can be characterized as

normal affine surfaces on which an algebraic group acts with an open orbit and a fixed
point.

Let us construct an explicit example of a non-linear biregular automorphism of a
Veronese cone Vd for every d ≥ 1.

Example 2.21. Consider as before the Veronese cone Vd ⊆ A
d+1 over a rational normal

curve Γd ⊆ Pd. Let V̄d ⊂ Pd+1 be the Zariski closure, and Ṽd be the blowup of V̄d at
the vertex 0 ∈ Vd. It is well known [DG] that Ṽd ≃ Σd, where Σd denotes a Hirzebruch
surface with the exceptional section S0 and a disjoint section at infinity, say, S∞ with
S2
0 = −d and S2

∞ = d. Therefore

Vd ≃ (Σd \ S∞)/S0 .

To exhibit a non-linear automorphism of Vd is the same as to exhibit an automorphism
of Σd\S∞, which extends to a birational transformation of Σd preserving the exceptional
section S0 but not the ruling π : Σd → P1 (or, equivalently, which blows down the curve
S∞). On the level of dual graphs, such a birational transformation consists e.g., in the
following sequence of blowups and blowdowns [FKZ]:

8This is actually an earlier version of the Cone Theorem in dimension 2; see Section 1.
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c

d

S∞

- c

−1

S∞

c

−1

vd+1

Ad
- c

0

vd+1

Ad
- c

−1

S ′
∞

c

−1

vd+1

Ad
- c

d

S ′
∞

.

Here a box marked Ad represents the linear chain [[−2, . . . ,−2]] of length d. The
centers of blowups on the curves S∞ and vd+1 can vary. Anyhow, the section S∞ being
contracted, the resulting biregular transformation of the Veronese cone Vd is non-linear.

3. Group actions on 3-dimensional affine cones

The main result of this section is the existence of a C+-actions on the affine cones over
every smooth del Pezzo surface of degree ≥ 4. The proof exploits a general geometric
criterion for the existence of such an action.

3.1. Existence of C+-actions on affine cones: a geometric criterion.

3.1. Let Y be a smooth projective variety, and letH ∈ Div(Y ) be an ample polarization

of Y . Consider the total space X̂ of the line bundle OY (H) with the zero section

S0 ⊆ X̂ . Under the natural identification S0 ≃ Y , we have OS0
(S0) = OY (−H). Hence

S0 is contractible, i.e., there is a birational contraction υ : X̂ → X , where X is a
normal affine variety and υ(S0) is a point. In this situation, we call X a generalized
cone over (Y,H). If H is very ample, then X coincides with the normalization of the
usual affine AffCone(Y ) cone over Y →֒ Pn, where the embedding is given by the linear
system |H|. So we write X = AffConeH(Y )norm. In this section we provide a criterion
of existence of a C+-action on a generalized cone.

Let us note that X can be compactified to the projective cone X̄ over Y by adding a
divisor at infinity S∞ ≃ Y . The divisor S∞ on X̄ being ample, the variety X = X̄ \S∞

is affine.

3.2. For instance, the affine cone over P2 in A3 coincides with A3 and so admits a
transitive action of the additive group C3

+. In the following example we exhibit an
effective C2

+-action on the affine cone X ⊆ A4 over a smooth quadric Y ⊆ P3 (cf. an-
other constructions in [Sh]). The automorphism groups of affine quadrics were studied
e.g., in [DG, Doe, To]. Over a general base field, this group is infinite dimensional as
soon as the corresponding quadratic form is isotropic [To, Lemma 1.1]. The proof of
Lemma 1.1 in [To] provides a nontrivial linear C+-action on any quadric over C. In
the following example we exhibit an explicit effective C2

+-action on the affine cone over
a smooth quadric in P3.

Example 3.3. All smooth quadrics in P3 are projectively equivalent. Choosing for
instance the quadric

Y = {xy = zu}

we can define a linear C2
+-action on X = AffCone (Y ) ⊆ A4 by the following pair of

commuting locally nilpotent derivations on the ring A = O(X):

∂1 = u∂/∂x+ y∂/∂z and ∂2 = u∂/∂y + x∂/∂z .

See [AS, Sh] for a more thorough treatment on the subject.

Let us introduce the following notion.
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Definition 3.4. Let X be an affine variety. For a function f ∈ O(X) we let

D+(f) = X \ V+(f), where V+(f) := f−1(0) .

We say that X is cylindrical if X contains a dense principal Zariski open subset U =
D+(f) isomorphic to the cylinder Z × A1 over an affine variety Z.

The following proposition generalizes Lemma 1.6 in [FZ2].

Proposition 3.5. For an irreducible affine variety X, the following conditions are
equivalent:

(i) X possesses an effective C+-action.
(ii) X is cylindrical.

Proof. First we suppose that X possesses an effective C+-action ψ with the associate
locally nilpotent derivation ∂ 6= 0. The filtration

(3) 0 ∈ ker ∂  ker ∂(2)  ker ∂(3) . . .

being strictly increasing, we can find g ∈ O(X) such that ∂(2)g = 0 but h := ∂g 6= 0.
Thus ∂h = 0 and so h ∈ O(X) is ψ-invariant. Letting s = g/h and U = D+(h) the
function s ∈ O(U) gives a slice of ∂ that is, ∂(s) = 1. Consequently, the restriction of s
to any 1-dimensional orbit O of ψ in U is an affine coordinate on O ≃ A1. By the Slice
Theorem ([Fr, Cor. 1.22]), O(U) ≃ ker(∂)[s] and ∂ = ∂/∂s. Therefore U ≃ Z × A1,
where Z = Spec(ker ∂) ≃ s−1(0). This yields (ii).

To show the converse, assume that X is cylindrical. Let U = D+(f) ≃ Z × A1 be a
principal cylinder in X as in Definition 3.4. We consider the natural C+-action φ on U
by translations along the second factor. Since f |U does not vanish it is constant along
any orbit of φ and so φ-invariant. Letting ∂ denote the locally nilpotent derivation
on O(U) associated to φ, the derivation ∂n := fn∂ ∈ Der(O(U)) is again locally
nilpotent for any n ∈ N. Let a1, . . . , ak be a system of generators of O(X), and
let N ∈ N be sufficiently large so that fN∂ai ∈ O(X) for any i = 1, . . . , k. Then
∂N (ai) ∈ O(X) for any i = 1, . . . , k, hence ∂N (O(X)) ⊆ O(X). Thus the derivation
∂N |O(X) ∈ Der(O(X)) is locally nilpotent and so generates an effective C+-action ψ
on X . Therefore (i) holds. �

Remark 3.6. Clearly the C+-actions φ and ψ|U as in the proof have the same orbits,
and V+(f) = {f = 0} consists of fixed points of ψ.

In the case of affine cones, Theorem 3.9 below gives a more practical criterion. We
need the following definition.

Definition 3.7. For a projective variety Y with a (very ample) polarization ϕ|H| : Y →֒
Pn, we call an H-polar subset any Zariski open subset of the form U = Y \ suppD,
where D ∈ |dH| is an effective divisor on Pn.

3.8. Recall that an affine ruling on a variety U is a morphism π : U → Z such that
every scheme theoretic fiber of π is isomorphic to the affine line A1. By a theorem
of Kambayashi and Miyanishi [KaMi] (see also [KaWr, RS, Du]), every affine ruling
π : U → Z on a normal variety U over a normal base Z is a locally trivial A1-bundle.

Theorem 3.9. Let Y be a smooth projective variety with a very ample polarization
ϕ|H| : Y →֒ Pn. Then the following hold.
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(a) If the affine cone X = AffConeH(Y ) admits an effective C+-action, then Y
possesses an H-polar open subset U , which is the total space of a line bundle
U → Z.

(b) Conversely, if Y possesses an H-polar open subset U equipped with an affine

ruling U
A1

−→ Z and a section Z → U , where Z is smooth and Pic(Z) = 0, then
the affine cone X = AffConeH(Y ) admits an effective C+-action.

Proof. (a) Let ψ′ be an effective C+-action on X with associate locally nilpotent deriva-
tion ∂′ 6= 0. Using the natural grading of the coordinate ring

A = O(X) =
⊕

i≥0

Ai,

∂′ can be decomposed into a finite sum of homogeneous derivations ∂′ =
∑n

i=1 ∂
′
i, where

the principal component ∂ := ∂′n 6= 0 is again locally nilpotent. The C+-action ψ on
X generated by ∂ extends to an effective action of a semi-direct product G = C+⋊ C

∗

on X .
The filtration (3) from the proof of Proposition 3.5 consists now of graded subrings.

Hence we can find homogeneous elements ĝ, ĥ ∈ A such that ∂ĝ = ĥ and ∂ĥ = 0. In
the notation of 3.4 we let

Û = D+(ĥ) ⊆ X and Ẑ = V+(ĝ) \ V+(ĥ) ⊆ Û .

Likewise in the proof of Proposition 3.5, we obtain a decomposition Û ≃ Ẑ × A1.
Furthermore, G acts on Û ≃ Ẑ×A1 respecting the product structure. More precisely,

C+ acts by shifts on the second factor i.e., along the fibers of the morphism π̂ : Û → Ẑ.

Since ĝ, ĥ, and ∂ are homogeneous, C∗ acts on Û stabilizing Ẑ and sending the fibers
of π̂ into fibers. The factorization by the C∗-action on Û yields a Zariski open subset
U = Û/C∗ ⊆ Y and a divisor Z = Ẑ/C∗ on U so that

(4) Û = AffCone(U) \ {0} and Ẑ = AffCone(Z) \ {0} .

The map π̂ defines an affine ruling π : U
A1

−→ Z with a section Z →֒ U . Each fiber of
π is the quotient of a G-orbit in U by the C∗-action. Since Y and Z are smooth, by
the Kambayashi-Miyanishi Theorem cited in 3.8, π is an A1-bundle and, moreover, a
vector bundle since it possesses a section.

Finally, since D := ĥ∗(0) ∈ |dH|, where d = deg(ĥ), the open set U ⊆ Y is H-polar
(see Definition 3.7). This shows (a).

To show (b), suppose that Y possesses an H-polar open subset U with an affine

ruling π : U
A1

−→ Z and a section Z → U , where Z is smooth and Pic(Z) = 0. Since
both U and Z are smooth, π is locally trivial by the Kambayashi-Miyanishi Theorem.
Since π has a section Z, π : U → Z is a line bundle and Z is the zero section. This
bundle is trivial since Pic(Z) = 0. Thus U ≃ Z × A1. In particular Pic(U) = 0.

Let further σ : X̃ → X be the blowup of the vertex 0 ∈ X . The induced morphism
ρ : X̃ → Y has a natural structure of a line bundle with the exceptional divisor
E = σ−1(0) as the zero section. Since Pic(U) = 0, the restriction ρ|Ũ : Ũ → U to

Ũ := ρ−1(U) ⊆ X̃ yields a trivial line bundle. Hence

Ũ ≃ U × A1 ≃ Z × A1 × A1 and, similarly, Z̃ := ρ−1(Z) ≃ Z × A1 .
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Under this isomorphism E∩ Ũ is sent to U×{0} ≃ Z×A1×{0} and E∩ Z̃ to Z×{0}.

For Û = Ũ \ E and Ẑ = Z̃ \ E as in (4) we obtain

(5) Û ≃ Z × A1 × C∗ and Ẑ ≃ Z × {0} × C∗ .

Thus Û ≃ Ẑ × A1 is a cylinder in X . Since U ⊆ Y is H-polar, Û ⊆ X is a principal
Zariski open subset and so X is cylindrical. Now (b) follows by Proposition 3.5. �

Remarks 3.10. 1. This theorem, with the same proof, holds also for generalized cones
(see 3.1). In particular, we may assume that H is just an ample divisor.

2. It is easily seen that if a cone X = AffConeH(Y ) admits an effective C+-action,
then also the cone Xk = AffConekH(Y ) admits such an action for any k ≥ 1. Moreover,
this cone Xk is normal for k ≫ 1, see [Ha, Ch. II, Ex5̇.14].

Remark 3.11. The construction of a C+-action on X as in the proof of (b) can be

made more explicite. The product G = C+ × C∗ acts on Û preserving the product
structure in (5):

G ∋ (a, λ) : Û → Û , (z, x, y) 7−→ (z, x+ a, λy) .

The generators ∂/∂x and y∂/∂y of the C+- and C
∗-actions commute. Letting D =

X \ Û , there is a regular function f ∈ O(X) such that div(f) = nD. Moreover, we can
choose f of the form f = ykg(z), where g 6= 0. For N ≫ 1 the C+-action generated by
∂ = fN∂/∂x extends to the cone X , see the proof of Proposition 3.5. With this new
C+-action, a semidirect product C+ ⋊ C∗ acts effectively on X . However, the factors
do not commute any more.

Theorem 3.9 yields the following criterion of existence of a C+-action on certain
3-dimensional affine cones.

Corollary 3.12. Let Y be a rational smooth projective surface with a polarization
ϕ|H| : Y →֒ Pn, and let X = AffConeH(Y ) ⊆ An+1 be the affine cone over Y . Then
X admits a nontrivial C+-action if and only if Y possesses an H-polar cylinder U ≃
Z × A1, where Z is a smooth affine curve.

Proof. Since Y is smooth and rational, Z as in Theorem 3.9 is a non-complete smooth
rational curve. Thus Pic(Z) = 0. Hence the affine rulings from Theorem 3.9 and
its proof are actually direct products. Our assertion can be easily deduced now from
Theorem 3.9. �

Using this criterion, we show next that for an arbitrary smooth rational surface Y ,
some affine cone over Y admits a nontrivial C+-action.

Proposition 3.13. Let Y be a rational smooth projective surface. Then there is an
embedding ϕ : Y →֒ Pn such that the affine cone X = AffCone(ϕ(Y )) is normal and
admits an effective C+-action.

Proof. Any point Q ∈ Y possesses an affine neighborhood U ≃ A2. An argument from
[Fu, (2.5)] shows that Y \U supports an ample divisor. Indeed, Pic(Y ) is a free abelian
group generated by the components ∆i of the divisor Y \U . Hence ∆2

j > 0 for some j.
Choose a nef and big effective divisor D =

∑
δi∆i such that D · ∆i > 0 whenever

δi > 0, with a maximal possible value of λ(D) := card{i | δi > 0}. Assume on the
contrary that supp(D) 6= supp(

∑
∆i), i.e., δi = 0 for some i. Since supp(

∑
∆i) is



GROUP ACTIONS ON AFFINE CONES 19

connected, there is a component ∆k 6⊆ supp(D) with D ·∆k > 0. Then for t ≫ 0 the
divisor tD +∆k is again nef and big. This contradicts our maximality assumption for
λ(D). Therefore supp(D) = supp(

∑
∆i) is ample. So for m ≫ 1 the linear system

|mD| gives an embedding Y →֒ Pn with a projectively normal image, see Exercise 5.14
in [Ha, Ch. II]. Since Y admits an |mD|-polar cylinder, X is normal and cylindrical.
By Corollary 3.12, X admits an effective C+-action, as required. �

The following question arises.

3.14. Question. Does there exist a polarized smooth rational surface (Y,H) without
any H-polar cylinder?

Remark 3.15. If U is an H-polar cylinder on Y then it is also kH-polar for any k ∈ N,
and vice versa. Thus the existence of an H-polar cylinder depends only on the ray of
H in the ample cone of Y . Moreover, since the irreducible components of the divisor
D = Y \ U span the Picard group Pic(Y ) and the ample cone is open, the property of
a cylinder U to be H-polar is stable under small perturbation of H .

For any smooth rational projective surface, the H-polar cylinder from Proposition
3.13 can be chosen to be isomorphic to the affine plane. Let us provide similar examples
in higher dimensions.

Example 3.16. Consider a flag variety G/P with an ample polarization H (see §1.3).
By Corollary 2.13 the G-action on G/P lifts to a G̃-action on the cone AffConeH(G/P ),

where G̃ is the universal cover of G. The actions of one-parameter unipotent subgroups
of G̃ yield effective C+-actions on the cone. Actually G/P contains an H-polar open
cylinder U isomorphic to an affine space An (cf. Theorem 3.9(a)).

Indeed, let B+ ⊆ P be a Borel subgroup of G, and let B− be the opposite Borel
subgroup so that B+ ∩ B− is a Cartan subgroup. Then B− · P is open in G and so
the B−-orbit U of e · P is open in G/P . Thus U is a big Schubert cell. Since U is
also an orbit of the maximal unipotent subgroup Bu ⊆ B−, it is isomorphic to An. In
particular, U is a cylinder in Y . Letting D = Y \ U =

⋃
iDi, the Schubert divisors Di

form a basis in Pic(G/P ). In this basis H =
∑

i αiDi, where αi > 0 for all i since the
divisor H is ample, see [Sn] or [Te, Theorem 7.53]. Hence U is an H-polar cylinder in
G/P .

We note that the action of G̃ on the affine cone X̃ := AffConeH(G/P ) is transitive

off the vertex 0 ∈ X̃ . Indeed, we may suppose that X = G̃/P̃ , where G̃ is semisimple,
simply connected, and P̃ ⊆ G̃ is parabolic. Since X̃ is affine, the stabiliser StabG̃(x)

of a point x ∈ X̃ \ {0} cannot contain a parabolic subgroup. Hence the stabilizer

StabG̃([x]) (conjugate to P̃ ) acts non-trivially on the generator of the cone through x.

By Corollary 1.5 in [Po4] the Makar-Limanov invariant ML(X̃) is trivial (cf. Theorem
3.26; see Section 3.3 below for the definition of the Makar-Limanov invariant).

Remark 3.17. The existence of a cylinder in a projective variety isomorphic to an
affine space is rather exceptional. For instance, none of smooth rational cubic 4-folds in
P5, and none of smooth 3-fold intersections of a pair of quadrics in P5 contains a Zariski
open set isomorphic to an affine space, see [PS] and [Pr2]. At the same time, every
smooth intersection Y of a pair of quadrics in P5 contains a (−KY )-polar cylinder, see
Proposition 5.1 below and its proof.
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3.2. C+-actions on affine cones over del Pezzo surfaces. Let us explain the
reason why are we interested in the affine cones over del Pezzo surfaces.

3.18. A normal variety X is Q-Gorenstein if some multiple nKX of the canonical Weil
divisor KX is Cartier. This notion is important in the Mori minimal model program
(MMP). It is easily seen that the generalized cone X = AffConeH(Y ) over a smooth
polarized variety (Y,H) is Q-Gorenstein if and only if aH ∼ −bKY for some a ∈ N,
b ∈ Z ([Kol1, Example 3.8]). (If, moreover, H ∼ −KY , then X is Gorenstein and has
at most canonical singularity at the origin.)

On the other hand, if Aut(X) 6= Lin(X) then by Corollary 2.4 Y is birationally
ruled, hence the Kodaira dimension of Y is negative, see [Kol2]. Thus b > 0, i.e, −KY

is ample. Consequently, Y is a Fano variety.
Therefore, if the affine cone X over (Y,H) is Q-Gorenstein and admits an effective

non-linear C+-action, then Y is a Fano variety and H ∈ Q>0[−KY ]. In particular, if
dim(Y ) = 2 then Y is a del Pezzo surface with its pluri-anticanonical embedding.9

From now on we assume that Y is a del Pezzo surface of degree d ≥ 3 and H = −KY

is the anti-canonical polarization. Thus the linear system | − KY | is very ample and
provides an embedding Y →֒ Pd onto a projectively normal smooth surface of degree
d, see e.g., [Dol1]. The affine cone X = AffCone−KY

(Y ) has a normal, canonical,
Gorenstein (hence also Cohen-Macaulay) singularity at the vertex.

The following theorem is the main result of this subsection (see Theorem 0.1 in the
Introduction).

Theorem 3.19. Let Yd be a smooth del Pezzo surface of degree d anticanonically
embedded into Pd, where 4 ≤ d ≤ 9, and let Xd ⊆ Ad+1 be the affine cone over Yd.
Then Xd admits a nontrivial C+-action.

Proof. Consider a pencil LP2 = 〈C1, C2〉 on P
2 generated by a smooth conic C1 and a

double line C2 = 2l, where l is tangent to C1 at a point P0 ∈ C1. Then L \ {P0} ≃ A1,
where L is a general member of LP2 . Moreover, U = P2 \ (C1 ∪ C2) is a cylinder over
A1

∗. Blowing up at 9− d distinct points Qi on C1 \ {P0}, where 9 ≥ d ≥ 4, we obtain a
del Pezzo surface Y of degree d with a contraction σ : Y → P2, and any such surface
can be obtained in this way, except for P1 × P1.

The cylinder U ′ = σ−1(U) ≃ U is (−KY )-polar (see Definition 3.7). Indeed, let
Ei = σ−1(Qi), i = 1, . . . , 9− d. For any 1 ≫ ε > 0 we have

−KP2 ≡ (1 + ε)C1 + (1− 2ε)l .

Hence,

−KY = σ∗(−KP2)−
9−d∑

i=1

Ei ≡ (1 + ε)∆1 + (1− 2ε)∆2 + ε

9−d∑

i=1

Ei ,

where ∆1 and ∆2 are the proper transforms in Y of C1 and l, respectively. Thus U ′ is
a (−KY )-polar cylinder on Y .

In the remaining case where Y = P1 × P1, the natural embedding A2 = A1 × A1

into Y yields a (−KY )-polar cylinder on Y . Applying now Corollary 3.12 ends the
proof. �

9Cf. Remark 2.9(3).
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The proof exploits a (−KP2)-polar cylinder on P
2 made of a pencil of conics with a

common tangent line. Based on the same idea, we give below some alternative con-
structions of polar cylinders on anticanonically polarized del Pezzo surfaces of degrees
≥ 4. Due to Corollary 3.12, this leads to new C+-actions on the cones over del Pezzo
surfaces of degree ≥ 4 under their anticanonical embeddings. These examples will be
useful in the sequel.

Example 3.20. Consider a pencil of rational curves on P2 with a unique base point P .
(Similarly, one can find such a pencil on the quadric P1 × P1.) Then the complement
of the union of its degenerate members (or of a general one, if all members are non-
degenerate) is a (−KP2)-polar cylinder on P2. In [MiSu] an example was proposed of
such a pencil of quintic curves. Moreover, there is a smooth conic C1 and a rational
unicuspidal quintic C2 from the pencil as in [MiSu] that meet in one point, the cuspidal
point of the quintic.

These two curves generate a pencil LP2 = 〈5C1, 2C2〉 of rational curves of degree 10
with a unique base point such that P2 \ (C1 ∪ C2) is a cylinder. Similarly as in the
proof above, every del Pezzo surface Y of degree d ≥ 4 can be obtained, along with a
(−KY )-polar cylinder, by blowing up a certain set of 9 − d points on C1. Indeed, we
can write

−KP2 ≡ (3
2
− ε)C1 +

2
5
εC2

with an appropriate ε > 0, and then proceed in the same fashion as in the proof.

Example 3.21. Picking up four points P1, . . . , P4 in P
2 in general position, we consider

the pencil of lines LP2 on P2 generated by l1 = (P1P2) and l2 = (P3P4). The blowup
σ : Y → P2 of these points yields a del Pezzo surface Y of degree 5. We have

−KP2 ≡
3

2
l1 +

3

2
l2 and so −KY ≡

3

2
l′1 +

3

2
l′2 +

1

2

4∑

i=1

Ei,

where l′i is the proper transform of li, i = 1, 2, and Ei is the exceptional (−1)-curve
over Pi, i = 1, . . . , 4. Then L(1) = l′1 + E1 + E2 and L(2) = l′2 + E3 + E4 are the only
degenerate fibers of the pencil L = σ−1

∗ (LP2) on Y . Since

D :=
1

2
(L(1) + L(2)) + (l′1 + l′2) ≡ −KY ,

the open set
Y \ supp(D) = P2 \ (l1 ∪ l2) ≃ A

1
∗ × A

1

is a (−KY )-polar cylinder on Y . A similar construction can be applied to any del Pezzo
surface of degree d ≥ 5.

Example 3.22. Consider the pencil LP2 of unicuspidal rational curves αyz
n−1+βxn =

0 in P2, where n ≥ 1. Blowing up k ≤ 4 points in P2, at most two on each of the lines
x = 0 and y = 0 off their common point (0 : 0 : 1) we obtain examples of (−KY )-polar
cylinders on an arbitrary del Pezzo surface of degree d ≥ 5. For n = 1 and k = 4 this
gives again the cylinder from Example 3.21.

Remark 3.23. The idea to start with a (−KP2)-polar cylinder on P
2 cannot be carried

out any more in case of a smooth cubic surface Y ⊆ P3. Indeed, suppose we are given a
cylinder P2 \C ≃ Z×A1, where C is a reduced plane curve of degree d, not necessarily
smooth or irreducible, and let LP2 be the corresponding pencil. Then Bs(LP2) consists
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of one point P0 ∈ C, and C \ {P0} is a disjoint union of components isomorphic to A1.
Performing a blowup σ : Y → P2 of m points Pi ∈ C \ {P0} with exceptional curves
Ej = σ−1(pj), i = 1, . . . , m, from the equalities

3σ∗(C) ∼ dσ∗(−KP 2) = −dKY + d

m∑

j=1

Ej and 3σ∗(C) = 3C ′ + 3

m∑

j=1

Ej ,

where C ′ is the proper transform of C on Y , we obtain

−dKY ∼ 3C ′ + (3− d)
m∑

j=1

Ej =: D .

Here D is an effective divisor with supp(D) = C ′ +
∑m

j=1Ej if and only if d ≤ 2 i.e.,
C is a line or a conic. Since the centers of blowup Pi, i = 1, . . . , m, are situated on C
and Y must be del Pezzo, we have m ≤ 5 and so deg(Y ) ≥ 4.

In the next example, starting with a pencil on P2 with five base points, we construct
a (−KY )-polar cylinder of different type on arbitrary del Pezzo surface Y of degree
d = 5, by resolving all the base points but one.

Example 3.24. Consider the following pencil LP2 of rational plane sextics:

α(y2z − x3)2 + β(y2 − xz)(y4 − x4) = 0 .

The base locus of LP2 consists of the points P0, . . . , P4, where P0 = (0 : 0 : 1) and
{P1, . . . , P4} = (x2 = z2, xz = y2). Furthermore, LP2 has no fixed component and
so its general member L is irreducible. Since multP0

(L) = 4 and multPi
(L) = 2 for

i = 1, . . . , 4, the curve L is rational. Any singular point Pi of L is resolved by one
blowup, and the singularity of L at P0 is cuspidal. No three of the points P1, . . . , P4

are collinear. Therefore the blowup σ : Y → P2 of the latter points yields a del Pezzo
surface Y of degree 5, and any such surface arises in this way. Let L be the proper
transform of LP2 on Y , and let P = σ−1(P0). Then L is a pencil of rational curves
with a cuspidal singularity at the unique base point P , smooth and disjoint outside P .

There are exactly two degenerate members of LP2, namely the double cuspidal cubic
C ′ = 2(y2z = x3) and the union C ′′ of the conic (y2 = xz) and the four lines (y4 = x4).
We have −KP2 ≡ DP2 := 1

4
C ′ + 1

4
C ′′. Let D be the proper transform of DP2 on Y .

Since multPi
(DP2) = 1 for i = 1, . . . , 4, we have KY +D = σ∗(KP2 +DP2) ≡ 0. Hence

U = Y \ (C ′ ∪ C ′′) is a (−KY )-polar cylinder on Y (see also Example 4.17 below).

3.3. The Makar-Limanov invariant on affine cones over del Pezzo surfaces.

3.25. For an algebra A over a field k, its Makar-Limanov invariant ML(A) is defined
as the intersection of the kernels of all locally nilpotent derivations on A. It is trivial
if ML(A) = k. Following [MiMa] we say that A is of class MLi if the quotient field
Frac (ML(A)) has transcendence degree i. If ML(A) is finitely generated then i =
dim(Z), where Z = specML(A). Thus A ∈ ML0 whenever A has trivial Makar-
Limanov invariant. For instance, A3 ∈ ML0 (regarded as the affine cone over P2).

For A graded there are graded versions ML(h)(A) and ML
(h)
i of ML(A) and MLi,

respectively [FZ2], where one restricts to homogeneous locally nilpotent derivations.

Clearly, ML(A) ⊆ ML(h)(A). Hence the usual ML invariant is trivial if the homoge-
neous is.
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Theorem 3.26. Let X be the affine cone over a smooth, anticanonically embedded
del Pezzo surface Y ⊆ Pd of degree d ≥ 4. Then the homogeneous Makar-Limanov

invariant ML(h)(X) is trivial i.e., X ∈ ML
(h)
0 .

Proof. By Theorem 1.5 and Proposition 2.15, for d ≥ 6 the surface Y and the cone
X = AffCone−KY

(Y ) are toric. Since X is not isomorphic to a product X ′ × A1
∗, by

Lemma 4.5 in [Li] the homogeneous Makar-Limanov invariant of X is trivial.

It remains to show that X ∈ ML
(h)
0 for d = 4, 5. Note that for an arbitrary graded

algebra A =
⊕

iAi, the graded subalgebra ML(h)(A) is non-trivial if and only if there

exists a non-constant homogeneous element h ∈ An ∩ML(h)(A) (so h is annihilated by
all homogeneous locally nilpotent derivations on A). In the case of an affine cone X ,
the degree n = deg(h) is positive. Hence Γ = V(h) ∈ |n(−KY )| is an effective ample
divisor on Y .

Let as before Y ⊆ Pd be a del Pezzo surface of degree d ≥ 4. Suppose on the
contrary that ML(h)(X) 6= C, and let h ∈ An ∩ ML(h)(A) be nonconstant. Then the
affine cone over the curve supp (Γ) is a divisor on X stable under any C+-action defined
by a homogeneous locally nilpotent derivation on O(X). Hence for every (−KY )-polar
cylinder U on Y , the curve supp (Γ) consists of components of the members of the
linear pencil L on Y associated with U . In particular, for all (−KY )-polar cylinders
on Y there must be a common component of the associated linear pencils L .

For d = 5, we let σ : Y → P2 be the blowup of four points P1, . . . , P4 in P2 with
exceptional curves Ei = σ−1(Pi). There are exactly ten lines on Y . Besides E1, . . . , E4

these are the proper transforms lij of the lines (PiPj) on P
2, where 1 ≤ i < j ≤ 4. For

every pair of lines (lij, li′j′) with distinct indices i, j, i′, j′, the curves

L1 := lij + Ei + Ej and L2 := li′j′ + Ei′ + Ej′

are the only degenerate members of a cylindrical linear pencil on Y (cf. Example 3.21).
The 3 such pencils have no common component except for the lines E1, . . . , E4.

Let us replace the lines E1, . . . , E4 on Y by some other four disjoint lines, e.g. by
l12, l13, l23, E4. We consider also the three associated cylindrical pencils on Y e.g., that
with degenerate members

L′
1 := E2 + l12 + l23 and L′

2 := E4 + l13 + l24 .

These pencils have no common component except for the lines l12, l13, l23, E4. The line
E4 is the only common component of all six above pencils. With yet further choice of
a pencil, we can eliminate also this latter line. Thus the homogeneous Makar-Limanov
invariant of Y is trivial, as stated.

Let further d = 4, and let σ0 : Y → P2 be the blowup of five points P1, . . . , P5 in
general position in P2, with exceptional curves Ei = σ−1(Pi), i = 1, . . . , 5. We let C
denote the unique smooth conic through the points Pi. Given a point Q ∈ C different
from the Pi, similarly as in the proof of Theorem 3.19 we consider the pencil of conics
on P2 generated by C and 2lQ, where lQ is the tangent line to C at Q. Two different
such pencils on P2 have no common member except for the conic C itself. Thus C ′ and
the lines Ei, i = 1, . . . , 5, are the only common components of the induced cylindrical
pencils on the del Pezzo surface Y of degree 4.

Consider next the contraction σ1 : Y → P2 of the five disjoint lines C ′, l12, l13, l14, l15
on Y . Then σ1(E1) is a conic in P2, which plays now the role of C. Once again, the
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only common components of the induced cylindrical pencils on Y are E1 and the five
disjoint lines above meeting E1.

Likewise, for the six different contractions σi : Y → P2, i = 0, . . . , 5, the only common
component of the induced cylindrical pencils on Y is C ′. However, the ample divisor Γ
as at the beginning of the proof cannot be supported by C ′. This contradiction finishes
the proof. �

Problem. Describe all affine cones whose homogeneous Makar-Limanov invariant is
trivial.

4. On existence of C+-actions on cones over cubic surfaces

In this section we analyze in detail the case of a smooth cubic surface Y ⊆ P3. We do
not know whether the affine cone X = AffCone(Y ) carries a C+-action. However, we
obtain in Proposition 4.21 and Theorem 4.23 below a detailed information on an even-
tual anticanonical polar cylinder in Y . This makes the criterion 3.12 of the existence
of a C+-action much more concrete in our particular case. We adopt the following
convention.

4.1. Convention. Let Y be a smooth cubic surface in P3. Suppose that the affine
cone X = AffCone(Y ) ⊆ A4 admits an effective C+-action. Then by Corollary 3.12 Y
possesses a (−KY )-polar cylinder U ≃ A1 × Z, where Z is an affine smooth rational
curve. In other words Y \ U = supp(D), where

(6) D =

n∑

i=1

δi∆i ≡ −KY

is an effective Q-divisor on Y with δi ∈ Q>0 ∀i = 1, . . . , n.

4.1. The linear pencil on a cubic surface compatible with a cylinder. Let L

be the pencil on Y with general member Lz = pr−1
2 (z) for z ∈ Z. It is easily seen that

L has at least one degenerate member. In what follows we suppose that suppD does
not contain a non-degenerate member of L (otherwise, up to numerical equivalence, we
replace such a member by a degenerate one). Under these assumptions, the following
hold.

Lemma 4.2. The support of D is connected and simply connected, and contains at
least 7 irreducible components.

Proof. The projection pr2 : U → Z extends to a rational map Y 99K P1 defined by the
pencil L as above. A general member L of L is a rational curve smooth off a unique
point P , where {P} = L ∩ supp(D), and L \ {P} = L ∩ U ≃ A1. Thus L is unibranch
at P . The only base point of L (if exists) is contained in supp(D).

Since D is ample, by the Lefschetz Hyperplane Section Theorem supp(D) is con-
nected. Resolving, if necessary, the base point of L by a modification p : W → Y
yields a rational surfaceW with a pencil of rational curves LW = p∗

−1L that are fibers
of q = q|LW | : W → P1. By Zariski’s Main Theorem, the total transform p−1(suppD)
is still connected, and is a union of a (−1)-section, say, S of LW and of some number
of rational trees contained in fibers of LW . Hence p−1(suppD) is also a tree of rational
curves i.e., is connected and simply connected. The exceptional divisor E of p being a
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subtree of p−1(suppD), the contraction of E does not affect the simply-connectedness.
This proves the first assertion.

Since Z is a rational smooth affine curve, we have Pic(U) = Pic(A1)× Pic(Z) = 0 .
By virtue of the exact sequence

(7) G :=

n∑

i=1

Z∆i → Pic(Y ) → Pic(U) = 0

the free abelian group G generated by the components ∆i of D surjects onto Pic(Y ) ≃
Z7. Therefore rk(G) ≥ 7, which proves the second assertion. �

Lemma 4.3. The pencil L has a unique base point, say, P , and deg(L ) ≥ 3.

Proof. If on the contrary Bs(L ) = ∅, then the pencil of conics L on Y with a section,
say, S = ∆0 defines a morphism ϕ|C| : Y → P1 (extending the projection pr2 of the
cylinder) with exactly five degenerate fibers L1, . . . , L5. Each degenerate fiber consists
of two lines on Y intersecting transversally at one point. At most one of these two
lines, say, li meets the cylinder U , while the other one, say, ∆i is a components of D.
Since D is connected we have ∆i ·S = 1 and li ·S = 0, i = 1, . . . , 5. By the Adjunction
Formula we get

1 = (−KY ) · li = D · li = δi − x,

where x = 0 if li 6= ∆j ∀j and x = δj > 0 otherwise. Hence δi = 1 + x ≥ 1. Similarly,
for a general fiber L of L ,

2 = (−KY ) · L = D · L = δ0S · L = δ0

and so δ0 = 2.
On the other hand, by the Adjunction Formula

−KY · S = 2 + S2 = D · S = 2S2 +

5∑

i=1

δi .

Therefore,

2 = S2 +

5∑

i=1

δi = S2 +

5∑

i=1

δi ≥ −1 + 5 = 4,

a contradiction. The inequality (−KY ) · L ≥ 3 is now immediate. �

Remarks 4.4. 1. Actually the degree of L must be essentially higher, since by Lemma
4.9 below D has 8 irreducible components.

2. The assertion of the lemma holds also for any del Pezzo surface of degree 4 or 5,
with a similar proof. However, it fails for degree 6. Indeed, pick 3 points P0, P1, P2

in general position in P2, and consider the pencil generated by the lines li = (P0Pi),
i = 1, 2. Blowing up these points we get a del Pezzo surface Y of degree 6 with a
base point free pencil. Then the complement in Y of the total transform of l1 ∪ l2 is a
(−KY )-polar cylinder.

4.5. In the sequel we frequently use the following commutative diagram:
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(8) Wp

��

σ

  A
AA

AA
AA

A

q

		

U
�

�

//

  A
AA

AA
AA

A Y

  A
A

A
A

F1

q′

wwnnnnnnnnnnnnnnn

ρ

��

Z
�

�

// P1 P2

where p : W → Y is the minimal resolution of the base point P of L , q : W → P1 is
the induced pencil, σ : W → F1 is composed of the contraction of all components of
degenerate fibers of q except those which meet the exceptional (−1)-section SW of q,
and ρ : F1 → P2 is the contraction of this exceptional section.

Lemma 4.6. δi < 1 in (6) for all i = 1, . . . , n .

Proof. It is enough to show that δ1 < 1. By symmetry then δi < 1 ∀i. Since the
anticanonical divisor of Y is ample, we have (−KY ) · ∆i > 0 ∀i = 1, . . . , n. We
distinguish between the following 3 cases :

(i) (−KY ) ·∆1 ≥ 3,
(ii) (−KY ) ·∆1 = 2, and
(iii) (−KY ) ·∆1 = 1.

In case (i) suppose on the contrary that δ1 ≥ 1. Since n ≥ 7 by Lemma 4.2 and the
divisor −KY ≡ D is ample, we obtain

3 = (−KY ) ·D =

n∑

i=1

δi(−KY ) ·∆i > δ1(−KY ) ·∆1 ≥ 3,

which gives a contradiction.
In case (ii) ∆1 ⊆ Y is a conic, ∆2

1 = 0, and −KY ≡ ∆1 +E, where E is the residual
line cut out on Y by a plane in P3 through ∆1.

Let E = ∆i for some i > 1; we may assume that i = 2. Then −KY ≡ ∆1 + ∆2,
∆2

1 = 0 and ∆1 ·∆2 = 2. Thus

(9) 2 = (−KY ) ·∆1 = D ·∆1 ≥ δ2∆1 ·∆2 = 2δ2,

so δ2 ≤ 1. Furthermore,

1 = ∆2 ·D =
n∑

i=1

δi∆2 ·∆i ≥ 2δ1 − δ2 .

Hence δ1 ≤
1
2
(δ2 + 1) ≤ 1.

If δ1 = 1 then also δ2 = 1. Since ∆1 +∆2 ≡ −KY ≡ D we get D = ∆1 +∆2. Thus
n = 2, which contradicts Lemma 4.2. Therefore in this case δ1 < 1, as stated.

If further E 6= ∆i ∀i then

(10) 1 = (−KY ) · E = D · E ≥ δ1∆1 · E = 2δ1,

hence δ1 ≤ 1/2. Thus anyway, δ1 < 1 in case (ii).
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In case (iii) ∆1 is a line on Y . Let C be a residual conic of ∆1, so that ∆1+C ≡ −KY

is a hyperplane section. We have as before

2 = (−KY ) · C = D · C ≥ δ1∆1 · C = 2δ1,

hence δ1 ≤ 1.
If δ1 = 1 then D · C = ∆1 · C = 2 and so (D − ∆1) · C = 0. Therefore the divisor

supp(D−∆1) is supported on the members of the pencil of conics |C| on Y . The curve
∆1 meets each fiber twice, and so the morphism ϕ|C| restricted to ∆1 has 2 branch
points.

By Lemma 4.2 the curve suppD is simply connected, hence it cannot contain the
whole fiber of ϕ|C| which meets the component ∆1 of D at two distinct points. We
claim however that if a degenerate fiber l1 + l2 of the pencil |C| contains a component,
say, ∆i = l1 of D, then its second component l2 = ∆j is also contained in suppD and,
moreover, δi = δj. Indeed, since δ1 = 1 and ∆1 is a line on Y we have

(11) 1 = ∆i ·D = ∆i ·∆1 +∆i · (D −∆1) = 1− δi +
∑

k 6=1,i

δk∆i ·∆k .

The only component of the latter sum that meets ∆i can be the line l2. Hence l2 = ∆j

for some j 6= 1, i. Now (11) shows that δi = δj , as claimed.
Furthermore, since ∆i ∪∆j meets ∆1 twice and suppD is a tree, the line ∆1 passes

through the intersection point ∆i ∩ ∆j . On the other hand, ∆1 is tangent to exactly
two members of the pencil |C|, which are either smooth or consist of two lines ∆i

and ∆j meeting ∆1 at their common point (an Eckardt point of Y ). By the simply
connectedness of suppD, none of the other components of members of |C| can be
contained in suppD. Hence suppD can contain at most 5 components, namely, ∆1 and
the components of two degenerate members tangent to ∆1. However, this contradicts
Lemma 4.2, since by this lemma suppD consists of at least 7 components. Now the
proof is completed. �

Lemma 4.7. Every component of the degenerate members of the pencil L on Y passes
through the base point P of L .

Proof. Assume on the contrary that there is a component C0 of a degenerate member
L(0) of L such that P /∈ C. By Zariski’s Lemma C2

0 < 0. Hence C0 is a (−1)-curve
on Y and so D · C0 = (−KY ) · C0 = 1. By an easy argument (cf. the proof of Lemma
4.2) the curve suppL(0) is connected and simply connected (this is a tree of rational
curves outside P ). If there is another component C1 of L(0) which meets C0 and does
not pass through P , then L(0) contains the configuration of two crossing lines C0 +C1

which do not pass through P . Then L must be the linear system of conics |C0 + C1|.
By Lemma 4.3 this leads to a contradiction. Hence C0 cannot separate suppL(0) and
so C0 meets the complement supp(L(0) − C0) at one point transversally.

It follows that ∆i · C0 = 1 for a unique index i. If C0 is not a component of D,
then 1 = D · C0 = δi, which contradicts Lemma 4.6. Similarly, if C0 = ∆j , then
1 = D · C0 = δi − δj . Hence δi = 1 + δj > 1. Once again, this contradicts Lemma
4.6. �

Lemma 4.8. The pencil L has at most two degenerate members.
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Proof. Recall (see 4.5) that p : W → Y stands for the minimal resolution of the base
locus of L and q : W → P1 for the fibration given by p−1

∗ L . Write p as a composition
of blowups of points over P :

(12) p : W
p1
−→ W1

p2
−→ · · ·

pN−→WN = Y,

where the exceptional divisor SW of p1 is a q-horizontal (−1)-curve on W . A general
fiber L of q is a smooth rational curve meeting SW at one point. Indeed, L \ SW ≃
p(L) \ P ≃ A1. Therefore SW is a section of q.

Let C1, . . . , Cm be the components of degenerate fibers F1, . . . , Fm of q meeting SW .
We claim that all the curves Ci are p-exceptional. Indeed, otherwise for some i, the
image p((Fi \ Ci)) would be a component of a degenerate member of L which does
not pass through P . The latter contradicts Lemma 4.7.

Note that, on each step, the exceptional divisor of pk ◦ . . . ◦ pN is an SNC tree of
rational curves. On the other hand, all the curves p1(Ci) on W1 pass through the point
p1(SW ). Therefore m ≤ 2. �

Lemma 4.9. The pencil L has exactly two degenerate members, say, L(1) and L(2).
Furthermore, suppD = supp(L(1) + L(2)) consists of 8 irreducible components i.e.,
n = 8 in (6).

Proof. Assume that the only degenerate member of L is L(1). In this case, suppD ⊆
suppL(1), Z ⊇ A1, and U ⊇ A2.

If Z ≃ A1 then Pic(U) = 0 and H0(U,OU) = C, hence Pic(Y ) ≃
∑n

i=1Z ·∆i. Thus

in this case n = 7 and −KY =
∑7

i=1mi∆i for some mi ∈ Z. On the other hand,

−KY ≡ D =
∑7

i=1 δi∆i, where 0 < δi < 1 ∀i according to Lemma 4.6. Since the
decomposition of −KY in Pic(Y )⊗Q is unique, this yields a contradiction.

If further Z ≃ P1 then Pic(U) ≃ Z and H0(U,OU) = C. From the exact sequence
(7), where Pic(U) = 0 is replaced by Pic(U) ≃ Z, we obtain n = 6. By Lemma 4.2,
this leads again to a contradiction. Therefore L has indeed two degenerate members.

As for the second assertion, assuming on the contrary that suppD 6= supp(L(1)+L(2))
we would have Z ⊇ A1. Now the same argument as before yields a contradiction.
Since the Picard group Pic(Y ) ∼= Z7 is generated by the irreducible components of
L(1) + L(2) and L(1) ≡ L(2) is the only relation between these components, we obtain
that n = 8. �

Corollary 4.10. The pencil L is ample. Furthermore, for every irreducible component
C of a member of the pencil L on Y we have C \{P} ≃ A1, and two such components
have just the point P in common.

Proof. The first assertion follows immediately from Lemma 4.7 by the Nakai-Moishezon
criterion. As for the second one, it follows from the well known fact that on an affine
surface V = Y \ L, where L is a general fiber of L , every degenerate fiber of the
A1-fibration ϕ|L | : V → A1 is a disjoint union of affine lines, see e.g., [Mi], [Za]. �

Lemma 4.11. The pair (Y,D) is not log canonical at P .

Proof. Let DW denote the crepant pull-back of D on W as in (8) i.e., a Q-divisor on
W such that

KW +DW = p∗(KY +D) and p∗DW = D .
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The exceptional (−1)-section S on W is the only q-horizontal component of DW . For
a general fiber L of q we have 2 = (−KW ) · L = DW · L. Therefore, the discrepancy
a(S,D) (i.e., the coefficient of S in DW with the opposite sign) equals −2. This proves
our assertion. �

Corollary 4.12. multP (D) > 1.

Proof. If multP (D) ≤ 1, then the pair (Y,D) is canonical at P , because P ∈ Y is a
smooth point. In particular, it is log canonical. This contradicts Lemma 4.11. �

Lemma 4.13. Any line l on Y through P is contained in suppD.

Proof. Assuming the contrary we obtain 1 = (−KY ) · l = D · l ≥ multP (D) > 1, a
contradiction. �

Lemma 4.14. P cannot be an Eckardt point on Y .

Proof. Suppose the contrary. Then by Lemma 4.13, up to a permutation we may
assume that ∆1, ∆2, ∆3 are lines through P , where δ1 ≤ δ2 ≤ δ3. Since D · ∆1 =
(−KY ) ·∆1 = 1, for an effective Q-divisor on Y

(13) D′ :=
1

1− δ1
(D − δ1(∆1 +∆2 +∆3))

we obtain D′ ·∆1 = 1 and by (13)

D ≡ −KY ≡ ∆1 +∆2 +∆3 ≡ D′ .

Now the proof of Lemma 4.11 works equally for D′. Hence the pair (Y,D′) is not
canonical at P and so multP (D

′) > 1. This contradicts the inequality multP (D
′) ≤

D′ ·∆1 = 1. �

Lemma 4.15. The fibration q : W → P1 has exactly two degenerate fibers. The general
member L of L is singular at P .

Proof. The first assertion follows from Lemma 4.9. Let us show the second one.
Assuming the contrary, for a smooth rational curve L on Y we have by adjunction
(KY +L) ·L = −2. The Mori cone of Y being spanned by the (−1)-curves E1, . . . , E27,
there is a decomposition

L ≡
27∑

i=1

αiEi,

where αi ∈ Q≥0. Hence (KY + L) · Ei < 0 for some i. Thus L · Ei < (−KY ) · Ei = 1,
and so L cannot be ample. This contradicts Corollary 4.10. �

Remark 4.16. The minimal resolution p : W → Y of the base point P of L dominates
the embedded minimal resolution of the cusp at P of a general member L of L . The
exceptional divisor E = p−1(P ) ⊆ W is a rational comb with the number of teeth
equal the length of the Puiseaux sequence of the cusp. The only (−1)-curve SW in E is
sitting on the handle of the comb. Hence E = E(1)+SW+E(2), where E(k) ⊆ p−1(L(k)),
k = 1, 2, and exactly one of the E(k) is a negatively definite linear chain of rational
curves.

The degenerate members L
(1)
W , L

(2)
W of the induced linear system LW on W have

the following structure: L
(k)
W consists of E(k) and the proper transforms ∆′

i of the
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components ∆i ⊆ L(k), called feathers. The feathers are disjoint in W , and each of
them meets E(k) at one point transversally. Let us illustrate this for the surface Y from
Example 3.24, with the pullback LW of the pencil L on Y .

Example 4.17. Up to interchanging the degenerate fibers L
(1)
W and L

(2)
W of LW , their

structure is as follows. The fiber L
(1)
W contains a component E1 with self-intersection

−5 joint with the (−1)-section SW , and also the (−1)-feathers ∆′
1, . . . ,∆

′
5 meeting E1.

The second fiber L
(2)
W contains the only feather ∆′

0 of multiplicity 2. The weighted dual

graph of the configuration L
(1)
W + SW + L

(2)
W is as follows:

(14) c

−5

E1

(−1)5 (∆′
i)i=1,...,5

c

−1

SW

c

−2

E2

c

−2

E3

c−1 ∆′
0

c

−2

E4

where the box denotes a disjoint union of five (−1)-feathers ∆′
1, . . . ,∆

′
5 joint with E1.

The exceptional divisor of p : W → Y is E = E1 + . . . + E4. While ∆i = p(∆′
i)

(i = 0, . . . , 5) are the components of the degenerate fibers L(j) = p(L
(j)
W ) (j = 1, 2) of

the pencil L on Y . More precisely, ∆0 is the proper transform in Y of the cuspidal
cubic C ′, ∆1 is that of the conic C ′′, while ∆2, . . . ,∆5 ⊆ Y are the proper transforms
of the four lines (y4 = x4) in P2.

4.18. Let Q = (ρ ◦ σ)(SW ) ∈ P2, where as in 4.5 SW stands for a (−1)-section of q
contained in Exc(p). Then LP2 := ρ∗(σ∗LW ) is the linear pencil of lines through Q on
P2. We let ϕ := ρ ◦ σ ◦ p−1 : Y 99K P2, and we let H denote the proper transform of
HP2 := |OP2(1)| on Y via ϕ. With this notation, the following holds.

Lemma 4.19. L ⊆ H .

Proof. We have

HW := (ρ ◦ σ)−1
∗ HP2 = (ρ ◦ σ)∗HP2 = σ∗(ρ∗HP2) ⊇ σ∗(ρ∗LP2).

Indeed, HP2 is base point free. It is clear that ρ∗LP2 = LF1 + S, where S is the
exceptional curve of ρ. Note that the centers of subsequent blowups in σ (including
infinitesimally near centers) lie neither on the proper transform of S nor on that of
general members of LP2. Hence,

σ∗(ρ∗LP2) = σ∗(LF1 + S) = LW + SW .

Since SW is p-exceptional, applying p∗ yields the assertion. �

Corollary 4.20. L cannot be contained in | −mKY | for any m ∈ N.

Proof. Assume to the contrary that L ⊆ | −mKY | for some m ∈ N. Then the mobile
linear system H , which defines the birational map ϕ : Y 99K P2 (see 4.18), is also
contained in | −mKY |. This contradicts the Segre-Manin theorem as stated in [KSC,
Theorem 2.13]. �

The results of this subsection can be summarized as follows.
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Proposition 4.21. Let Y ⊆ P3 be a smooth cubic surface, and X ⊆ A4 be the affine
cone over Y . Then X admits an effective C+-action if and only if Y admits a linear
pencil L with the following properties:

(1) The base locus Bs(L ) consists of a single point, say, P , which is not an Eckardt
point on Y .

(2) A general member L of L is singular at P , and L \ {P} ≃ A1.
(3) L has exactly two degenerate members, say L(1) and L(2), where the curve

L(1) ∪ L(2) consist of 8 irreducible components ∆1, . . . ,∆8.
(4) All curves ∆i, i = 1, . . . , 8, pass through P and are pairwise disjoint off P .

Furthermore, ∆i \ {P} ≃ A1 ∀i.
(5) Every line on Y passing through P is one of the ∆i.
(6) −KY ≡ D :=

∑8
i=1 δi∆i, where δi ∈ Q and 0 < δi < 1 ∀i.

(7) The pair (Y,D) is not log canonical at P .
(8) For every m > 0, L is not contained in | −mKY |.

We do not know so far any example of a cubic surface with such a pencil L . For
the pencils on del Pezzo surfaces from Examples 3.20-3.24, not all of the properties
(1)-(8) are fulfilled. For instance, the pencil of Example 3.24 satisfies (1)-(7), however
(8) fails, since L ∼ −2KY .

4.2. The inverse nef value.

4.22. The nef value plays an important role in the adjunction-theoretic classification
of polarized varieties. For a projective variety Y polarized by a nef divisor H we define
the inverse nef value t0 = t0(Y,H) to be the supremum of t such that the divisor
H + tKY is nef i.e.,

(15) H · C ≥ t(−KY ) · C = t deg(C)

for every curve C on Y . By the Kawamata rationality theorem [Mat, Thm. 7.1.1],
t0 is achieved and is rational. By the Kawamata-Shokurov base-point-free theorem
[Mat, Thm. 6.2.1], the divisor H + t0KY is semiample i.e., the complete linear system
|m(H + t0KY )| has no base point for all m ≫ 0 and defines a surjective morphism
ϕ : Y → Y ′ with connected fibers onto a normal projective variety Y ′. In particular,
κ(H + t0KY ) ≥ 0, where κ stands for the Iitaka-Kodaira dimension.

For a smooth cubic surface Y in P3 satisfying Convention 4.1, we let H = ϕ−1
∗ (OP2(1))

be the mobile linear system on Y constructed in 4.18. In this setting the inverse nef
value t0 = t0(Y,H ) is a positive integer (indeed, for t = t0 the equality in (15) is
achieved on a (−1)-curve). Moreover, κ(H + t0KY ) = 0 if and only if H + t0KY ≡ 0.
However, in the latter case by Corollary 4.19 a (−KY )-polar cylinder on Y cannot
exist.

By virtue of Theorem 4.23 below, the same conclusion holds in the case where
κ(H + t0KY ) = 1. In the latter case the linear system |m(H + t0KY )| defines for
m≫ 1 a conic bundle Y → P1. Indeed, the image curve is rational since Y is, and an
irreducible general fiber F with F 2 = 0 and −KF = −KY |F ample is a smooth conic.
Actually |H + t0KY | defines already a conic bundle. For assuming that H + t0KY ≡
βF , where β ∈ Q, and taking intersection with a line l on Y such that F · l = 1, we
obtain β ∈ N.



32 TAKASHI KISHIMOTO, YURI PROKHOROV, AND MIKHAIL ZAIDENBERG

Theorem 4.23. Let χ : Y 99K P2 be a birational map and H = χ−1
∗ (|OP2(1)|) be the

proper transform on Y of the complete linear system of lines on P2. Then there is no
conic F on Y such that

(16) H ∼ −aKY + bF for some a ∈ N and b ∈ Z .

Proof. We use the methods developed in [Is1, Is2]. Consider a resolution of indetermi-
nacies of χ:

Ỹ
p

����
��

��
�� q

��
??

??
??

??

Y
χ

//_______ P2

Decomposing p into a sequence of blowups with exceptional curves E1, . . . , En, the

linear system H̃ = q∗(|OP2(1)|) on Ỹ and the line bundle KỸ can be written in Pic(Ỹ )
as

(17) H̃ = p∗(H )−
n∑

i=1

miE
∗
i and KỸ = p∗(KY ) +

n∑

i=1

E∗
i .

Computing the intersection numbers H̃ 2 and H̃ ·KỸ , by (17) we obtain

(18) 1 = H
2 −

n∑

i=1

m2
i and − 3 = KY · H +

n∑

i=1

mi .

Suppose on the contrary that (16) holds for some conic F on Y . We choose the minimal
possible value of a > 0. Since F 2 = 0 on Y , from (16) and (18) we deduce

(19)

n∑

i=1

m2
i = 3a2 + 4ab− 1 and

n∑

i=1

mi = 3a + 2b− 3 .

In the rest of the proof we use the following Claims 1-4.

Claim 1. There is a birational transformation Y 99K Y ′, where Y ′ is again a smooth
cubic surface in P3, such that for the proper transforms H ′ of H and F ′ of F on Y ′

we have

H
′ ∼ −aKY + b′F ′

with the same a as in (16), and additionally with

m′ := max
i

{m′
i} ≤ a ∀i ,

where the integers m′
i have the same meaning on Y ′ as the mi have on Y .

Proof of Claim 1. Suppose that mi > a for some value of i. Consider the conic
bundle ϕ = ϕ|F | : Y → P1. Let us perform an elementary transformation at the point

P = p(Ei) ∈ Y . First we apply the blowup σ : Ŷ → Y of P with exceptional divisor

E. Assuming that mi = multP (H ), on the new surface Ŷ we have

(20) Ĥ := σ−1
∗ (H ) = σ∗(H )−miE and KŶ = σ∗(KY ) + E .
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Modulo linear equivalence we may choose the conic F passing through the point P .
Then F is irreducible. Indeed, otherwise F = F1 +F2, where F1, F2 are two lines on Y
and F1 passes through P . So

a < mi ≤ (F1 · H )P ≤ F1 · H = F1 · (−aKY + b(F1 + F2)) = a ,

which is impossible. Thus the proper transform F̂ ∼ σ∗(F ) − E of F on Ŷ is a
(−1)-curve.

The contraction σ′ : Ŷ → Y ′ of F̂ to a point P ′ ∈ Y ′ yields a smooth conic F ′ :=
σ′
∗(E) passing through P ′ on the resulting cubic surface Y ′, such that

H
′ := σ′

∗(Ĥ ) ∼ −aKY + b′F ′ for some b′ ∈ Z .

Using (16) and (20), on Y ′ we obtain

multP ′(H ′) = Ĥ ·F̂ = σ∗(H )·F̂−miE·F̂ = H ·F−mi = −aKY ·F−mi = 2a−mi < a .

Iterating this procedure we achieve finally that m′
i ≤ a for all values of i, as required.

�

So we assume in the sequel that

(21) m = max
i

{mi} ≤ a ∀i .

Claim 2. Under the assumption (21) we have b < 0.

Proof of Claim 2. From (19) and (21) we obtain

(22) 3a2+4ab = 1+
n∑

i=1

m2
i ≤ 1+m

n∑

i=1

mi ≤ 1+m(3a+2b−3) ≤ 1+a(3a+2b−3) .

It follows by (22) that 2ab ≤ 1− 3a. Since a ≥ 1 then b ≤ 1
2a

− 3
2
≤ −1 . �

Claim 3 (the Noether-Fano Inequality). For m as in (21) we have

a ≥ m > a+ b .

Proof of Claim 3. The first inequality follows by (21). To show the second, suppose on
the contrary that

(23) m ≤ a+ b .

From (22) and (23) we obtain

(24) 3a2 + 4ab ≤ 1 +m(3a+ 2b− 3) ≤ 1 + (a + b)(3a+ 2b− 3) .

Thus by (23) and (24)

(25) 3 ≤ 3m ≤ 3(a+ b) ≤ 1 + b(a + 2b) .

We claim that a + 2b ≥ 0. Indeed, let C be the residual line of the conic F on Y so
that F + C ∼ −KY . Then by (16),

0 ≤ H · C = (−aKY + bF ) · C = a + 2b .

Now (25) leads to a contradiction, since b < 0 by Claim 2. �

Claim 4. Consider the morphism ϕ : Y → P1 defined by the pencil of conics |F | on
Y . Let m = mi, and let Q = p(Ei) ∈ Y . If a line l on Y passes though Q, then l is a
component of the fiber of ϕ through Q.
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Proof of Claim 4. We have

(26) (H · l)Q ≥ multQ(H ) = m > a+ b .

On the other hand,

(27) (H · l)Q ≤ H · l = (−aKY + bF ) · l = a+ bF · l .

By (26) and (27), b < bF · l, where b < 0 by Claim 2. Therefore F · l = 0, and the
claim follows. �

Let again C be the residual (−1)-curve of the conic F on Y so that −KY ∼ F +C.
We let V denote a del Pezzo surface of degree 4 obtained by the contraction π : Y → V
of C, and HV , FV , etc. denote the images on V of H , F , etc. Due to (16),

(28) −KV ∼ FV and HV ∼ −aKV + bFV ∼ −(a + b)KV .

By Claim 4 there is no line on V through the point QV := π(Q). The blowup σ :
Y ′ → V at QV yields yet another cubic surface Y ′ with the exceptional (−1)-curve
E = σ−1(QV ). For the proper transform H ′ = σ−1

∗ (HV ) on Y
′ we obtain by (28):

(29) H
′ ∼ σ∗(HV )−mE ∼ (a+ b)σ∗(−KV )−mE ∼ (a+ b)(−KY ′)+ (a+ b−m)E .

The linear system
|F ′| = | −KY ′ −E|

defines a conic bundle on Y ′. Plugging E ∼ −KY ′ − F ′ into (29) we deduce:

(30) H
′ ∼ (2a+ 2b−m)(−KY ′)− (a + b−m)F ′ .

Using Claims 2 and 3,

(31) 2a+ 2b−m = (a+ b) + (a+ b−m) < a .

By virtue of (30) the latter inequality contradicts the minimality of a. Now the proof
of Theorem 4.23 is completed. �

Corollary 4.24. Under Convention 4.1 the divisor H + t0KY in 4.22 is big i.e.,

κ(H + t0KY ) = 2 .

5. Cones over some rational Fano threefolds

In this section we provide examples of two families of rational Fano 3-folds such that
the affine cones over their anti-canonical embeddings admit nontrivial C+-actions.

Proposition 5.1. Consider a smooth intersection Y = Y2,2 of two quadric hypersur-
faces in P5. Then the affine cone X over Y admits an effective C+-action.

Proof. According to the criterion of Theorem 3.9, it is enough to construct a (−KY )-
polar open cylinder on Y . Fix a line l ⊆ Y . Consider the diagram

Ỹ
σ

����
��

��
�� ϕ

��
??

??
??

??

Y
ψ

//_______ P3

where ψ is the projection with center l, σ is the blowup of l, and ϕ is the blowdown
of the divisor D which is swept out by lines meeting l (i.e., σ(D) is the union of lines
meeting l; see [GH, Ch. 6]). It is easily seen that Γ = ϕ(D) is a smooth quintic curve
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in P3 of genus 2. The image Q = ϕ(E) of the exceptional divisor E of σ is a quadric
in P3. For a line l ⊆ Y , the following alternative holds: either

(1) Nl/X = Ol ⊕Ol and Q is smooth,

or

(2) Nl/X = Ol(1)⊕Ol(−1) and Q is singular.

Anyhow,

Y \ σ(D) ≃ P3 \Q .

Suppose that Q is singular; then Q is a quadratic cone. Let Π be a plane in P3 passing
through the vertex P of Q. We claim that P3 \ (Q∪Π) is a principal cylinder. Indeed,
consider the projection πP with center P and its resolution:

P̃3

σ′

~~~~
~~

~~
~ ϕ′

  @
@@

@@
@@

P3
πP

//_______ P2

Let E ′ ⊆ P̃3 be the exceptional divisor of σ′, and let Q′ ⊆ P̃3 be the proper transform
of Q. Then C = ϕ′(Q′) ⊆ P2 is a conic, and E ′ is a section of the P1-bundle P̃3 → P2.
Furthermore,

P̃3 ≃ P (OP2 ⊕OP2(1)) .

Letting Π′ ⊆ P̃3 be the proper transform of Π, the image ϕ′(Π′) = H ⊆ P2 is a line.
We have

P3 \ (Q ∪ Π) ≃ P̃3 \ (Q′ ∪Π′ ∪ E ′)

is an A1-bundle over P2 \ (C ∪H). Since Pic(P2 \ (C ∪H)) = 0 we obtain

P3 \ (Q ∪Π) ≃ A1 × (P2 \ (C ∪H)) ,

as required. �

Let us exhibit yet another family of Fano threefolds with Picard rank 1. Their moduli
space is 6-dimensional. Every member Y of this family admits a (−KY )-polar cylinder,
whereas the subfamily of completions of A3 is only 4-dimensional [Fur], [Pr1].

Proposition 5.2. Let Y = Y22 ⊆ P13 be a Fano variety of genus 12 with Pic(Y ) =
Z · [−KY ], anticanonically embedded into P13. Then the affine cone X over Y admits
an effective C+-action.

Proof. Again, it is enough to construct a (−KY )-polar open cylinder on Y . Then
the result follows by applying Theorem 3.9. Picking a line l1 ⊆ Y we consider the
commutative diagram

Ỹ

σ1
��

χ
//____________ Ỹ +

ϕ1

��

P13 ⊇ Y = Y22
ψ1

//______ Y5 ⊆ P
6
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where σ1 is the blowup of l1, ψ1 is the double projection with center l1
10 onto a Fano

threefold Y5 of degree 5 and of Fano index 2, anticanonically embedded into P6, ϕ1 is
the blowup of a smooth rational curve Γ ⊆ Y5 of degree 5, and χ is a flop; see [IP,
§4.3]. We have

Y \H1 ≃ Y5 \H2 ,

whereH1 ⊆ Y is a hyperplane section with multl1(H1) = 3, andH2 ⊆ Y5 is a hyperplane
section passing through Γ. Thus it suffices to show that Y5 \H2 contains an H2-polar
cylinder.

Let further l2 ⊆ Y5 be a line. Recall that the family of all lines on Y5 is parameterized
by P2, and either Nl2/Y5 ≃ Ol2 ⊕Ol2 , or Nl2/Y5 ≃ Ol2(1)⊕Ol2(−1). The lines of second
type are parameterized by a smooth conic on P2; see [FN]. There exists a line l2 on
Y5 of second type contained in H2. Consider the projection ψ2 with center l2 and its
resolution:

Ỹ5
σ2

{{vv
vv

vv
vv

vv
ϕ2

##H
HH

HH
HH

HH
H

P6 ⊇ Y5
ψ2

//_______ Q ⊆ P4

where σ2 is the blowup of l2, and Q ⊆ P4 is a smooth quadric. We have

Y5 \H
′
2 ≃ Q \H3 ,

where H ′
2 ⊆ Y5 and H3 ⊆ Q are hyperplane sections such that multl2(H

′
2) = 2, and H ′

2

is swept out by lines meeting l2. Since ψ2 is a projection,

Y5 \ (H2 ∪H
′
2) ≃ Q \ (H3 ∪H

′
3) ,

where H ′
3 ⊆ Q is another hyperplane section (possibly H ′

3 = H3). It remains to show
that the complement Q \ (H3 ∪H

′
3) contains an H3-polar cylinder.

We may assume that H ′
3 6= H3. The projection πP : P4

99K P3 with center at a
general point P ∈ H3 ∩H

′
3 yields an isomorphism

Q \ (H3 ∪H
′
3) ≃ P

3 \ (Π1 ∪Π2 ∪ Π3) ,

where Π1, Π2, Π3 are three planes in P3. So the existence of an H3-polar cylinder on
Q\(H3∪H

′
3) is equivalent to the existence of a Π1-polar cylinder on P

3\(Π1∪Π2∪Π3).
Now the assertion easily follows. �
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