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There exists a large class of groups of operators acting on Hilbert spaces, where commutativity of group elements can be expressed in the geometric language of symplectic polar spaces embedded in the projective spaces PG(n, p), n being odd and p a prime. Here, we present a result about commuting and non-commuting group elements based on the existence of socalled Möbius pairs of n-simplices, i. e., pairs of n-simplices which are mutually inscribed and circumscribed to each other. For group elements representing an n-simplex there is no element outside the centre which commutes with all of them. This allows to express the dimension n of the associated polar space in group theoretic terms. Any Möbius pair of n-simplices according to our construction corresponds to two disjoint families of group elements (operators) with the following properties: (i) Any two distinct elements of the same family do not commute. (ii) Each element of one family commutes with all but one of the elements from the other family. A threequbit generalised Pauli group serves as a non-trivial example to illustrate the theory for p = 2 and n = 5.

Introduction

The last two decades have witnessed a surge of interest in the exploration of the properties of certain groups relevant for physics in terms of finite geometries. The main outcome of this initiative was a discovery of a large family of groups -Dirac and Pauli groups -where commutativity of two distinct elements admits a geometrical interpretation in terms of the corresponding points being joined by an isotropic line (symplectic polar spaces, see [START_REF] Huppert | I. Die Grundlehren der Mathematischen Wissenschaften[END_REF], [START_REF] Shaw | Finite geometry, Dirac groups and the table of real Clifford algebras[END_REF], [START_REF] Saniga | Multiple qubits as symplectic polar spaces of order two[END_REF], [START_REF] Planat | On the Pauli graphs of N-qudits[END_REF], [START_REF] Sengupta | Finite geometries with qubit operators[END_REF], [START_REF] Rau | Mapping two-qubit operators onto projective geometries[END_REF], [START_REF] Thas | Pauli operators of N-qubit Hilbert spaces and the Saniga-Planat conjecture[END_REF], [START_REF] Thas | The geometry of generalized Pauli operators of N-qudit Hilbert space, and an application to MUBs[END_REF], and [START_REF] Havlicek | Factor-group-generated polar spaces and (multi-) qudits[END_REF] for a comprehensive list of references) or the corresponding unimodular vectors lying on the same free cyclic submodule (projective lines over modular rings, e. g., [START_REF] Havlicek | Projective ring line of a specific qudit[END_REF], [START_REF] Havlicek | Projective ring line of an arbitrary single qudit[END_REF]). This effort resulted in our recent paper [START_REF] Havlicek | Factor-group-generated polar spaces and (multi-) qudits[END_REF], where the theory related to polar spaces was given the most general formal setting.

Finite geometries in general, and polar spaces in particular, are endowed with a number of remarkable properties which, in light of the above-mentioned relations, can be directly translated into group theoretical language. In this paper, our focus will be on one of them. Namely, we shall consider pairs of n-simplices of an n-dimensional projective space (n odd) which are mutually inscribed and circumscribed to each other. First, the existence of these so-called Möbius pairs of n-simplices will be derived over an arbitrary ground field. Then, it will be shown which group theoretical features these objects entail if restricting to finite fields of prime order p. Finally, the case of three-qubit Pauli group is worked out in detail, in view of also depicting some distinguished features of the case p = 2.

Möbius pairs of simplices

We consider the n-dimensional projective space PG(n, F) over any field F, where n ≥ 1 is an odd number. Our first aim is to show an n-dimensional analogue of a classical result by Möbius [START_REF] Möbius | Kann von zwei dreiseitigen Pyramiden eine jede in Bezug auf die andere umund eingeschrieben zugleich heissen?[END_REF]. Following his terminology we say that two n-simplices of PG(n, F) are mutually inscribed and circumscribed if each point of the first simplex is in a hyperplane of the second simplex, and vice versa for the points of the second simplex. Two such n-simplices will be called a Möbius pair of simplices in PG(n, F) or shortly a Möbius pair. There is a wealth of newer and older results about Möbius pairs in PG (3, F). See, among others, [START_REF] Guinand | Graves triads, Möbius pairs, and related matrices[END_REF], [4, p. 258], [START_REF] Witczyński | Some remarks on the theorem of Möbius[END_REF], [START_REF] Witczyński | Möbius' theorem and commutativity[END_REF]. The possibility to find Möbius pairs of simplices in any odd dimension n ≥ 3 is a straightforward task [2, p. 188]: Given any n-simplex in PG(n, F) take the image of its hyperplanes under any null polarity π as second simplex. By this approach, it remains open, though, whether or not the simplices have common vertices. For example, if one hyperplane of the first simplex is mapped under π to one of the vertices of the first simplex, then the two simplices share a common point. However, a systematic account of the n-dimensional case seems to be missing. A few results can be found in [START_REF] Berzolari | Sull' estensione del concetto di tetraedri di Möbius agli iperspazî[END_REF] and [START_REF] Herrmann | Matrizen als projektive Figuren[END_REF]. There is also the possibility to find Möbius pairs which are not linked by a null polarity. See [1, p. 137] for an example over the real numbers and [3, p. 290ff.] for an example over the field with three elements. Other examples arise from the points of the Klein quadric representing a double six of lines in PG (3, F). See [10, p. 31] We focus our attention to non-degenerate Möbius pairs. These are pairs of nsimplices such that each point of either simplex is incident with one and only one hyperplane of the other simplex. This property implies that each point of either simplex does not belong to any subspace which is spanned by less than n points of the other simplex, for then it would belong to at least two distinct hyperplanar faces. We present a construction of non-degenerate Möbius pairs which works over any field F. The problem of finding all Möbius pairs in PG(n, F) is not within the scope of this article.

In what follows we shall be concerned with matrices over F which are composed of the matrices

K := 0 -1 1 0 , J := 1 1 1 1 , L := 1 -1 -1 1 , (1) 
and the 2 × 2 unit matrix I. We define a null polarity π of PG(n, F) in terms of the alternating (n + 1) × (n + 1) matrix1 

A :=                  K -J . . . -J J K . . . -J . . . . . . . . . . . . J J . . . K                  . (2) 
Thus all entries of A above the diagonal are -1, whereas those below the diagonal are 1. Using the identities -K 2 = I, JK -KL = 0, and JL = 0 it is easily verified that A is indeed an invertible matrix, because

A -1 =                  -K -L . . . -L L -K . . . -L . . . . . . . . . . . . L L . . . -K                  . (3) 
Let P := {P 0 , P 1 , . . . , P n } be the n-simplex which is determined by the vectors e 0 , e 1 , . . . , e n of the standard basis of F n+1 , i. e., P j = Fe j for all j ∈ {0, 1, . . . , n}.

(

The elements of F n+1 are understood as column vectors. We first exhibit the image of P under the null polarity π.

Lemma 1. Let S be a subspace of PG(n, F) which is generated by k + 1 ≥ 2 distinct points of the simplex P. Then the following assertions hold:

(a) S ∩ π(S ) = ∅ if k is odd. (b) S ∩ π(S
) is a single point, which is in general position to the chosen points of P, if k is even.

Proof. Suppose that S is the span of the points P j 0 , P j 1 , . . . , P j k , where 0 

≤ j 0 < j 1 < • • • < j k ≤ n. A point Y is in S if,
The rows of A with numbers j 0 , j 1 , . . . , j k comprise the coefficients of a system of linear equations in n + 1 unknowns x 0 , x 1 , . . . , x n whose solutions are the vectors of π(S ). Substituting the vector y into this system gives the homogeneous linear system (written in matrix form)

A k • (y j 0 , y j 1 , . . . , y j k ) T = (0, 0, . . . , 0) T , (6) 
where A k is the principal submatrix of A which arises from the first k + 1 rows and columns of A. Note that (6) holds, because the matrix A k coincides with the principal submatrix of A which arises from the rows and columns with indices j 0 , j 1 , . . . , j k . The solutions of ( 6) are the vectors of S ∩ π(S ). There are two cases: k odd: Here A k has full rank k + 1, as follows by replacing n with k in (2) and (3). Hence the system (6) has only the zero-solution and S ∩π(S ) = ∅, as asserted.

k even: Here A k cannot be of full rank, as it is an alternating matrix with an odd number of rows. By the above, the submatrix A k-1 has rank k, so that the rank of A k equals to k. This implies that the solutions of the linear system (6) is the span of a single non-zero vector. For example,

(-1, 1, -1, 1, -1, . . . , -1) T ∈ F k+1 (7)
is such a vector. It determines the point

P j 0 , j 1 ,..., j k := F        k i=0 (-1) i+1 e j i        . ( 8 
)
Since the coordinates of P j 0 , j 1 ,..., j k with numbers j 0 , j 1 , . . . , j k are non-zero, the points P j 0 , P j 1 , . . . , P j k , P j 0 , j 1 ,..., j k are in general position.

The previous lemma holds trivially for k + 1 = 0 points, since then S = ∅. It is also valid, mutatis mutandis, in the case k + 1 = 1, even though here one has to take into account S = P j 0 yields again the point S ∩ π(S ) = P j 0 . Hence the null polarity π and the simplex P give rise to the following points: P 0 , P 1 . . . , P n (the points of P), P 012 , P 013 , . . . , P n-2,n-1,n (one point in each plane of P), . . . , P 0,1,...,n-1 , . . . , P 1,2,...,n (one point in each hyperplane of P). All together these are

n + 1 1 + n + 1 3 + • • • + n + 1 n -1 = n i=0 n i = 2 n (9)
mutually distinct points. We introduce another notation by defining

P j 0 , j 1 ,..., j k =: Q m 0 ,m 1 ,...,m n-k , (10) 
where 0

≤ m 0 < m 1 < • • • < m n-k ≤ n
are those indices which do not appear in P j 0 , j 1 ,..., j k . We are now in a position to state our first main result:

Theorem 1. In PG(n, F), n ≥ 3, let the null-polarity π and the n-simplex P = {P 0 , P 1 , . . . , P n } be given according to (2) and (4), respectively. Then the following assertions hold:

(a) P and Q := {Q 0 , Q 1 , . . . , Q n },
where the points Q m are defined by [START_REF] Hirschfeld | Finite Projective Spaces of Three Dimensions[END_REF], is a non-degenerate Möbius pair of n-simplices.

(b) The n-simplices P and Q are in perspective from a point if, and only if, F is a field of characteristic two.

Proof. Ad (a): Choose any index m ∈ {0, 1, . . . , n}. Then Q m is the image under π of the hyperplane S which is spanned by P 0 , . . . , P m-1 , P m+1 , . . . , P n . The proof of Lemma 1 shows how to find a system of linear equations for Q m . Furthermore, formula (8) provides a coordinate vector for Q m . However, such a vector can be found directly by extracting the m-th column of the matrix A -1 , viz.

m-1 i=0 (-1) i+m+1 e i + n k=m+1 (-1) k+m e k =: q m . (11) 
(The vector from ( 8) is (-1) m q m .) As the columns of A -1 form a basis of F n+1 , the point set Q is an n-simplex.

The n + 1 hyperplanes of the simplex Q are the images under π of the vertices of P. Each of these hyperplanes has a linear equation whose coefficients comprise one of the rows of the matrix A. So a point P j is incident with the hyperplane π(P i ) if, and only if, the (i, j)-entry of A is zero. Since each row of A has precisely one zero entry, we obtain that each point of P is incident with one and only one hyperplane of Q.

In order to show that each point of Q is incident with precisely one hyperplane of the simplex P, we apply a change of coordinates from the standard basis e 0 , e 1 , . . . , e n to the basis b i := (-1) i q i , i ∈ {0, 1, . . . , n}. The points Fb i constitute the n-simplex Q. Let B be the matrix with columns b 0 , b 1 , . . . , b n . With respect to the basis b i the columns of B -1 describe the points of P, and B T AB = A is a matrix for π. The columns of B -1 and A -1 are identical up to an irrelevant change of signs in columns with odd indices. Therefore, with respect the basis b i , the simplex Q plays the role of P, and vice versa. So the assertion follows from the result in the preceding paragraph.

Ad (b): For each j ∈ {0, 2, . . . , n -1} the lines P j Q j and P j+1 Q j+1 meet at that point which is given by the vector

-e j + q j = -(e j+1 + q j+1 ) = (-1, 1, . . . , -1, 1, -1, -1 j, j+1 , 1, -1, . . . , 1, -1) T . ( 12 
)
Comparing signs we see that -e 0 + q 0 and -e 2 + q 2 are linearly independent for Char K 2, whereas for Char K = 2 all lines

P k Q k , k ∈ {0, 1, . . . , n} concur at the point C := F(1, 1, . . . , 1) T . ( 13 
)
Remark 1. Choose k + 1 distinct vertices of P, where 3 ≤ k ≤ n is odd. Up to a change of indices it is enough to consider the k-simplex {P 0 , P 1 , . . . , P k } and its span, say S . The null polarity π induces a null polarity π S in S which assigns to X ∈ S the (k -1)-dimensional subspace π(X) ∩ S . We get within S the settings of Theorem 1 with k rather than n points and π S instead of π. The nested nondegenerate Möbius pair in S is formed by the k-simplex {P 0 , P 1 , . . . , P k } and the k-simplex comprising the points

Q 0,k+1,...,n , Q 1,k+1,...,n , . . . , Q k,k+1,...,n . (14) 
This observation illustrates the meaning of all the 2 n points which arise from P and the null polarity π. If we allow k = 1 in the previous discussion then, to within a change of indices, the nested degenerate Möbius pair {P 0 ,

P 1 } = {Q 0,2,...,n , Q 1,2,...,n } is obtained.
Remark 2. The case F = GF(2) deserves particular mention, since we can give an interpretation for all points of PG(n, 2) in terms of our Möbius pair. Recall the following notion from the theory of binary codes: The weight of an element of GF(2) n+1 is the number of 1s amongst its coordinates. The 2 n points addressed in Remark 1 are given by the vectors with odd weight. The 2 n vectors with even weight are, apart from the zero vector, precisely those vectors which yield the 2 n -1 points of the hyperplane π(C) : n+1 i=0 x i = 0. More precisely, the vectors with even weight w ≥ 4 are the centres of perspectivity for the nested non-degenerate Möbius pairs of (w-1)-simplices, whereas the vectors with weight 2 are the points of intersection of the edges of P with π(C). The latter points may be regarded as "centres of perspectivity" for the degenerate Möbius pairs formed by the two vertices of P on such an edge. Each point of the hyperplane π(C) is the centre of perspectivity of precisely one nested Möbius pair.

Commuting and non-commuting elements

Our aim is to translate the properties of Möbius pairs into properties of commuting and non-commuting group elements. We shortly recall some results from [START_REF] Havlicek | Factor-group-generated polar spaces and (multi-) qudits[END_REF]. Let (G, •) be a group and p be a prime. Suppose that the centre Z(G) of G contains the commutator subgroup G ′ = [G, G] and the set G (p) of pth powers. Also, let G ′ be of order p. Then V := G/Z(G) is a commutative group which, if written additively, is a vector space over GF(p) in a natural way. Furthermore, given any generator g of G ′ we have a bijection ψ g : G ′ → GF(p) : g m → m for all m ∈ {0, 1, . . . , p}. The commutator function in G assigns to each pair (x, y) ∈ G × G the element [x, y] = xyx -1 y -1 . It gives rise to the non-degenerate alternating bilinear form

[•, •] g : V × V → GF(p) : (xZ(G), yZ(G)) → ψ g ([x, y]). ( 15 
)
We assume now that V has finite dimension n + 1, and we consider the projective space PG(n, p) := P(V). Its points are the one-dimensional subspaces of V. In our group theoretic setting a non-zero vector of V is a coset xZ(G) with x ∈ G \ Z(G).

The scalar multiples of xZ(G) are the cosets of the form x k Z(G), k ∈ {0, 1, . . . , p -1}, because multiplying a vector of V by k ∈ GF(p) means taking a kth power in G/Z(G). So x, x ′ ∈ G describe the same point X of PG(n, p) if, and only if, none of them is in the centre of G, and x ′ = x k z for some k ∈ {1, 2, . . . , p -1} and some z ∈ Z(G). Under these circumstances x (and likewise x ′ ) is said to represent the point X. Conversely, the point X is said to correspond to x (and likewise x ′ ). Note that the elements of Z(G) determine the zero vector of V. So they do not represent any point of PG(n, p). The non-degenerate alternating bilinear form from ( 15) determines a null polarity π in PG(n, p). We quote the following result from [6, Theorem 6]: Two elements x, y ∈ G \ Z(G) commute if, and only if, their corresponding points in PG(n, p) are conjugate with respect to π, i. e., one of the points is in the polar hyperplane of the other point. This crucial property is the key for proving Lemma 2 and Theorem 2 below. Lemma 2. Suppose that x 0 , x 1 , . . . , x r ∈ G \ Z(G) is a family of group elements. Then the following assertions are equivalent:

(a) The points corresponding to x 0 , x 1 , . . . , x r constitute an n-simplex of the projective space PG(n, p), whence r = n.

(b) There exists no element in G\Z(G) which commutes with all of x 0 , x 1 , . . . , x r , but for each proper subfamily of x 0 , x 1 , . . . , x r at least one such element exists.

Proof. The points corresponding to the family (x i ) generate PG(n, p) if, and only if, their polar hyperplanes have no point in common. This in turn is equivalent to the non-existence of an element in G \ Z(G) which commutes with all elements of the family (x i ). The proof is now immediate from the following observation: An n-simplex of PG(n, p) can be characterised as being a minimal generating family of PG(n, p).

This result shows that the dimension n + 1 of V can be easily determined by counting the cardinality of a family of group elements which satisfies condition (b). We close this section by translating Theorem 1: Theorem 2. Let G be a group which satisfies the assumptions stated in the first paragraph of this section. Also, let V = G/Z(G) be an (n + 1)-dimensional vector space over GF(p). Suppose that x 0 , x 1 , . . . , x n ∈ G \ Z(G) and y 0 , y 1 , . . . , y n ∈ G \ Z(G) are two families of group elements which represent a non-degenerate Möbius pair of PG(n, p) as in Theorem 1. Then the following assertions hold:

(a) There exists no element in G \ Z(G) which commutes with x 0 , x 1 , . . . , x n .

(b) The elements x 0 , x 1 , . . . , x n are mutually non-commuting.

(c) For each i ∈ {1, 2, . . . , n} the element x i commutes with all y j such that j i.

Each of these three assertions remains true when changing the role of the elements x 0 , x 1 , . . . , x n and y 0 , y 1 , . . . , y n .

Proof. The assertion in (a) follows from Lemma 2. Since all non-diagonal entries of the matrix A from (2) equal to 1, no two points which are represented by the elements x i are conjugate with respect to π. Hence (b) is satisfied. Finally, (c) follows, as the polar hyperplane of the point represented by x i contains all the points which are represented by the elements y j with j i. The last statement holds due to the symmetric role of the two simplices of a Möbius pair which was established in the proof of Theorem 1 (a). Remark 3. According to Remark 1 we may obtain nested non-degenerate Möbius pairs from appropriate subfamilies of x 0 , x 1 , . . . , x n . These Möbius pairs satisfy, mutatis mutandis, properties (b) and (c).

Example 1. We consider the complex matrices

σ 0 := 1 0 0 1 , σ x := 0 1 1 0 , σ y := 0 -i i 0 , σ z := 1 0 0 -1 . (16) 
The matrices i α σ β with α ∈ {0, 1, 2, 3} and β ∈ {0, x, y, z} constitute the Pauli group P of order 16. The centre of P is Z(P) = i α σ 0 | α ∈ {0, 1, 2, 3} . The commutator subgroup P ′ = {±σ 0 } and the set P (2) = {±σ 0 } of squares are contained in Z(P). By Section 3, the factor group P/Z(P), if written additively, is a vector space over GF [START_REF] Brauner | Geometrie projektiver Räume II[END_REF]. For each β ∈ {0, x, y, z} the coset Z(P)σ β is denoted by β. In this notation, addition can be carried out according to the relations 0 + β = β, β + β = 0, and x + y + z = 0. The mapping 0 → (0, 0) T , x → (1, 0) T , y → (0, 1) T , z → (1, 1) T ( 17)

is an isomorphism of P/Z(P) onto the additive group of the vector space GF(2) × GF [START_REF] Brauner | Geometrie projektiver Räume II[END_REF].

Let G be the group of order 256 comprising the three-fold Kronecker products i α σ β ⊗ σ γ ⊗ σ δ with α ∈ {0, 1, 2, 3} and β, γ, δ ∈ {0, x, y, z}. This group acts on the eight-dimensional Hilbert space of three qubits. In our terminology from Section 3 (with p := 2) we have (2) = {±σ 0 ⊗ σ 0 ⊗ σ 0 }, [START_REF] Shaw | Finite geometry, Dirac groups and the table of real Clifford algebras[END_REF] and g = -σ 0 ⊗ σ 0 ⊗ σ 0 . Hence V = G/Z(G) is a six-dimensional vector space over GF(2) endowed with an alternating bilinear form [•, •] g . We introduce βγδ as a shorthand for Z(G)(σ β ⊗ σ γ ⊗ σ δ ), where β, γ, δ ∈ {0, x, y, z}. In this notation, addition in V can be carried out componentwise according to the relations stated before. An isomorphism of V onto GF(2) 6 is obtained by replacing the three symbols of an element of V according to [START_REF] Sengupta | Finite geometries with qubit operators[END_REF]. This gives the coordinate vector of an element of V. For example, the coordinate vectors of the six elements x00, y00, 0x0, 0y0, 00x, 00y ∈ V [START_REF] Thas | Pauli operators of N-qubit Hilbert spaces and the Saniga-Planat conjecture[END_REF] comprise the standard basis of GF(2) 6 . These six elements therefore form a basis of V. The projective space PG(5, 2) = P(V), like any projective space over GF(2), has the particular property that each of its points is represented by one and only one non-zero vector of V. We therefore identify V \ {000} with PG(5, 2). Recall the matrices defined in [START_REF] Berzolari | Sull' estensione del concetto di tetraedri di Möbius agli iperspazî[END_REF]. The matrix of the alternating bilinear form from [START_REF] Rau | Mapping two-qubit operators onto projective geometries[END_REF] with respect to the basis (19) equals to the 6 × 6 matrix diag(K, K, K) over GF [START_REF] Brauner | Geometrie projektiver Räume II[END_REF]. In order to obtain a Möbius pair

Z(G) = i α σ 0 ⊗ σ 0 ⊗ σ 0 | α ∈ {0, 1, 2, 3} , G ′ = G
P = {P 0 , P 1 , . . . , P 5 }, Q = {Q 0 , Q 1 , . . . , Q 5 } (20) 
we have to use another basis of V, e. g., the one which arises in terms of coordinates from the six columns of the matrix

T :=           I J J 0 I J 0 0 I           . (21) 
Indeed, T T • diag(K, K, K) • T gives an alternating 6 × 6 matrix A as in [START_REF] Brauner | Geometrie projektiver Räume II[END_REF]. We thus can translate our results from Section 2 as follows: First, we multiply T with the "old" coordinate vectors from there and, second, we express these "new" coordinate vectors as triplets in terms of 0, x, y, z. The vertices P 0 , P 1 , . . . , P 5 and Q 0 , Q 1 , . . . , Q 5 can be read off, respectively, from the first and second row of the following matrix: x00 y00 zx0 zy0 zzx zzy yzz xzz 0yz 0xz 00y 00x

We note that P and Q are in perspective from a point according to Theorem 1. This point is zzz. Since each line of PG(5, 2) has only three points, the entries of the second row in ( 22) can be found by adding zzz to the entries from the first row. We leave it to the reader to find the 6 4 = 15 nested Möbius pairs of tetrahedra which are formed by four points from P and the four appropriate points from (23). By Remark 2, the 32 points from ( 22) and (23) are precisely the points off the polar hyperplane of zzz. This means that none of the corresponding elements of G commutes with the representatives of the distinguished point zzz.

The results from [START_REF] Havlicek | Factor-group-generated polar spaces and (multi-) qudits[END_REF] show that Theorem 2 can be applied to a wide class of groups, including the generalised Pauli groups acting on the space of N-qudits provided that d is a prime number.

Conclusion

Following the strategy set up in our recent paper [START_REF] Havlicek | Factor-group-generated polar spaces and (multi-) qudits[END_REF], we have got a deeper insight into the geometrical nature of a large class of finite groups, including many asso-ciated with finite Hilbert spaces. This was made possible by employing the notion of a Möbius pair of n-simplices in a finite odd-dimensional projective space, PG(n, p), p being a prime. Restricting to non-degenerate Möbius pairs linked by a null polarity, we have first shown their existence for any odd n, a remarkable nested structure they form, and perspectivity from a point of the simplices in any such pair if p = 2. Then, the commutation properties of the group elements associated with a Möbius pair have been derived. In particular, the two disjoint families of n + 1 group elements that correspond to a Möbius pair are such that any two distinct elements/operators from the same family do not commute and each element from one family commutes with all but one of the elements from the other family. As the theory also encompasses a number of finite generalised Pauli groups, that associated with three-qubits (n = 5 and p = 2) was taken as an illustrative example, also because of envisaged relevance of Möbius pairs to entanglement properties of a system of three fermions with six single-particle states [START_REF] Lévay | Three fermions with six single-particle states can be entangled in two inequivalent ways[END_REF]. It should, however, be stressed that above-outlined theory is based on a particular construction of Möbius pairs, and so there remains an interesting challenge to see in which way it can be generalised to incorporate arbitrary Möbius pairs.

Note that indices range from 0 to n.
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