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EXPANSIONS OF THE REAL FIELD BY OPEN SETS:

DEFINABILITY VERSUS INTERPRETABILITY

HARVEY FRIEDMAN, KRZYSZTOF KURDYKA, CHRIS MILLER, AND PATRICK SPEISSEGGER

DRAFT, November 20, 2008. Not for circulation.

Abstract. An open U ⊆ R is produced such that (R,+, ·, U) defines a Borel isomorph of
(R, +, ·, N) but does not define N. It follows that (R,+, ·, U) defines sets in every level of
the projective hierarchy but does not define all projective sets. This result is elaborated in
various ways that involve geometric measure theory and working over o-minimal expansions
of (R,+, · ). In particular, there is a Cantor set K ⊆ R such that for every exponentially
bounded o-minimal expansion R of (R, +, · ), every subset of R definable in (R, K) either
has interior or is Hausdorff null.

The reader is assumed to be familiar with the basics of first-order definability over the
real field R := (R, +, · ), especially o-minimality. Requisite material can be found in van
den Dries and Miller [4]. We refer to Kechris [8] and Mattila [10] for basic descriptive
set theory and geometric measure theory. We say that a subset of Rn is constructible

if it is a boolean combination of open subsets of Rn. By Dougherty and Miller [1], every
constructible E ⊆ Rn is a boolean combination of open sets that are definable in (R, <, E);
we use this fact without further mention.

We begin with a simply-stated question: What can be said about the sets that are
definable, allowing arbitrary real parameters, in an expansion R of R by a collection of
constructible subsets of R? First, every quantifier-free definable set is constructible, hence
Borel. Next, every existentially definable set is Σ1

1 (also known as Souslin, Suslin, or
analytic), and every universally definable set is Π1

1 (also known as co-analytic). Continuing
in this fashion, every definable set is projective in the sense of descriptive set theory. All real
projective sets are definable in (R, N) [8, 37.6]. As a result, there are now many examples
known where R defines all real projective sets; see [12, 13] for some non-obvious ones. On
the other hand, there are now many examples known where every definable set is Borel;
see [5, 6, 12, 15] for some non-o-minimal ones. Heretofore, no other behaviors have been
documented. We show in this paper that there is at least one other possibility: R can
define sets in every Σ1

n+1 \ Σ1
n, and thus of every projective level, yet not define all real

projective sets. As Borel isomorphisms preserve projective level, this is immediate from

Theorem A. There is a closed E ⊆ R such that:

(a) (R, E) defines a Borel isomorph of (R, N).
(b) Every unary (that is, contained in R) set definable in (R, E) either has interior or

is nowhere dense.

Expansions of R in which every unary definable set either has interior or is nowhere
dense have a number of good properties [12], but we shall not dwell on this here. On the
other hand, this condition is not strong enough to rule out a significant difference between
interpretability and definability of interesting algebraic objects.
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Corollary. With E as in Theorem A, (R, E) defines no proper nontrivial subgroups of

(R, +), nor any proper noncyclic subgroups of (R>0, · ), yet (R, E) interprets every real

projective set, in particular, every projective subfield of R.

As we shall see (Theorem B, below), we can choose E so that part (b) of Theorem A
holds even for (R, exp, E), in which case neither does (R, E) define any proper nontrivial
subgroups of (R>0, · ).

We postpone beginning the proof proper of Theorem A, but we outline some of the main
ideas now. In order to satisfy part (b), it suffices by [5, Theorem A] and cell decomposition
to produce a closed E ⊆ R such that:

(b)′ For every n ∈ N, bounded open semialgebraic cell U ⊆ Rn, and bounded continuous
semialgebraic f : U → R, the image f(U ∩ En) is nowhere dense, where En is the
n-th cartesian power of E.

Given any uncountable Σ1
1 set E ⊆ R such that (b)′ holds, there is a Cantor set1 K such that

both (a) and (b)′ hold with E replaced by K; this is fairly easy modulo known descriptive
set theory and some definability tricks (1.14, below). Thus, it suffices to find a Cantor set E
such that condition (b)′ holds for E. In order to motivate further developments, we consider
a naive approach that we could not make work. Let E be a Cantor set such that every En

is Hausdorff null (that is, has Hausdorff dimension zero). By cell decomposition, we reduce
further to the case that f is C1 and nowhere locally constant. Write U as the union of
the compact sets Ar, r > 0, where Ar is the set of x ∈ U whose distance to the boundary
of U is at least 1/r. Each restriction f↾Ar is continuous and Lipshitz, so f(En ∩ Ar)
is compact and Hausdorff null. Since f is nowhere locally constant, f(En ∩ Ar) is also
Cantor for all sufficiently large r. Hence, f(U ∩ En) is the union of a “semialgebraically
parameterized” increasing family of Hausdorff null Cantor sets. But we see no way to
conclude from this that f(U ∩ En) is nowhere dense, which is required in order to employ
the aforementioned technology from [5]. The fundamental shortcoming of this approach
is that it appears not to account for how limit points of f(U ∩ En) are formed at the
boundary of U . We overcome this by a more careful choice of E based on an analysis of
the behavior of bounded semialgebraic functions near their points of discontinuity. It turns
out to be just as easy to work in the more general setting of o-minimal expansions of R

and prove stronger statements. In doing so, we establish some results in o-minimality (1.1
through 1.8) that seem to be new to the literature even as semialgebraic or subanalytic
geometry. We also prove a generalization and some variants of Theorem A, one of which
we state now, leaving others for later.

A structure on R is exponentially bounded if for every definable f : R → R there
exists m ∈ N such that f is bounded at +∞ by the m-th compositional iterate expm of
exp. It is an easy consequence of quantifier elimination that R itself is o-minimal and
exponentially bounded.

Theorem B. There is a Cantor set K such that (R, K) defines a Borel isomorph of (R, N)
and, for every exponentially bounded o-minimal expansion R of R, every unary set definable

in (R, K) either has interior or is Hausdorff null.

1For our purposes, a Cantor set is a subset of R that is nonempty, compact, and has neither interior
nor isolated points.
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For the following reasons, we regard Theorem B as a natural extension of Theorem A
and our original motivating question. (i) By cell decomposition, every o-minimal expansion
of the real line (R, <) is interdefinable with a structure on R generated by a collection of
open Uα ⊆ Rn(α), α ranging over some index set. (ii) For any expansion of (R, <), if every
unary definable set either has interior or is Hausdorff null, then every unary definable set
either has interior or is nowhere dense. (For every A ⊆ R and open interval I, at most one
of I ∩ A and I \ A is Hausdorff null.) (iii) By growth dichotomy [11], Pfaffian closure [16],
and Lion et al. [9], if R is an exponentially bounded o-minimal expansion of R, then so is
(R, exp). In particular, (R, exp) is o-minimal and exponentially bounded. (iv) There are
now many examples of expansions of R that are known to be exponentially bounded and
o-minimal.2

It is easy to see that a Cantor set is interdefinable over R with the set of midpoints of its
complementary intervals (see 2.3), so Theorem B holds with “discrete”, even “countable”,
in place of “Cantor”, with similar modifications to Theorem A and its corollary.

As of this writing, every expansion of R known to be o-minimal is exponentially bounded,
thus partly justifying our decision to postpone the statement of our most general version
(Theorem C in §2). Another reason is simply to avoid for now having to introduce further
notation and technical definitions.

Though one might be tempted to regard both Theorems A and B as teratological, we
believe that the techniques of the proofs are interesting in their own right, and potentially
useful for other settings.

Here is an outline of the remainder of this paper. We begin in Section 1 with some
preliminaries, including some results in pure o-minimality that we believe will be useful in
other settings. We prove Theorem B in Section 2, as well as some variants and corollaries.
We close in Section 3 with discussion and open issues.

1. Preliminaries

We begin by establishing some global conventions and notation. Throughout, “de-
finable” (in some first-order structure) means “definable with parameters”, while “∅-de-
finable” means “definable without parameters”. The variables j, k,m, n range over N,
the non-negative integers. Given a set A, its n-fold cartesian power is denoted by An,
with A0 := {0}. Whenever convenient, we identify Am × An with Am+n, in particular,
Am × A0 ∼= A0 × Am ∼= Am. If A belongs to a topological space, we denote its interior by
int(A), closure by cl(A), and frontier by fr(A) := cl(A)\A. If A ⊆ Rn, then all of these sets
(in the usual topology) are ∅-definable in (R, <, A). Given a set B, we identify a function
f : A0 → B with the constant f(0) ∈ B. Given a function f : A → B and A′ ⊆ A, we let
f↾A′ denote the restriction of f to A′. Limits of functions are always taken with respect to
the declared domain of the function, and similarly with limits superior and inferior. Metric
notions are taken with respect to the sup norm |x| := sup{|x1| , . . . , |xn|}. In particular,
for x ∈ Rn and r > 0, put B(x, r) = { y ∈ Rn : |x − y| < r }.

2There are also exponentially bounded expansions of R that are not o-minimal. Such structures are
closely related to o-minimality in a certain way, but cannot be obtained by expanding R by collections of
constructible sets (of any arities), and thus are irrelevant for present purposes. See [14] for details.
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Next are some crucial technical results in o-minimality that seem to be new to the
literature even as semialgebraic or subanalytic geometry.3

1.1. Let R be an o-minimal expansion of (R, <), C ⊆ Rn be a bounded open cell, and

f : C → R be definable, continuous, and bounded. Then there is a definable X ⊆ fr(C)
such that dim(fr(C) \ X) < n − 1 and f extends continuously to C ∪ X.

(Recall that dim ∅ = −∞ by convention.)

Note. The resulting extension of f to C ∪ X is necessarily definable, as it is given by
y 7→ limx→y f(x).

Proof. As is often the case in o-minimality, we find it convenient to prove simultaneously
a related condition. We proceed by induction on n ≥ 1 to show the following in turn.

(in) There is a definable Y ⊆ fr(C) such that dim(fr(C) \ Y ) < n − 1 and C is locally
connected at every y ∈ Y .

(iin) There is a definable X ⊆ fr(C) such that dim(fr(C) \ X) < n − 1 and f extends
continuously to C ∪ X.

(A subset A of a topological space X is locally connected at x ∈ X if for every open
neighborhood U of x there is an open neighborhood V ⊆ U of x such that V ∩ A is
connected.)

If n = 1, then C is an open interval, so the result is immediate from the monotonicity
theorem. Let n ≥ 1 and assume the result for n. Let C ⊆ Rn+1 be a bounded open cell.

(in+1). Let D be the projection of C on the first n variables. Then D is a bounded
open cell and there exist bounded definable continuous functions g, h : D → R such that
g < h and C = { (x, r) : x ∈ D & g(x) < r < h(x) }. Inductively, there exist definable
Z ⊆ fr(D) and definable continuous G,H : D ∪ Z → R such that dim(fr(D) \ Z) < n − 1,
D is locally connected at every z ∈ Z, g = G↾D, and h = H↾D. Put

Y = graph(g) ∪ graph(h) ∪ { (z, r) : z ∈ Z & G(z) < r < H(z) }.

Then
fr(C) \ Y ⊆ fr(graph(g)) ∪ fr(graph(h)) ∪ [(fr(D) \ Z) × R],

so dim(fr(C) \ Y ) < n. We now show that C is locally connected at every y ∈ Y . As D is
open and cells are connected, C is locally connected at every point of graph(g)∪ graph(h).
Let z ∈ Z and r ∈ R be such that G(z) < r < H(z). Let U be an open set containing
(z, r). We must find an open box about the point (z, r) that is contained in U and whose
intersection with C is connected. By continuity of G and H, there is an open box B×I ⊆ U
about (z, r) such that (B × I) ∩ C is disjoint from graph(g) ∪ graph(h). Since D is locally
connected at z, we may shrink B so that B∩D is connected. Then (B×I)∩C is connected,
because (B × I) ∩ C = (B ∩ D) × I.

(iin+1). Let f : C → R be definable, continuous, and bounded. Let Z be the set of all
z ∈ fr(C) such that limx→z f(x) exists. We claim that dim(fr(C) \ Z) < n. Suppose not.
Then there is a cell E ⊆ fr(C) such that dim E = n and lim infx→y f(x) < lim supx→y f(x)
for every y ∈ E. By (in+1), we may shrink E so that C is locally connected at every y ∈ E.
Then

fr(graph(f)) ⊇ { (y, r) : y ∈ E & lim inf
x→y

f(x) < r < lim sup
x→y

f(x) },

3We would appreciate any information to the contrary.
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yielding the absurdity

dim fr(graph(f)) ≥ dim E + 1 = n + 1 = dim graph(f) > dim fr(graph(f)).

(See van den Dries [3, pp. 65, 68].) Define g : Z → R by g(z) = limx→z f(x). Let X
be the set of points of continuity of g. By cell decomposition, dim(Z \ X) < dim Z, so
dim(fr(C) \ X) < n. Finally, define h : C ∪ X → R by h↾C = f and h↾X = g↾X. Then h
is continuous and extends f . ¤

Remarks. (i) The result and its proof hold for all abstract o-minimal structures (as defined
in [3]) provided that the definition of locally connected is relativized to definable connect-
edness. (ii) If C = { (x, y) ∈ R2 : 0 < y < x < 1 } and f(x, y) = y/x, then f is bounded
and does not extend continuously to the origin. (iii) If C = { (x, y, z) ∈ R3 : |x| < 1 &

0 < y < 1 & −1 < z <
√

|x|/y }, then C is bounded and not locally connected at any
point of { (0, 0, z) : 0 < z < 1 }.

We need yet more refined results, for which we require some technical definitions and
notation.

Define the corners in Rn inductively as follows.4 (i) R0 is the only corner in R0. (ii) If
C ⊆ Rn is a corner and f : C → (0,∞) is continuous, then

{ (x, t) ∈ Rn+1 : x ∈ C & 0 < t < f(x) }

is a corner in Rn+1. We note some easy facts. Every corner in Rn is an open cell contained
in (0,∞)n. The projection on the first m coordinates of a corner in Rm+n is a corner in
Rm. For every cell decomposition C of Rn that is compatible with (0,∞)n there is a unique
C ∈ C such that C is a corner.

1.2. We now define some special corners. Let Φ be the collection of all homeomorphisms
of [0,∞). Let Sn be the collection of all nonempty sets of the form

{ x ∈ (0,∞)n : φn(xn) < φn−1(xn−1) < · · · < φ1(x1) < b }

where b ∈ (0, +∞] and φ1, . . . , φn ∈ Φ. Note that this set is an open cell of the structure
(R, <, φ1, . . . , φn). We interpret S0 as R0. Let S ∈ Sn. Note the easy facts: S is a
corner; for every m ≤ n, the projection of S on the first m coordinates belongs to Sm; and
cl(S) \ [(0,∞)n−1 × R] = {0}n. With b = +∞ and φi = t 7→ 2it for i = 1, . . . , n, we obtain
the set

Sn :=
{

x ∈ Rn : 0 < xn <
xn−1

2
< · · · <

x1

2n−1

}

.

Note that Sn is definable in (R, <, +).

1.3. Let C ⊆ Rn be a corner such that (R, <, +, C) is o-minimal. Then there exists S ∈ Sn

definable in (R, <, +, C) such that cl(S) ∩ (0,∞)n ⊆ C.

Proof. We proceed by induction on n ≥ 1. (The case n = 0 is trivial.) If n = 1, then C is
an open interval (0, s) for some s ∈ (0,∞], so let S be any (0, r) with r ∈ (0, s).

Let n ≥ 1 and assume the result for n. Let C ⊆ (0,∞)n+1 be a corner such that
(R, <, +, C) is o-minimal. It suffices to consider the case that C is bounded. Let D be the

4More precisely, we define the corners “at 0+”. Corners can be defined relative to any point in [−∞,∞]n

regarded with a fixed appropriate sign condition, but we shall not need any of these variants in this paper.
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projection of C on the first n coordinates. Then D is a bounded definable corner and there
is a continuous definable f : D → (0,∞) such that

C = { (x, xn+1) ∈ Rn+1 : x ∈ D & 0 < xn+1 < f(x) }.

Inductively, there is a definable S ′ ∈ Sn such that cl(S ′) ∩ (0,∞)n ⊆ D. The projection
of S ′ on the last coordinate is an open interval (0, a), and for every t ∈ (0, a), the set
{ x ∈ cl(S ′) : xn = t } is compact. As f is continuous on cl(S ′) ∩ (0,∞)n, for all t ∈ (0, a)
we have 0 < inf{ f(x) : x ∈ cl(S ′) & xn = t } < ∞. Define g : (0, a) → R by

g(t) = min(t, inf{ f(x)/2 : x ∈ cl(S ′) & xn = t }).

Note that g is definable. As g > 0 and limg→0+(t) = 0, there exists by the monotonicity
theorem some a′ ∈ (0, a] such that g↾(0, a′) is continuous and strictly increasing. The set
{ x ∈ S ′ : xn < a } is a corner, so inductively, we may shrink S ′ so that g is continuous and
strictly increasing. Put S = { (x, xn+1) : x ∈ S ′ & xn+1 < g(xn) }. Now,

cl(S) ∩ (0,∞)n+1 ⊆ { (x, xn+1) : x ∈ cl(S ′) ∩ (0,∞)n & 0 < xn+1 ≤ f(x)/2 } ⊆ C,

so it suffices to show that S ∈ Sn+1. Extend g to φ ∈ Φ by setting φ(0) = 0 and φ(t) =
t − a + g(a) for t > a. Write

S ′ = { x ∈ (0,∞)n : φn(xn) < · · · < φ1(x1) < b }

as in 1.2. Then φn ◦ φ−1 ∈ Φ and

S = { (x, xn+1) ∈ (0,∞)n+1 : φn ◦ φ−1(xn+1) < φn(xn) < · · · < φ1(x1) < b } ∈ Sn+1. ¤

1.4. Let S ∈ Sn, f : S → R be bounded and continuous, and (R, <, +, f) be o-minimal.

Then there exists S ′ ∈ Sn definable in (R, <, +, f) such that S ′ ⊆ S and f↾S ′ extends

continuously to cl(S ′).

Proof. We proceed by induction on n ≥ 1. The case n = 1 is immediate from the mono-
tonicity theorem. Let n ≥ 1 and assume the result for n. Let π denote projection on the
first n coordinates. By 1.1 and 1.3, we may shrink πS (hence also S) so that there is a
definable continuous g : S ∪ (πS × {0}) → R with f = g↾S. Inductively, we reduce to the
case that g↾(πS ×{0}) extends continuously and definably to cl(πS)×{0}; we denote this
extension just by g. By continuity, the set { x ∈ S : |f(x) − g(πx, 0)| ≤ xn+1 } contains a
corner, so we reduce by 1.3 to the case that |f(x) − g(πx, 0)| ≤ xn+1 for all x ∈ S. Hence,
limx→(y,0) f(x) = g(y, 0) for all y ∈ cl(πS), so f extends continuously to cl(πS) × {0}.
Finally, we shrink S again by 1.3 so that f is continuous on cl(S) ∩ (0,∞)n+1. Then f
extends continuously to cl(S). ¤

1.5. Let Tn be the group of symmetries, regarded as linear transformations Rn → Rn, of the
polyhedron inscribed in the unit ball in Rn whose vertices are the intersections of the unit
sphere in Rn with the set { tu : t > 0 & u ∈ {−1, 0, 1}n }. For example, T2 is the symmetry
group of the octagon. With Sn as in 1.2, we have Rn =

⋃

T∈Tn

T (cl(Sn)) =
⋃

T∈Tn

cl(T (Sn)).
As an immediate consequence of cell decomposition, 1.3, and 1.4, we obtain a key technical
lemma:

1.6. Let A ⊆ Rn and f : A → R be such that (R, <, +, f) is o-minimal. Let f be bounded

near y ∈ cl(A). Then there exists S ∈ Sn definable in (R, <, +, f) such that for every

T ∈ Tn and m ≤ n, the restriction of f to A ∩ (y + T (πmS × {0}n−m)) is continuous and

extends continuously to the closure, where πm denotes projection on the first m coordinates.
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Remark. The result is easily modified to hold for o-minimal expansions of arbitrary ordered
groups. As one might imagine, the result can be generalized significantly if R also expands
an ordered field—recall the triangulation theorem—but it takes a bit of effort to make this
precise. As we shall not need any of these of these generalizations in this paper, we leave
details to the interested reader.

1.7. We now define some special elements of Sn. First, define ψ : [0,∞) → R by

ψ(t) =











0, t = 0

e−1/t, 0 < t < 1

t − 1 + e−1, t ≥ 1.

Note that ψ ∈ Φ. For l ∈ Z, let ψl be the l-th compositional iterate of ψ. Every ψl

is definable in (R, exp). For l ≥ 0, ψl(t) = 1/ expl(1/t) for all sufficiently small t > 0,
and ψ−l(t) = 1/ logl(1/t) for all sufficiently small t > 0, where logl denotes the ultimately
defined l-th compositional iterate of log. If R is an exponentially bounded expansion of R,
then for each definable f : (0, b) → (0,∞) such that limt→0+ f(t) = 0 there is a least l ∈ Z

such that f(t) ≥ ψl(t) as t → 0+; if R is also o-minimal, then f(t) < ψl−1(t) as t → 0+.
Define sets Sn,l ∈ Sn by

Sn,l = { x ∈ Rn : 0 < xn < ψl(xn−1) < · · · < ψ(n−1)l(x1) }.

Every Sn,l is an open cell of (R, exp). An easy induction shows that if S ∈ Sn and (R, S) is
o-minimal and exponentially bounded, then there exist δ, l > 0 such that B(0, δ)∩Sn,l ⊆ S.
Hence, by 1.6,

1.8. Let A ⊆ Rn and f : A → R be such that (R, f) is o-minimal and exponentially bounded.

Let f be bounded near y ∈ cl(A). Then there exist δ, j > 0 such that for every T ∈ Tn

and m ≤ n, the restriction of f to B(y, δ) ∩ A ∩ (y + T (Sm,j × {0}n−m)) is continuous and

extends continuously to the closure.

Remark. The above holds with “polynomially” instead of “exponentially” by using the sets
{

x ∈ Rm : 0 < xn < xl
n−1 < · · · < xlm−1

1

}

instead of the Sn,l.
Our results so far have not required working over R in that they are easily generalized

to abstract o-minimal structures. This now begins to change.
Given A ⊆ Rn and r > 0, let N(A, r) be the infimum of all k such that A is covered by k-

many closed cubes of side length r. The set A is Minkowski null5 if limr→0+ rǫN(A, r) = 0
for all ǫ > 0. While Minkowski nullity is not generally preserved under countable unions
or C1 images, it is much better behaved than Hausdorff nullity in some other ways. We
extend this notion relative to expansions R of R by defining A ⊆ Rn to be R-null if
limr→0+ f(r)N(A, r) = 0 for every definable f : R → R such that limr→0+ f(r) = 0. As R

defines all rational power functions, R-null implies Minkowski null. If R is polynomially
bounded, then R-null is the same as Minkowski null. We have some other easy basic facts
that will be used often.

1.9. (1) R-nullity is preserved under taking subsets, closure, finite unions, finite carte-

sian products, and images under Lipshitz maps.

5Also known under several other names and equivalent formulations.
7



(2) R-null sets are nowhere dense and Hausdorff null.

(3) Countable unions of R-null sets are Baire meager and Hausdorff null.

(4) If every bounded unary definable set either has interior or is R-null, then every

unary definable set either has interior or is Hausdorff null.

(5) If R is o-minimal and exponentially bounded, then A ⊆ Rn is R-null if and only if

lim
r→0+

r expm(N(A, r)) = 0 for all m.

Proof. We give a sketch for (5) but leave the rest as exercises.
Suppose that A is R-null. Then limr→0+ N(A, r)/ logm(ǫ/r) = 0 for every m ∈ N and

ǫ > 0. Hence, N(A, r) < logm(ǫ/r) for all sufficiently small r > 0. Then r expm(N(A, r)) <
ǫ for all sufficiently small r > 0.

Conversely, suppose that limr→0+ r expm(N(A, r)) = 0 for all m. We need only show that
limr→0+ N(A, r)/ logm(1/r) = 0 for all m. By assumption, limr→0+ r expm+1(N(A, r)) = 0,
so N(A, r) < logm+1(1/r) for all sufficiently small r > 0. Note that logm+1(1/r)/ logm(1/r) →
0 as r → 0+. ¤

1.10. Let R be an o-minimal expansion of R. If A ⊆ Rm is R-null, B ⊆ Rm is compact,
and f : B → Rn is continuous and definable, then f(A ∩ B) is R-null.

Proof. We may take A ⊆ B. By generalized Hölder continuity [4, C.15], there is a definable
φ ∈ Φ such that |f(x) − f(y)| ≤ φ(|x − y|) for all x, y ∈ B. Then N(f(A), φ(r)) ≤ N(A, r)
for all r > 0. Let g : (0,∞) → R be definable such that limr→0+ g(r) = 0. Then

lim
r→0+

g(r)N(f(A), r) = lim
r→0+

g(φ(r))N(f(A), φ(r)) = lim
r→0+

(g ◦ φ)(r)N(A, r) = 0. ¤

We next recall a result from [5] and some minor variants. Given a structure R on R and
Y ⊆ R, let (R, Y )# denote the expansion (R, (X)) of R, where X ranges over all subsets
of all cartesian powers of Y .

1.11. Let A ⊆ R and R be an o-minimal expansion of (R, <, +, 1). Let B ⊆ R have no

interior and be definable in (R, A)#. Then there exists f : Rn → R definable in R such

that B ⊆ cl(f(An)). If B is bounded, then f can be taken to be bounded by replacing it

with max(N, |f |) for some N such that B ⊆ [−N, N ]. This all holds with “∅-definable” in

place of “definable”.

Thus, as R-nullity is preserved under taking closure, we have

1.12. Let R be an o-minimal expansion of R and A ⊆ R be such that f(An) is R-null for

all bounded definable f : Rn → R. Then every bounded unary set definable in (R, A)#

either has interior or is R-null.

We leave the proof of the following amusing result as an exercise.6

1.13. For every Q-linearly independent A ⊆ R, the function x 7→
∑n

i=1 2i−1xi : Rn → R is

injective on An.

Next is a combination of basic definability and descriptive set theory.

1.14. Let A ⊆ R be uncountable and Σ1
1. Then there is a Cantor set K such that:

(1) (R, <, +, 1, K) ∅-defines a Borel isomorph of (R, N).

6We are not aware of this appearing elsewhere. We would appreciate any information to the contrary.
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(2) For every bounded f : Rn → R there is a finite set H of bounded functions ∅-defin-

able in (R, <, +, 1, f) such that f(Kn) ⊆
⋃

h∈H h(An(h)).

Proof. There exists l ∈ Z such that A ∩ [l, l + 1] is uncountable. By translation, we take
A ⊆ [1, 2]. Every uncountable analytic set contains a Cantor set, so we take A to be
Cantor. Every Cantor set contains a Q-linearly independent Cantor set (use [8, 19.1]), so
we also take A to be Q-linearly independent. Let D be the result of removing from A its
maximum and minimum, and all left endpoints of the complementary intervals of A. By a
classical construction—for example, Gelbaum and Olmstead [7, I.8.14]—there is a strictly
increasing bijection g : R → D whose compositional inverse is continuous. Hence, g is a
Borel isomorphism and a closed map. Put

X = {
(

g(x), g(y), g(x + y), g(xy), g(dN(x))
)

: x, y ∈ R }

where dN : R → R denotes the distance function to N. Define T : R5 → R by T (x) =
∑5

i=1 2i−1xi. Put K = A ∪ T (cl(X)). As X has no isolated points, the same is true of
cl(X), hence also of T (cl(X)). Since cl(X) ⊆ A5 and T ↾A5 is injective (1.13), T (cl(X)) is
compact and has no interior. Thus, T (cl(X)) is Cantor, hence so is K.

(1). We have T (A5) ⊆ (2,∞), so A = K ∩ [1, 2] and (R, <, +, 1, K) ∅-defines A, hence
also D. As g is a closed map and T ↾A5 is injective, we have X = D5 ∩ T−1(K \ A). Thus,
(R, < +, 1, K) ∅-defines X. Observe that (R, X) ∅-defines the image under g of (R, dN),
hence also that of (R, N).

(2). Straightforward, but tedious to write up in detail. We illustrate the point via the
case n = 2 and leave the rest to the reader. Since K ⊆ A ∪ T (A5), we have

K2 ⊆ A2 ∪ A × T (A5) ∪ T (A5) × A ∪ (T (A5))2.

Let f : R2 → R be bounded. Put H = {h1, . . . , h4}, where

h1 = f(x1)

h2 = f(x1, T (x2, . . . , x6))

h3 = f(T (x1, . . . , x5), x6)

h4 = f(T (x1, . . . , x5), T (x6, . . . , x10)).

Then f(K2) ⊆ h1(A
2) ∪ h2(A

6) ∪ h3(A
6) ∪ h4(A

10). ¤

Remark. By using distance functions, the set X is easily modified to encode over (R, <, +, 1)
any expansion of (R, <, +, 1) by finitely many closed sets.

2. Main results

In this section, we prove Theorem B, as well as some variants and corollaries.

Proof of Theorem B. By diagonalization, we fix a sequence (rk) of positive real numbers
such that r0 = 1, 2rk+1 < rk for all k, and limk→+∞ rk+1/ψj(rk) = 0 for all j (ψj as in 1.7).
Define sets Ek inductively by E0 = [0, 1] and Ek+1 = Ek \

⋃

c(c+ rk+1, c+ rk − rk+1), where
c ranges over the left endpoints of the connected components of Ek. Then

⋂

k Ek is Cantor.
Let E be a Q-linearly independent Cantor set contained in

⋂

k Ek (recall the proof of 1.14).

Let K be a Cantor set constructed as in 1.14 with A = E; then (R, K) defines a Borel
isomorph of (R, N). Let R be an exponentially bounded o-minimal expansion of R. We
must show that every unary set definable in (R, K) either has interior or is Hausdorff null.
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Indeed, with an eye toward applications and further generalization, we show that every
bounded unary set definable in (R, K)# either has interior or is R-null (recall 1.9.4). We
use repeatedly that R-nullity is preserved under finite unions. By 1.12 and 1.14, it suffices
to let f : Rn → R be bounded and definable in R, and show that f(En) is R-null. By
compactness of En, it is enough to show that if x ∈ En then f(En ∩ B(x, δ)) is R-null
for some δ > 0. By 1.8, there exist δ, j > 0 such that for every T ∈ Tn and m ≤ n, the
restriction of f to (x+T (Sm,j ×{0}n−m))∩B(x, δ) is continuous and extends continuously
to the closure. Thus, it suffices now by 1.10 to show that:

(i) Every En is R-null.
(ii) For every j > 0 there exists δ > 0 such that for all n,

En − En ∩ (−δ, δ)n ⊆
⋃

m≤n

⋃

T∈Tn

T (Sm,j × {0}n−m),

where En − En denotes the difference set of En.

Proof of (i). As R-nullity is preserved under finite cartesian products, it suffices by 1.9.5
to fix m and show that limr→0+ r expm(N(E, r)) = 0. Let 0 < r < 1; then there exists k
such that rk+1 ≤ r < rk. For every j, the set Ej consists of 2j disjoint closed intervals each
of length rj, so

r expm(N(E, r)) ≤ r expm(2k+1) < rk expm+1(k + 1).

If r is sufficiently small, then rk−1 ≤ 1/(k + 1) and expm+1(k + 1) = 1/ψm+1(1/(k + 1)), so
r expm(N(E, r)) ≤ rk/ψm+1(rk−1). By construction, limk→+∞ rk/ψm+1(rk−1) = 0.

Proof of (ii). As j > 0, we have t−ψj(t) > 0 for all sufficiently small t > 0. By exponential
bounds and properties of (rk), we have

lim
k→+∞

rk+1

rk − ψj(rk)
= 0 = lim

k→+∞

rk+1

ψj(ψj(rk))
.

Thus, there exists N ∈ N such that for all k > N we have rk+1 < ψj(ψj(rk)) and ψj(rk) <
rk − rk+1, hence also rk+1 < ψj(rk − rk+1). Put δ = rN . We now proceed by induction on
n. The case n ≤ 1 is trivial. Let n > 1 and assume the result for all lower values of n. The
argument is routine, but a bit tedious to write up in detail; we give only an outline. By
permuting coordinates, it is enough to show that

En − En ∩ (0, δ)n ⊆
⋃

m≤n

⋃

T∈Tn

T (Sm,j × {0}n−m).

By Q-linear independence and symmetry, it is enough to show that En−En∩(0, δ)n∩Sn ⊆
Sn,j (recall 1.2 and 1.5). Let (x, xn−1, xn), (y, yn−1, yn) ∈ En−2 × E × E be such that
(x, xn−1, xn) − (y, yn−1, yn) ∈ (0, δ)n ∩ Sn. Inductively, (x, xn−1) − (y, yn−1) ∈ Sn−1,j, so it
suffices to show that xn−yn < ψj(xn−1−yn−1). Let k be such that rk+1 < xn−1−yn−1 ≤ rk.
It suffices now by choice of δ and monotonicity of ψj to show that xn − yn ≤ rk+1. By
construction of E, we have

E2 ∩ [0, rk]
2 ∩ S2 ⊆ [0, rk+1]

2 ∪ [rk − rk+1, rk] × [0, rk+1].

Since xn−1 − yn−1 ∈ [rk − rk+1, rk], we have xn − yn ∈ [0, rk+1]. ¤
10



Having established Theorem B, we now proceed to some variants and corollaries.
Following [6], we say that a sequence (ak) of positive real numbers is fast for an expansion

R of R, or R-fast, if limk→+∞ f(ak)/ak+1 = 0 for every f : R → R definable in R. For
(rk) as in the proof of Theorem B, the sequence (1/rk) is fast for every exponentially
bounded expansion of R. An examination of the proof of Theorem B yields the following
generalization.

Theorem C. Let (ak) be a sequence of positive real numbers. Then there is a Cantor set

K such that (R, <, +, 1, K) ∅-defines a Borel isomorph of (R, N), and for every o-minimal

expansion R of R, if (ak) is R-fast, then every bounded unary set definable in (R, K)#

either has interior or is R-null.

Under fairly reasonable assumptions, R-fast sequences exist.

2.1. Let R be an expansion of R.

(1) If there is a countable collection F of functions R → R such that every unary

function definable in R is bounded at +∞ by a member of F , then there exist

R-fast sequences.

(2) If R is o-minimal and the language of R is countable, then there exist R-fast

sequences.

Proof. Diagonalization yields (1). For (2), suppose that R is o-minimal. By the proof
of [4, C.4], every unary function definable in R is bounded at +∞ by a unary function
∅-definable in R. Since the language is countable, there are only countably many unary
functions ∅-definable in R. Apply (1). ¤

When combined with Theorem C,

2.2. Let (Rk)k∈N be a sequence of o-minimal expansions of R, each in a countable language.

Then there is a Cantor set K such that (R, K) defines a Borel isomorph of (R, N) and every

bounded unary set definable in any (Rk, K)# either has interior or is Minkowski null.

2.3. Theorem C holds with “discrete”, hence also “countable”, in place of “Cantor”.

Proof. Let E be any Cantor set and M be the set of midpoints of the (bounded) comple-
mentary intervals of E. Note that

M = { r ∈ R : ∃ǫ > 0, E ∩ [r − ǫ, r + ǫ] = {r − ǫ, r + ǫ} }

and E = fr(M). Hence, (R, E) and (R,M) are ∅-interdefinable. ¤

We now answer a question raised in [12, §3.1]. A set A ⊆ Rn has a locally closed

point if it has nonempty interior in its closure. It is easy to see that if every nonempty
unary set definable in R has a locally closed point, then every definable unary set either
has interior or is nowhere dense. We show that the converse fails.

2.4. There exist ∅ 6= A ⊆ R having no locally closed points such that every unary set

definable in (R, A) either has interior or is nowhere dense.

Proof. With K as in Theorem B, let A be the set of left endpoints of the complementary
intervals of K. Note that A ⊆ K and cl(A) = cl(K \ A) = K. ¤
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3. Discussion and open issues

It is easy to construct Cantor sets E that do define N over R: Just encode N by the set
of lengths of the complementary intervals. For example, remove successively from [0, 1] the
middle intervals of length 1/(n!) for n ≥ 2. Then (R, E) defines the set A := {n! : n ∈ N },
hence also the successor function σ : A → A, hence also N = {0} ∪ {σ(a)/a : a ∈ A }.

Though Theorem A answers one question, others arise immediately. Are there closed
E ⊆ R and N ∈ N such that (R, E) defines a non-Borel set, yet every set definable in
(R, E) is Σ1

N? (If so, then N ≥ 2 by Souslin’s Theorem [8, 14.11].) Evidently, one can
generalize this question. For example, allow E to be constructible, or Fσ, or of finite
Borel rank. We can go in the other direction as well. In Theorem A, can we take E to
be closed and countable? Closed and discrete? (cf. 2.3.) Regarding the last, there are
some known restrictions. If E ⊆ (0,∞) is infinite, closed and discrete, then it is the range
of a strictly monotone and unbounded-above sequence (ak) of positive real numbers. If
(log ak+1)/(log ak) → ∞, that is, if (ak) is R-fast, then every set definable in (R, E) is
constructible [6]. On the other hand, if (ak) = (f(k)) for some sufficiently well behaved
f : R → R—in particular, if (R, f) is o-minimal—and (log ak)/k → 0, then (R, E) defines
N. See [13] for a proof of the latter and some information on behavior between these
extremes.

(There are non-Borel E ⊆ R such that every set definable in (R, E) is Σ1
2, but this is

far off the point of this paper, so we give only a hint: By van den Dries [2, Theorem 1],
if E is Σ1

N and a real-closed subfield of R, then every set definable in (R, E) is a boolean
combination of Σ1

N sets.)
Currently, we know of no expansions of R by constructible subsets of R that define non-

constructible sets, yet every definable set is Borel. There are candidates, though, as we
explain in the next two paragraphs.

The proof of 2.4 shows that if E is a Cantor set, then (R, E) defines a unary set that is
not Fσ (hence not constructible). Are there Cantor sets E such that every set definable in
(R, E) is a boolean combination of Fσ sets? Along these lines, the Cantor set K in 1.14
was designed to encode (R, N). But we could omit deliberately encoding N, that is, in the
proof of 1.14, replace X with its projection on the first four coordinates. Define E as in
the proof of Theorem B, and so on. What can be said about the definable sets of (R, K)?
(Of course, by the rest of the proof of Theorem B, every unary definable set either has
interior or is Hausdorff null.) Or, in the definition of X, replace dN with exp. Then (R, K)
Borel-interprets (R, exp). Is N definable? Is exp? And so on. The technology from [5]
appears not to tell us much more about the sets definable in (R, E) than those in (R, E)#,
so it seems that new ideas are needed.

Given α > 0, it is known that every set definable in (R, αN) is constructible [14, §4] (and
more [5, 12]), where αN = {αn : n ∈ N }. The expansion of R by { 2n + 3n : n ∈ N }
defines both 2N and 3N (see [13]). The multiplicative group 2Z · 3Z is dense and co-dense
in (0,∞), hence not constructible, and is definable in (R, 2N, 3N). Aside from this, very
little is known about (R, 2N, 3N), in particular, whether it defines any sets that are not ∆0

3.
There is nothing special here about the generators 2 and 3: the situation is the same for
any α, β > 0 provided that log α and log β are Q-linearly independent.

We close with a few words on history and attribution. Recall that our original goal was
to find a constructible E ⊆ R such that (R, E) defines a non-Borel set but does not define
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N. Every expansion of R that defines N also ∅-defines it, hence also Q, because N is the
unique subset of [0,∞) that is closed under x 7→ x + 1 and whose intersection with [0, 1] is
equal to {0, 1}. Hence, the following a priori weaker version of Theorem A due to Friedman
and Miller suffices.

Theorem A0. There is a closed E ⊆ R such that (R, E) defines a Borel isomorph of (R, N)
and every unary set ∅-definable in (R, E) either has interior or is nowhere dense.

For this, it suffices by 1.11 and 1.14 to find a Cantor set E such that f(En) is nowhere
dense for every f : Rn → R that is ∅-definable in R. The naive approach described in the
introduction appears to stall for functions ∅-definable in R just as it does for parametrically
definable functions. But in any o-minimal structure in a countable language, there are
only countably many ∅-definable functions, and they are all Borel (by cell decomposition).
This prompted Friedman to produce the following result of independent interest, thus
establishing an appropriately modified version of 2.2, hence also Theorem A0.

3.1. For every sequence (fk : Rn(k) → R)k∈N of Borel functions there is a Cantor set E such

that every image fk(E
n(k)) is nowhere dense.

We shall not prove this here as we no longer need it; the interested reader may wish to
attempt verification by amalgamating the proofs of 19.1 and 19.8 from [8]. On the other
hand, attempts by Friedman and Miller to derive Theorem A from Theorem A0 were
unsuccessful, as were attempts to conclude from 3.1 the existence of a Cantor set E such
that f(En) is nowhere dense for every semialgebraic f : Rn → R. Of course, 3.1 is a very
blunt hammer in this setting, as it uses nothing about o-minimality (yet relies heavily on
countability). Convinced that a more singularity-theoretic approach was in order, Miller
approached Kurdyka and Speissegger, who subsequently solved the semialgebraic case,
which Miller then refined to its current form. The crucial idea of using Minkowksi rather
than Hausdorff nullity is due to Kurdyka. Result 1.1 is due to Speissegger, who had known
it for several years but not made prior use of it.

References

[1] R. Dougherty and C. Miller, Definable Boolean combinations of open sets are Boolean com-

binations of open definable sets, Illinois J. Math. 45 (2001), no. 4, 1347–1350. MR 1895461
(2003c:54018)

[2] L. van den Dries, Dense pairs of o-minimal structures, Fund. Math. 157 (1998), no. 1, 61–78.
MR 1623615 (2000a:03058)

[3] , Tame topology and o-minimal structures, London Mathematical Society Lecture Note
Series, vol. 248, Cambridge University Press, Cambridge, 1998. MR 1633348 (99j:03001)

[4] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math.
J. 84 (1996), no. 2, 497–540. MR 1404337 (97i:32008)

[5] H. Friedman and C. Miller, Expansions of o-minimal structures by sparse sets, Fund. Math.
167 (2001), no. 1, 55–64. MR 1816817 (2001m:03075)

[6] , Expansions of o-minimal structures by fast sequences, J. Symbolic Logic 70 (2005),
no. 2, 410–418. MR 2140038 (2006a:03053)

[7] B. Gelbaum and J. Olmsted, Counterexamples in analysis, Dover Publications Inc., Mineola,
NY, 2003. Corrected reprint of the second (1965) edition. MR 1996162

[8] A. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156,
Springer-Verlag, New York, 1995. MR 1321597 (96e:03057)

13



[9] J.-M. Lion, C. Miller, and P. Speissegger, Differential equations over polynomially bounded

o-minimal structures, Proc. Amer. Math. Soc. 131 (2003), no. 1, 175–183 (electronic). MR
1929037 (2003g:03064)

[10] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Ad-
vanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and
rectifiability. MR 1333890 (96h:28006)

[11] C. Miller, Exponentiation is hard to avoid, Proc. Amer. Math. Soc. 122 (1994), no. 1, 257–259.
MR 1195484 (94k:03042)

[12] , Tameness in expansions of the real field, Logic Colloquium ’01, Lect. Notes Log.,
vol. 20, Assoc. Symbol. Logic, Urbana, IL, 2005, pp. 281–316. MR 2143901 (2006j:03049)

[13] , Avoiding the projective hierarchy in expansions of the real field by sequences, Proc.
Amer. Math. Soc. 134 (2006), no. 5, 1483–1493 (electronic). MR 2199196 (2007h:03065)

[14] C. Miller and P. Speissegger, Expansions of the real line by open sets: o-minimality and open

cores, Fund. Math. 162 (1999), no. 3, 193–208. MR 1736360 (2001a:03083)
[15] C. Miller and J. Tyne, Expansions of o-minimal structures by iteration sequences, Notre Dame

J. Formal Logic 47 (2006), no. 1, 93–99 (electronic). MR 2211185 (2006m:03065)
[16] P. Speissegger, The Pfaffian closure of an o-minimal structure, J. Reine Angew. Math. 508

(1999), 189–211.MR1676876 (2000j:14093)

Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Colum-
bus, Ohio 43210, USA

E-mail address: friedman@math.ohio-state.edu
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