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ON THE NON-ANALYTICITY LOCUS OF AN ARC-ANALYTIC

FUNCTION

KRZYSZTOF KURDYKA AND ADAM PARUSIŃSKI

Abstract. A function is called arc-analytic if it is real analytic on each real analytic

arc. In real analytic geometry there are many examples of arc-analytic functions that are

not real analytic. Arc analytic functions appear while studying the arc-symmetric sets

and the blow-analytic equivalence. In this paper we show that the non-analyticity locus

of an arc-analytic function is arc-symmetric. We discuss also the behavior of the non-

analyticity locus under blowings-up. By a result of Bierstone and Milman a big class of

arc-analytic function, namely those that satisfy a polynomial equation with real analytic

coefficients, can be made analytic by a sequence of global blowings-up with smooth

centers. We show that these centers can be chosen, at each stage of the resolution, inside

the non-analyticity locus.

1. Introduction.

Let X be a real analytic manifold. A function f : X → R is called arc-analytic, cf.

[12], if for every real analytic γ : (−1, 1) → X the composition f ◦ γ is analytic. The

arc-analytic functions are closely related to blow-analytic functions of Kuo, cf. [10]. In

particular, we have the following result, conjectured for the functions with semi-algebraic

graphs in [12], and shown in [2].

Theorem 1.1. Let X be a nonsingular real analytic manifold and let f : X → R be an

arc-analytic function on X. Suppose that

G(x, f(x)) = 0,

where

G(x, y) =

p∑

i=0

gi(x)yp−i

is a nonzero polynomial in y with coefficients gi(x) which are analytic functions on X.

Then there is a mapping π : X ′ → X which is a composite of a locally finite sequence of

blowings-up with nonsingular closed centers, such that f ◦ π is analytic.

Let f : X → R be an arc-analytic subanalytic function. In this paper we study the set

S(f) of non-analyticity of f . By definition, S(f) is the complement of the set R(f) of

points p ∈ X, such that f as a germ is real analytic at p. It is known (cf. [17], [11], [1])

that S(f) is closed and subanalytic. It follows from [2] or [16], that dimS(f) ≤ dimX−2.

As we show in Theorem 3.1 below, S(f) is arc-symmetric in the sense of [12]. Theorem

3.1 is shown in section 3.
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We also study how the set of non-analyticity behaves under blowings-up with smooth

centers. This depends on whether the center is entirely contained in S(f) or not. If it

is not then the non-analyticity lifts to the entire fiber, see Proposition 3.10. Note that

Theorem 1.1 can be also derived from [16]. Using the method of [16] and Proposition 3.10

we show the following refinement of Theorem 1.1.

Theorem 1.2. In Theorem 1.1 we may require that the mapping π : X ′ → X, that is a

locally finite composite π = · · · ◦ πk ◦ · · · ◦ π0 of blowings-up with smooth centers, satisfies

additionally:

for every k the center of πk+1 is contained in the locus of non-analyticity of f◦π0◦· · ·◦πk.

1.1. Algebraic case. Theorem 1.1 can be stated in the real algebraic version, see [2].

In this case if we assume that X is a nonsingular real algebraic variety and that the

coefficients gi are regular then we may require that π is a finite composite of blowings-up

with nonsingular algebraic centers.

In the algebraic case we cannot require that the centers of blowings-up are entirely

contained in the non-analyticity loci as Example 1.5 shows.

An analytic function on X is called Nash if its graph is semialgebraic. It is called

blow-Nash if it can be made Nash after composing with a finite sequence of blowing-ups

with smooth nowhere dense regular centers. Thus the algebraic version of Theorem 1.1,

cf. [2], says that the function with semi-algebraic graph is arc-analytic if and only if it

is blow-Nash. Nash morphisms and manifolds form a natural category that contains the

algebraic one, cf. [4]. We note that our refinement of the statement of Theorem 1.1 holds

in the Nash category.

Theorem 1.3. Let X be a Nash manifold and let f : X → R be an arc-analytic function

on X. Suppose that

G(x, f(x)) = 0,

where

G(x, y) =

p∑

i=0

gi(x)yp−i

is a nonzero polynomial in y with coefficients gi(x) which are Nash functions on X. Then

there is a finite composite π = · · · ◦ πk ◦ · · · ◦ π0 of blowings-up of nonsingular Nash

submanifolds, such that for every k the center of πk+1 is contained in the locus of non-

analyticity of f ◦ π0 ◦ · · · ◦ πk, and f ◦ π is Nash.

1.2. Subanalytic case. Less is known for an arc-analytic function with subanalytic graph

if it does not satisfy an equation (1.1). It is known that an arc-analytic subanalytic function

has to be continuous and can be made real analytic by composing with finitely many local

blowings-up with smooth centers, see [2] or [16] (we refer the reader to these papers for a

precise statement). It is not known whether these blowings-up can be made global that is

whether the arc-analytic subanalytic functions coincide with the family of blow-analytic

functions of T.-C.Kuo, see e.g. [10], [6], [7]. It is also not known, whether the centers of

such blowings-up can be chosen in the locus of non-analyticity of the function.

We present below in Example 1.6 a subanalytic arc-analytic function that cannot be

made analytic, even locally, by a blowing-up of a coherent ideal. In particular, it cannot

satisfy an equation of type (1.1).
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1.3. Examples.

Examples 1.4. The function f : R
2 → R , f(x, y) = x3

x2+y2 for (x, y) 6= (0, 0) and f(0, 0) = 0,

is arc-analytic but not differentiable at the origin.

The function g(x, y) =
√
x4 + y4 is arc-analytic but not C2. This example is due to E.

Bierstone and P.D. Milman.

The function h : R
2 → R , h(x, y) = xy5

x4+y6 for (x, y) 6= (0, 0) and h(0, 0) = 0 is

arc-analytic but not lipschitz. This example is due to L. Paunescu.

We generalize the first example as follows. Fix a real analytic Riemannian metric on

X and let Y be a nonsingular real analytic subset of X. Then d2
Y : X → R, the square of

the distance to Y , is a real analytic function on X. Suppose that Y is of codimension ≥ 2

in X and let f : X → R be an analytic function vanishing on Y and not divisible by d2.

Then, f3

d2 vanishes on Y , is arc-analytic and not analytic at the points of Y . Note that f3

d2

composed with the blowing-up of Y is analytic.

Example 1.5. Let g(x, y) = y2 + x(x− 1)(x− 2)(x− 3). Then g−1(0) ⊂ R
2 is irreducible

and has two connected compact components, denoted by X1 and X2. These connected

components that can be separated by h(x, y) = x− 1.5, that is h < 0 on X1 and h > 0 on

X2. For ε > 0 sufficiently small, h2 + εg is strictly positive on R
2. Define

g1(x, y) =
√
h2 + εg + h.

Then g1 is analytic, 0 is a regular value of g1 and g−1
1 (0) = X1. Moreover, g1 is Nash.

Then f : R
3 → R defined by

f(x, y, z) =
z3

z2 + g2
1(x, y)

for (x, y, z) 6= 0 and f(0) = 0, is arc-analytic and S(f) = X1 × {0}. The function f

becomes analytic after blowing-up of S(f).

Example 1.6. Let π0 : R̃
3 → R

3 be the blowing-up of the origin and let E be the exceptional

divisor of π0. Let C ⊂ E be a transcendental (the smallest algebraic subset of E that

contains C is E itself) non-singular analytic curve and let πC : M → R̃
3 be the blowing-up

of C. Let f be an arc-analytic function on R
3 such that the set of non-analyticity of f ◦π0

is C and f ◦ π0 ◦ πC is analytic. Such a function can be constructed as follows. Using the

last remark of Examples 1.4 we may construct an arc-analytic function g : R̃
3 → R such

that S(g) = C. Then we may set f(x, y, z) = (x2 + y2 + z2) g(π−1
0 (x, y, z)).

Such f , as a germ at 0, cannot be made analytic by a single blowing-up of an ideal.

Indeed, suppose contrary to our claim that there exists an ideal I of R{x1, x2, x3} such

that f ◦ πI is analytic, where πI denotes the blowing-up of I. Multiplying I by the

maximal ideal at 0 we may assume that πI factors through π0, i.e. πI = πJ ◦ π0, where

J is a sheaf of coherent ideals centered on an algebraic subset Y of E. We may assume

that dimY ≤ 1. Thus the blowing-up of J , πJ : MJ → R̃3 is an isomorphism over the

complement of Y that contradicts the construction of f .
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2. Arc-meromorphic mappings.

In this section subanalytic mean subanalytic at infinity. Let us recall, [17], [11], that

a subset A of R
n is called subanalytic at infinity if A is subanalytic in some algebraic

compactification of R
n. (Then in fact it is subanalytic in every algebraic compactification

of R
n.) All functions and mappings are supposed to be subanalytic, that is their graphs

are subanalytic at infinity.

Definition 2.1. Let U be an open subanalytic subset of R
n. An everywhere defined

subanalytic mapping f : U → R
m is called arc-meromorphic if for any analytic arc γ :

(−1, 1) → U there exists a discrete set D ⊂ (−1, 1) and ϕ an meromorphic function on

(−1, 1) with poles contained in D and such that f ◦ γ = ϕ on (−1, 1) \ D. Note that it

may happen that f ◦ γ does not coincide with ϕ at some points of D and may be at these

points discontinuous.

Example 2.2. The function f : R
2 → R defined by f(x, y) = xy

x2+y2 for (x, y) 6= (0, 0) can

be extended to an arc-meromorphic function on R
2 by assigning any value at the origin.

Then it becomes discontinuous at (0, 0) even if for every analytic arc γ : (−1, 1) → R
2,

γ(0) = (0, 0), f ◦ γ extends to an analytic function.

Remark 2.3. If f is an arc-meromorphic and continuous function on an open connected

set U ⊂ R
n, then f is arc-analytic.

Remark 2.4. Let f and g be arc-meromorphic functions on an open connected set of U .

Assume that f = g on an open non-empty subset U ⊂ R
n, then f = g except on a nowhere

dense subanalytic subset of U .

Lemma 2.5. Let U be an open bounded subanalytic subset in R
n and f : U → R

m be an

arc-meromorphic mapping. Then there exists Γ ⊂ R
n a closed nowhere dense subanalytic

set, N ∈ N and C > 0 such that

(1) |f(x)| ≤ C dist (x,Γ)−N , x ∈ U \ Γ.

In particular we can take as U the complement of the non-analyticity locus of f .

Proof. It is well-known (cf. e.g. [9], [15]) that there exists a stratification of R
n which

is compatible with U and such that f is analytic on each stratum contained in U . We

take as Γ the union of all strata contained in U of dimension less than n. Let us consider

the function defined as follows: g(x) = |f(x)| if |f(x)| ≤ 1, and g(x) = |f(x)|−1 if

|f(x)| ≥ 1. Then h(x) := dist(x,Γ)g(x) is a subanalytic and continuous function on U

which is compact. Moreover, if dist (x,Γ) = 0 then h(x) = 0. Therefore, by the classical

 Lojasiewicz’s inequality (cf. e.g. [9], [1]) for subanalytic functions, there exist N ∈ N and

c > 0 such that

(2) h(x) ≥ cdist (x,Γ)N+1, x ∈ U.

Thus inequality (1) follows with C = max{1/c,M}, where M = supx∈U dist(x,Γ)N . �

We state now an auxiliary lemma on arc-meromorphic functions in two variables.

Lemma 2.6. Let U be an open subanalytic subset in R
2 and let f : U → R

m be an arc-

meromorphic mapping. Then for any a ∈ U there exists a neighborhood V of a and an

analytic function ϕ : V → R, ϕ 6≡ 0, such that ϕf is arc-analytic.
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Proof. Let Γ be the subanalytic set associated to f by Lemma 2.5. Clearly we may assume

that a ∈ Γ, otherwise f is analytic at a and the statement is trivial. Since dim Γ = 1, by

a result of  Lojasiewicz’s [14] (see also [13]), the set Γ is actually semianalytic. Then there

exists a neighborhood V of a and an analytic function ψ : V ′ → R, ψ 6≡ 0, which vanishes

on V ′∩Γ. Hence for some compact neighborhood V ⊂ V ′ of a there exists c > 0 such that

|ψ(x)| ≤ cdist (x,Γ), x ∈ V.

(This is a consequence of the main value theorem). Put ϕ = ψN+1, then by Lemma 2.5

the function ϕf is continuous on V . Clearly ϕf is arc-meromorphic, so by Remark 2.3

this function is arc-analytic. �

Proposition 2.7. Let f : U → R be an arc-meromorphic function, where U is an open

subset in R
n. Assume that f is analytic with respect to the variable x1. Then the function

∂f
∂x1

: U → R is again arc-meromorphic.

Proof. First observe that by [11] the function ∂f
∂x1

is (globally) subanalytic. To prove that
∂f
∂x1

is arc-meromorphic let us fix an analytic arc γ : (−1, 1) → U . We define an arc-

meromorphic function g : V → R by g(s, t) = f(γ(t) + se1), where e1 = (1, 0, . . . 0) and V

is an open neighborhood of {0} × (−1, 1) in R
2. Clearly

∂f

∂x1
(γ(t)) =

∂g

∂s
(0, t).

By Lemma 2.6 there exist a neighborhood V of (0, 0) and an analytic function ϕ : V → R

such that h := ϕg is arc-analytic on V . Since dimS(h) ≤ 0, for any t 6= 0 sufficiently small

h is analytic at (0, t), but of course also ϕ is analytic at (0, t). Since g(s) is analytic with

respect to s it follows that g = h/ϕ is actually analytic at (0, t) for any t 6= 0 sufficiently

small. By [2] there exists a map π : M → R
2, which is a finite composition of blowing-ups

of points, such that h ◦ π is analytic. Consider the arc η(t) := (0, t) and let η̃(t) ∈ M be

the unique analytic arc such that π ◦ η̃ = η. The chain rule gives

(3) dη̃(t)h ◦ π = (dη(t)h) ◦ (dη̃(t)π).

Note that dη̃(t)π is invertible for t 6= 0, moreover the map t 7→ (dη̃(t)π)−1 is meromorphic.

It follows that t 7→ dη(t)h is meromorphic. In particular t 7→ ∂h
∂s

(0, t) is meromorphic. We

have
∂h

∂s
(0, t) = ϕ

∂g

∂s
(0, t) + g

∂ϕ

∂s
(0, t).

Since ϕ(0, t) 6= 0 for t 6= 0, the map t 7→ ∂g
∂s

(0, t) is meromorphic and Proposition 2.7

follows. �

Remark 2.8. A repeated application of Proposition 2.7 shows that for every k ∈ N,

∂kf

∂xk
1

: U → R

is arc-meromorphic. Moreover, there exists a subanalytic stratification S of U such that

for every stratum S ∈ S and every x ∈ S there is ε > 0 and a neighborhood V of x in S

such that f(x+ se1) is an analytic function of (x, s) ∈ V × (−ε, ε). In particular, for every

k ∈ N, ∂kf/∂xk
1 : U → R is analytic on the strata of S.
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3. The non-analyticity locus of an arc-analytic function is arc-symmetric.

Let U ⊂ R
n be open and let f : U → R be arc-analytic with subanalytic graph. We

denote by S(f) the non-analyticity set of f and by R(f) its complement in U . Then S(f)

is closed in U and by [17] (see also [11], [2]) it is a subanalytic set. It follows from [2] or

[16] that dimS(f) ≤ n− 2.

Theorem 3.1. Let γ : (−ε, ε) → U be an analytic arc such that γ(t) ∈ R(f) for t < 0.

Then γ(t) ∈ R(f) for t > 0 and small. In other words, S(f) is arc-symmetric subanalytic

in the sense of [12].

For the proof we need some basic properties of Gateaux differentials. For each k ∈ N

we consider

(4) hk(x, v) =
1

k!
∂k

v f(x) =
1

k!

dk

dtk
f(x+ tv)|t=0.

Proposition 3.2. Let f : U → R be an arc-analytic function. Then for any k ∈ N the

function hk(x, v) : U × R
n → R is arc-meromorphic.

Proof. Let (x(t), v(t)) be an analytic arc in U × R
n. Define an arc-analytic function

g(s, t) = f(x(t) + sv(t)). Then

hk(x(t), v(t) =
1

k!

∂k

∂sk
g(t, s)|s=0

that is meromorphic by Proposition 2.7. �

For x ∈ U , k ∈ N we denote

hx,k(v) = hk(x, v) =
1

k!
∂k

v f(x)

Note that hx,k is k-homogeneous function. If f is analytic at x, then hx,k is polynomial.

We have also the inverse which is Bochnak-Siciak Theorem, see [5], which states that if hx,k

is polynomial for each k ∈ N, then f is analytic at x. Traditionally if hx,k is polynomial

then it is called the Gateaux differential of f at x of order k.

We call hx,k generically polynomial if it is equal to a polynomial except on a nowhere

dense subanalytic (and homogenous) subset of R
n. Note that, by Remark 2.4, hx,k is

generically polynomial if it coincides with a polynomial on an open nonempty set.

Proposition 3.3. Let f : U → R be an arc-analytic function, where U is an open subset in

R
n. Let γ : (−ε, ε) → U be an analytic arc and k ∈ N. If hγ(t),k is generically polynomial

for t ∈ (−ε, 0), then there exists a finite set Fk ⊂ (0, ε) such that hγ(t),k is generically

polynomial for each t ∈ (0, ε) \ Fk.

Proof. Let Rk[x1, . . . , xn] denote the space of homogenous polynomials of degree k and let

dk =
(
n+k−1

n

)
denote its dimension. We need the classical multivariate interpolation.

Lemma 3.4. There exists an algebraic nowhere dense subset ∆ ⊂ (Rn)dk such that for

V = (v1, . . . , vdk) ∈ (Rn)dk \ ∆ the map ΨV : Rk[x1, . . . , xn] → R
d(k) given by

ΨV (P ) = (P (v1), . . . , P (vdk)).

is a linear isomorphism. �
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Fix V = (v1, . . . , vdk) ∈ (Rn)dk\∆ generic and denote ΦV = Ψ−1
V : R

d(k) → Rk[x1, . . . , xn].

We define an arc-meromorphic map Pk : (−ε, ε) → Rk[x1, . . . , xn] by

Pk(t) := ΦV (hk(γ(t), v1), . . . , hk(γ(t), vd(k))).

The map pk; (−ε, ε) × R
n → R, where pk(t, v) = Pk(t)(v) is arc-meromorphic. If V is

sufficiently generic then, for t ∈ (−ε, 0) \ {finite set}, pk(t) coincides with hγ(t),k. Since

they both are arc-meromorphic, by Remark 2.4 they coincide on (−ε, ε) ×R
n \Zk, where

Zk is a closed subanalytic set with dimZk ≤ n. Hence there exists a finite set Fk ⊂ (0, ε)

such that for t ∈ (0, ε) \ Fk the intersection Zk ∩ ({t} × R
n) is of dimension less than n.

Thus, for each t ∈ (0, ε) \Fk the function hγ(t),k is generically polynomial, as claimed. �

The following proposition is a version of the mentioned above Bochnak-Siciak Theorem,

[5].

Proposition 3.5. If for every k there is a nonempty open subset Vk ⊂ R
n and a ho-

mogeneous polynomial Pk of degree k such that hx,k ≡ Pk on Vk, then f is analytic at

x.

Proof. We first show that
∑

k Pk(v) is convergent in a neighborhood of 0 ∈ R
n.

We may assume that x is the origin. Let π0 be the blowing up of the origin, π0(y, s) =

(sy, s), s ∈ R, y ∈ R
n−1, in a chart. The function f̃(y, s) := f(π(y, s)), defined in a

neighborhood U ′ of the exceptional divisor E : s = 0, is arc-analytic. The set of non-

analyticity of f̃ , denoted by S̃, is closed subanalytic and of codimension at least 2. For

y /∈ S̃, f̃ is analytic in a neighborhood of (0, y) and, moreover, by analytic continuation,

(5) hx,k(v) = Pk(v) for v = t(y, 1), t ∈ R, y /∈ S̃.

Fix A′ an open non-empty subset of E such that the closure of A′ does not intersect S̃.

Let A ⊂ R
n be the cone over A′. Then, by (5),

∑
k Pk(v) is convergent in any compact

subset of A. The convergence in a neighborhood of 0 in R
n follows from the following

lemma.

Lemma 3.6. Let V ⊂ R
n be starlike with respect to the origin, a ∈ V , and suppose that

|Pk(v)| ≤ L on V ′ = a+ V.

Then

|Pk(v)| ≤ L on
1

2e
V.

Proof. Since Pk is homogeneous of degree k

(6) Pk(v) =
1

k!

s=k∑

s=0

(−1)k−s

(
k

s

)
Pk(a+ sv).

Indeed, (6) can be shown recursively on k using Euler’s formula as follows. First note (6)

holds for a = 0 and the derivative of the RHS of (6) with respect to a equals

(7) 0 =
1

k!

s=k∑

s=0

(−1)k−s

(
k

s

)
Q(a+ sv),
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where Q(x) =
∑n

i−1 ai
∂Pk

∂xi
(x) is a homogeneous polynomial of degree k − 1. By the

inductive assumption

s=k∑

s=0

(−1)k−s

(
k

s

)
Q(a+ sv) =

s=k−1∑

s=0

(−1)k−1−s

(
k − 1

s

)
Q(a+ sv) +

+

s=k∑

s=1

(−1)k−s

(
k − 1

s− 1

)
Q(a+ sv) = −Q(v) +Q(v) = 0

This shows (6). Thus, if v ∈ 1
k
V , |Pk(v)| ≤ 1

k!L
∑k

s=0

(
k
s

)
= L2k

k! , that means that for

v ∈ 1
2e
V

|Pk(v)| ≤ L
(2k)k

k!

1

(2e)k
≤ L.

This ends the proof of lemma 3.6. �

Then
∑

k Pk(v) is an analytic function in a neighborhood of the origin that coincides

with f on a set with non-empty interior. Hence f(v) =
∑

k Pk(v) in a neighborhood of

the origin. This shows proposition 3.5. �

Proof of theorem 3.1. We may assume that γ is injective otherwise the image of t > 0

equals the image of t < 0 and the statement is obvious. Let F :=
⋃
Fk, where Fk are

finite subsets of (0, ε) given by Proposition 3.3. Clearly the complement of F is dense in

(0, ε), so by Proposition 3.5 our function f is analytic at γ(t) for t ∈ G, where G is an

open dense subset of (0, ε). Hence theorem 3.1 follows. �

Consider the subanalytic sets

R̃k0
(f) = {x ∈ U ;∀k ≤ k0, hx,k is generically polynomial },

Rk0
(f) = {x ∈ U ;∀k ≤ k0, hx,k is polynomial }.

Clearly R̃k+1(f) ⊂ R̃k(f) and Rk+1(f) ⊂ Rk(f). We recall from [11] the following result

Proposition 3.7. [ [11], Proposition 4.4] Let f : U → R be a subanalytic (not necessarily

arc-analytic) function on an open bounded U ⊂ R
n. Then for any compact K ⊂ U there

is k ∈ N such that R(f) ∩K = Rk(f) ∩K.

Proposition 3.8. For any compact K ⊂ U there is k ∈ N such that R(f)∩K = R̃k(f)∩K.

Proof. By Remark 2.8 there exists a stratification S of U ×Sn−1 such that for every k, hk

is analytic on the strata. Refining the stratification, if necessary, we may suppose that for

every stratum S ⊂ U × Sn−1 its projection to U has all fibers of the same dimension. In

the proof we use only these strata for which all the fibers of projection to U are of maximal

dimension n − 1. We denote the collection of them by Sn and their union as Z. Now it

is easy to adapt the proof of Lemma 6.1 of [11] (based on multivariate interpolation) and

show the following lemma.

Lemma 3.9. There are analytic subanalytic functions

wi : U × Sn−1 → R, i ∈ N,

analytic on each stratum of S such that hx,i is generically polynomial if and only if wi ≡ 0

generically on {x} × Sn−1. �
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Now Proposition 3.8 follows from Lemma 2.5 of [11] that shows that for every stratum

there exist k such that
∞⋂

i=1

{wi = 0} =
k⋂

i=1

{wi = 0}.

�

We complete this section with two results, one that controls the change of non-analyticity

locus by blowings-up. This result will be crucial in the next section. The last result of

this section, Proposition 3.11, though not used in this paper, indicates a possible analogy

between our approach and the theory of complex analytic functions.

Proposition 3.10. Let T = {xk = xk+1 = · · · = xn = 0} and let πT be the blowing-up of

T . Suppose that the origin is in the closure of R(f)∩T and that f ◦πT is analytic at least

at one point of π−1
T (0) (hence on a neighborhood of this point). Then f is analytic at 0.

Proof. Let Π : R
n×R×R

n → R
n be given by Π(x, t, v) = x+tv and let ΠT : T×R×R

n →

R
n be the restriction of Π. First we show that if f ◦ ΠT is analytic at some points of

Π−1
T (0) ∩ {t = 0} and 0 is in the closure of R(f) ∩ T then f is analytic at 0. Indeed,

suppose that A′ ⊂ R
n has non-empty interior and suppose that f ◦ ΠT is analytic in a

neighborhood {0} × {0} × A′. Let hk(x, v), x ∈ T, v ∈ R
n, be defined by (4). Then hk is

arc-meromorphic and analytic on A = U ′ × A′, where U ′ is a small neighborhood of 0 in

T . For each k, we define by Lemma 3.4,

(8) Pk(x, v) = Ψ−1
V (hk(x, v1), . . . , hk(x, vd(k)))(v),

where v1, . . . , vdk ∈ A′ are generic. Each Pk is analytic on A and equals hk for x ∈ R(f)∩T .

Therefore hk(0, v) = Pk(0, v) for v ∈ A′ and the claim follows from proposition 3.5.

Thus it remains to show that f ◦ΠT is analytic at some points of Π−1
T (0)∩{t = 0}. For

this we factor ΠT restricted to {vn 6= 0} through πT and use the assumption on πT . Write

πT in an affine chart πT (x̃, y, s) = (x̃, sy, s), where x̃ = (x̃1, . . . , x̃k−1), y = (yk, . . . , yn−1)

and s ∈ R. Then on these charts ΠT = πT ◦ ϕ, where

(x̃, y, s) = ϕ(x, t, v) = (x+ tv′,
1

vn
v′′, tvn),

where v′ = (v1, . . . , vk−1), v′′ = (vk, . . . , vn−1). Restricted to t = 0, ϕ is a surjective

projection (x, v) → (x, 1
vn
v′′) onto s = 0. Hence R(f ◦ΠT )∩Π−1

T (0)∩{t = 0} ⊃ ϕ−1(R(f ◦

πT ) ∩ π−1(0)) is non-empty. �

Proposition 3.11. Let x = (x1, x
′) ∈ R × R

n−1 and suppose that for every x1 > 0 and

small, f(x1, x
′) is analytic at (x1, 0) as a function of x′. Moreover, suppose that for x1 > 0

and small we have a uniform bound

|hk((x1, 0), v′)| ≤ ck, for ‖v′‖ ≤ ε, k ∈ N,

where v′ = (v2, . . . , vn). Then f is analytic at the origin.

Proof. The function hk((x1, 0), v′) is arc-meromorphic as a function of x1, v
′. Moreover,

since continuous arc-meromorphic functions of one variable are analytic, using polynomial

interpolation lemma, Lemma 3.4, we may show that each hk((x1, 0), v′) extends to an

analytic function Ψ(x1, v
′) defined in a neighborhood of (0, 0), such that for each x, v′ →

Ψ(x1, v
′) is a homogeneous polynomial in v′. Moreover, for x1 > 0 and ‖x′‖ < ε/c

f(x1, x
′) =

∑

k

hk((x1, 0), x′)
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and the series on the right-hand side is convergent.

Fix any k ∈ N and ‖v′‖ < ε/c. Then for v = (1, v′), 0 < t < 1,

f(tv) =
∞∑

j=0

hj((t, 0), tv′) =
∞∑

j=0

tjhj((t, 0), v′) =
k∑

j=0

tjhj((t, 0), v′) + ϕ(t, v′),

where ϕ is subanalytic and O(tk+1). Therefore for such v

(9) Hk(0, v) :=
1

k!

dk

dtk
f(tv)|t=0 =

1

k!

dk

dtk

k∑

j=0

hj((t, 0), tv′)|t=0.

Note that the right-hand side, and hence Hk(0, v) as well, is a polynomial in v. Indeed, this

follows from the fact that x→
∑k

j=0 hj((x1, 0), x′) is an analytic function of x and Hk(0, v)

coincides with its Gateaux differential. Thus proposition 3.11 follows from proposition

3.5. �

4. Proof of Theorem 1.2.

We may suppose that U is connected. We suppose also that the coefficients g0 and gp of

G and the discriminant ∆(x) of G are not identically equal to zero. By the resolution of

singularities [8], [3], [18], there is a locally finite sequence of blowings-up π : U ′ → U with

nonsingular centers such that (g0gp∆) ◦ π is normal crossings. Thus Theorem 1.1 follows

from the following.

Proposition 4.1. Let an arc-analytic function f(x) satisfy the equation (1.1) with analytic

coefficients gi. If g0, gp and ∆(x) are simultaneously normal crossings (and hence not

identically equal to zero) then f is real analytic.

Proposition 4.1 was proven in [16] under an additional assumption g0 ≡ 1, see the

proof of Theorem 3.1 of [16]. It is easy to reduce the proof to this case by replacing f

by gpf . Then, an argument of [16] shows that locally f can be expand as a fractional

power series. Finally, an arc-analytic fractional power series is analytic, see the proof of

Theorem 3.1 of [16]. If the discriminant of G vanishes identically then we replace it by

the first non-vanishing higher order discriminant.

To show Theorem 1.2 we follow, for the product h(x) = g0(x)gp(x)∆(x), the monomi-

alisation procedure of W lodarczyk or Bierstone-Milman. In this procedure the centre of

blowing-up is defined as a the locus of points where a local invariant is maximal. Thus sup-

pose that we have the following data described in a local system of coordinates x1, · · · , xn

at the origin. The function h ◦ π, where π = πk ◦ · · · ◦ π0, is of the form h ◦ π = xAhk,

where hk is the controlled transform by the preceding blowings-up. Let m = ord x hk. We

may assume that H = {xn = 0} is a hypersurface of maximal contact. Then, using the

notation x = (x′, xn),

hk(x) = xm
k +

m−2∑

j=0

cj(x
′)xj

k,

and mult 0 ci ≥ m− i.

Let C be the next centre given by the procedure and denote by πC the blowing-up of C.

We show that it cannot happen that 0 ∈ S(h◦π) and 0 ∈ C \ S(f ◦ π). Suppose, contrary

to our claim, that this is the case. Then, by Proposition 3.10, the fibre over the origin

of the blowing-up πC = πk+1 of C is contained in S(f ◦ π ◦ πC). Since C is contained in
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the equimultiplicity locus of hk, at the generic point π−1
C (0) the strict transform of hk is

nonzero, and hence h ◦ π ◦ πC is normal crossing. This contradicts Proposition 4.1.

Let C ′ denote the connected component of C containing 0. Then either C ′ ⊂ S(h ◦ π)

or C ′ ∩ S(h ◦ π) = ∅. Thus Theorem 1.2 proven. �

References

[1] E. Bierstone and P. D. Milman, Semianalytic and Subanalytic sets, Publ. I.H.E.S., 67 (1988), 5-42.

[2] E. Bierstone, P. D. Milman, Arc-analytic functions, Invent. math. 101 (1990), 411–424.

[3] E. Bierstone, P. D. Milman, Canonical desingularization in characteristic zero by blowing up the

maximum strata of a local invariant, Invent. Math. 128 (1997), 207-302.

[4] J. Bochnak, M. Coste, M.-F. Roy, Géométrie algébrique réelle, E.M.G vol. 36 (1998) Springer.
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tifique, 73 376 Le Bourget–du–Lac Cedex, France,

E-mail address: kurdyka@univ-savoie.fr

Laboratoire Angevin de Recherche en Mathématiques, UMR 6093 du CNRS, Université
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