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A function is called arc-analytic if it is real analytic on each real analytic arc. In real analytic geometry there are many examples of arc-analytic functions that are not real analytic. Arc analytic functions appear while studying the arc-symmetric sets and the blow-analytic equivalence. In this paper we show that the non-analyticity locus of an arc-analytic function is arc-symmetric. We discuss also the behavior of the nonanalyticity locus under blowings-up. By a result of Bierstone and Milman a big class of arc-analytic function, namely those that satisfy a polynomial equation with real analytic coefficients, can be made analytic by a sequence of global blowings-up with smooth centers. We show that these centers can be chosen, at each stage of the resolution, inside the non-analyticity locus.

Introduction.

Let X be a real analytic manifold. A function f : X → R is called arc-analytic, cf. [START_REF] Kurdyka | Ensembles semi-algébriques symétriques par arcs[END_REF], if for every real analytic γ : (-1, 1) → X the composition f • γ is analytic. The arc-analytic functions are closely related to blow-analytic functions of Kuo, cf. [START_REF] Kuo | On classification of real singularities[END_REF]. In particular, we have the following result, conjectured for the functions with semi-algebraic graphs in [START_REF] Kurdyka | Ensembles semi-algébriques symétriques par arcs[END_REF], and shown in [START_REF] Bierstone | Arc-analytic functions[END_REF].

Theorem 1.1. Let X be a nonsingular real analytic manifold and let f : X → R be an arc-analytic function on X. Suppose that G(x, f (x)) = 0, where G(x, y) = p i=0 g i (x)y p-i is a nonzero polynomial in y with coefficients g i (x) which are analytic functions on X. Then there is a mapping π : X ′ → X which is a composite of a locally finite sequence of blowings-up with nonsingular closed centers, such that f • π is analytic.

Let f : X → R be an arc-analytic subanalytic function. In this paper we study the set S(f ) of non-analyticity of f . By definition, S(f ) is the complement of the set R(f ) of points p ∈ X, such that f as a germ is real analytic at p. It is known (cf. [START_REF] Tamm | Subanalytic sets in the calculus of variation[END_REF], [START_REF] Kurdyka | Points réguliers d'un ensemble sous-analytique[END_REF], [START_REF] Bierstone | Semianalytic and Subanalytic sets[END_REF]) that S(f ) is closed and subanalytic. It follows from [START_REF] Bierstone | Arc-analytic functions[END_REF] or [START_REF] Parusiński | Subanalytic functions[END_REF], that dim S(f ) ≤ dim X -2. As we show in Theorem 3.1 below, S(f ) is arc-symmetric in the sense of [START_REF] Kurdyka | Ensembles semi-algébriques symétriques par arcs[END_REF]. Theorem 3.1 is shown in section 3.

We also study how the set of non-analyticity behaves under blowings-up with smooth centers. This depends on whether the center is entirely contained in S(f ) or not. If it is not then the non-analyticity lifts to the entire fiber, see Proposition 3.10. Note that Theorem 1.1 can be also derived from [START_REF] Parusiński | Subanalytic functions[END_REF]. Using the method of [START_REF] Parusiński | Subanalytic functions[END_REF] and Proposition 3.10 we show the following refinement of Theorem 1.1.

Theorem 1.2. In Theorem 1.1 we may require that the mapping π : X ′ → X, that is a locally finite composite π = • • • • π k • • • • • π 0 of blowings-up with smooth centers, satisfies additionally:

for every k the center of π k+1 is contained in the locus of non-analyticity of f

•π 0 •• • ••π k .
1.1. Algebraic case. Theorem 1.1 can be stated in the real algebraic version, see [START_REF] Bierstone | Arc-analytic functions[END_REF]. In this case if we assume that X is a nonsingular real algebraic variety and that the coefficients g i are regular then we may require that π is a finite composite of blowings-up with nonsingular algebraic centers.

In the algebraic case we cannot require that the centers of blowings-up are entirely contained in the non-analyticity loci as Example 1.5 shows.

An analytic function on X is called Nash if its graph is semialgebraic. It is called blow-Nash if it can be made Nash after composing with a finite sequence of blowing-ups with smooth nowhere dense regular centers. Thus the algebraic version of Theorem 1.1, cf. [START_REF] Bierstone | Arc-analytic functions[END_REF], says that the function with semi-algebraic graph is arc-analytic if and only if it is blow-Nash. Nash morphisms and manifolds form a natural category that contains the algebraic one, cf. [START_REF] Bochnak | Géométrie algébrique réelle[END_REF]. We note that our refinement of the statement of Theorem 1.1 holds in the Nash category.

Theorem 1.3. Let X be a Nash manifold and let f : X → R be an arc-analytic function on X. Suppose that G(x, f (x)) = 0, where

G(x, y) = p i=0 g i (x)y p-i
is a nonzero polynomial in y with coefficients g i (x) which are Nash functions on X. Then there is a finite composite

π = • • • • π k • • • • • π 0 of
blowings-up of nonsingular Nash submanifolds, such that for every k the center of π k+1 is contained in the locus of non-

analyticity of f • π 0 • • • • • π k , and f • π is Nash. 1.2. Subanalytic case.
Less is known for an arc-analytic function with subanalytic graph if it does not satisfy an equation (1.1). It is known that an arc-analytic subanalytic function has to be continuous and can be made real analytic by composing with finitely many local blowings-up with smooth centers, see [START_REF] Bierstone | Arc-analytic functions[END_REF] or [START_REF] Parusiński | Subanalytic functions[END_REF] (we refer the reader to these papers for a precise statement). It is not known whether these blowings-up can be made global that is whether the arc-analytic subanalytic functions coincide with the family of blow-analytic functions of T.-C.Kuo, see e.g. [START_REF] Kuo | On classification of real singularities[END_REF], [START_REF] Fukui | Blow-analytic equisingularities, properties, problems and progress, Real Analytic and Algebraic Singularities[END_REF], [START_REF] Fukui | Arc Spaces and Additive Invariaants in Real Algebraic and Analytic Geometry[END_REF]. It is also not known, whether the centers of such blowings-up can be chosen in the locus of non-analyticity of the function. We present below in Example 1.6 a subanalytic arc-analytic function that cannot be made analytic, even locally, by a blowing-up of a coherent ideal. In particular, it cannot satisfy an equation of type (1.1).

Examples.

Examples 1.4. The function f : R 2 → R , f (x, y) = x 3

x 2 +y 2 for (x, y) = (0, 0) and f (0, 0) = 0, is arc-analytic but not differentiable at the origin.

The function g(x, y) = x 4 + y 4 is arc-analytic but not C 2 . This example is due to E. Bierstone and P.D. Milman.

The function h : R 2 → R , h(x, y) = xy 5 x 4 +y 6 for (x, y) = (0, 0) and h(0, 0) = 0 is arc-analytic but not lipschitz. This example is due to L. Paunescu. We generalize the first example as follows. Fix a real analytic Riemannian metric on X and let Y be a nonsingular real analytic subset of X. Then d 2 Y : X → R, the square of the distance to Y , is a real analytic function on X. Suppose that Y is of codimension ≥ 2 in X and let f : X → R be an analytic function vanishing on Y and not divisible by d 2 . Then, f 3 d 2 vanishes on Y , is arc-analytic and not analytic at the points of Y . Note that f 3 d 2

composed with the blowing-up of Y is analytic.

Example 1.5. Let g(x, y) = y 2 + x(x -1)(x -2)(x -3). Then g -1 (0) ⊂ R 2 is irreducible and has two connected compact components, denoted by X 1 and X 2 . These connected components that can be separated by h(x, y) = x -1.5, that is h < 0 on X 1 and h > 0 on X 2 . For ε > 0 sufficiently small, h 2 + εg is strictly positive on R 2 . Define

g 1 (x, y) = h 2 + εg + h.
Then g 1 is analytic, 0 is a regular value of g 1 and g -1

1 (0) = X 1 . Moreover, g 1 is Nash. Then f : R 3 → R defined by f (x, y, z) = z 3 z 2 + g 2 1 (
x, y) for (x, y, z) = 0 and f (0) = 0, is arc-analytic and S(f ) = X 1 × {0}. The function f becomes analytic after blowing-up of S(f ).

Example 1.6. Let π 0 : R 3 → R 3 be the blowing-up of the origin and let E be the exceptional divisor of π 0 . Let C ⊂ E be a transcendental (the smallest algebraic subset of E that contains C is E itself) non-singular analytic curve and let π C : M → R 3 be the blowing-up of C. Let f be an arc-analytic function on R 3 such that the set of non-analyticity of f • π 0 is C and f • π 0 • π C is analytic. Such a function can be constructed as follows. Using the last remark of Examples 1.4 we may construct an arc-analytic function g : R 3 → R such that S(g) = C. Then we may set f (x, y, z) = (x 2 + y 2 + z 2 ) g(π -1 0 (x, y, z)). Such f , as a germ at 0, cannot be made analytic by a single blowing-up of an ideal. Indeed, suppose contrary to our claim that there exists an ideal I of R{x 1 , x 2 , x 3 } such that f • π I is analytic, where π I denotes the blowing-up of I. Multiplying I by the maximal ideal at 0 we may assume that π I factors through π 0 , i.e. π I = π J • π 0 , where J is a sheaf of coherent ideals centered on an algebraic subset Y of E. We may assume that dim Y ≤ 1. Thus the blowing-up of J , π J : M J → R 3 is an isomorphism over the complement of Y that contradicts the construction of f .

Arc-meromorphic mappings.

In this section subanalytic mean subanalytic at infinity. Let us recall, [START_REF] Tamm | Subanalytic sets in the calculus of variation[END_REF], [START_REF] Kurdyka | Points réguliers d'un ensemble sous-analytique[END_REF], that a subset A of R n is called subanalytic at infinity if A is subanalytic in some algebraic compactification of R n . (Then in fact it is subanalytic in every algebraic compactification of R n .) All functions and mappings are supposed to be subanalytic, that is their graphs are subanalytic at infinity. Definition 2.1. Let U be an open subanalytic subset of R n . An everywhere defined subanalytic mapping f : U → R m is called arc-meromorphic if for any analytic arc γ : (-1, 1) → U there exists a discrete set D ⊂ (-1, 1) and ϕ an meromorphic function on (-1, 1) with poles contained in D and such that f • γ = ϕ on (-1, 1) \ D. Note that it may happen that f • γ does not coincide with ϕ at some points of D and may be at these points discontinuous.

Example 2.2. The function f : R 2 → R defined by f (x, y) = xy x 2 +y 2 for (x, y) = (0, 0) can be extended to an arc-meromorphic function on R 2 by assigning any value at the origin. Then it becomes discontinuous at (0, 0) even if for every analytic arc γ : (-1, 1) → R 2 , γ(0) = (0, 0), f • γ extends to an analytic function. 

(1) |f (x)| ≤ C dist (x, Γ) -N , x ∈ U \ Γ.
In particular we can take as U the complement of the non-analyticity locus of f .

Proof. It is well-known (cf. e.g. [START_REF] Hironaka | Subanalytic sets, in Number Theory, Algebraic Geometry and Commuta-tive Algebra[END_REF], [START_REF] Lojasiewicz | Sur la géométrie semi-et sous-analytique[END_REF]) that there exists a stratification of R n which is compatible with U and such that f is analytic on each stratum contained in U . We take as Γ the union of all strata contained in U of dimension less than n. Let us consider the function defined as follows:

g(x) = |f (x)| if |f (x)| ≤ 1, and g(x) = |f (x)| -1 if |f (x)| ≥ 1. Then h(x) := dist(x, Γ)g(x)
is a subanalytic and continuous function on U which is compact. Moreover, if dist (x, Γ) = 0 then h(x) = 0. Therefore, by the classical Lojasiewicz's inequality (cf. e.g. [START_REF] Hironaka | Subanalytic sets, in Number Theory, Algebraic Geometry and Commuta-tive Algebra[END_REF], [START_REF] Bierstone | Semianalytic and Subanalytic sets[END_REF]) for subanalytic functions, there exist N ∈ N and c > 0 such that

(2) h(x) ≥ c dist (x, Γ) N +1 , x ∈ U.
Thus inequality (1) follows with C = max{1/c, M }, where M = sup x∈U dist(x, Γ) N .

We state now an auxiliary lemma on arc-meromorphic functions in two variables.

Lemma 2.6. Let U be an open subanalytic subset in R 2 and let f : U → R m be an arcmeromorphic mapping. Then for any a ∈ U there exists a neighborhood V of a and an analytic function ϕ : V → R, ϕ ≡ 0, such that ϕf is arc-analytic.

Proof. Let Γ be the subanalytic set associated to f by Lemma 2.5. Clearly we may assume that a ∈ Γ, otherwise f is analytic at a and the statement is trivial. Since dim Γ = 1, by a result of Lojasiewicz's [START_REF] Lojasiewicz | Ensembles semi-analytiques[END_REF] (see also [START_REF] Kurdyka | Zurro Stratifications distinguées comme un util en géométrie semianalytique[END_REF]), the set Γ is actually semianalytic. Then there exists a neighborhood V of a and an analytic function ψ : V ′ → R, ψ ≡ 0, which vanishes on V ′ ∩ Γ. Hence for some compact neighborhood V ⊂ V ′ of a there exists c > 0 such that

|ψ(x)| ≤ c dist (x, Γ), x ∈ V.
(This is a consequence of the main value theorem). Put ϕ = ψ N +1 , then by Lemma 2.5 the function ϕf is continuous on V . Clearly ϕf is arc-meromorphic, so by Remark 2.3 this function is arc-analytic.

Proposition 2.7. Let f : U → R be an arc-meromorphic function, where U is an open subset in R n . Assume that f is analytic with respect to the variable x 1 . Then the function

∂f ∂x 1 : U → R is again arc-meromorphic.
Proof. First observe that by [START_REF] Kurdyka | Points réguliers d'un ensemble sous-analytique[END_REF] the function ∂f ∂x 1 is (globally) subanalytic. To prove that ∂f ∂x 1 is arc-meromorphic let us fix an analytic arc γ : (-1, 1) → U . We define an arcmeromorphic function g :

V → R by g(s, t) = f (γ(t) + se 1 )
, where e 1 = (1, 0, . . . 0) and

V is an open neighborhood of {0} × (-1, 1) in R 2 . Clearly ∂f ∂x 1 (γ(t)) = ∂g ∂s (0, t).
By Lemma 2.6 there exist a neighborhood V of (0, 0) and an analytic function ϕ : V → R such that h := ϕg is arc-analytic on V . Since dim S(h) ≤ 0, for any t = 0 sufficiently small h is analytic at (0, t), but of course also ϕ is analytic at (0, t). Since g(s) is analytic with respect to s it follows that g = h/ϕ is actually analytic at (0, t) for any t = 0 sufficiently small. By [START_REF] Bierstone | Arc-analytic functions[END_REF] there exists a map π : M → R 2 , which is a finite composition of blowing-ups of points, such that h • π is analytic. Consider the arc η(t) := (0, t) and let η(t) ∈ M be the unique analytic arc such that π • η = η. The chain rule gives

(3) d η(t) h • π = (d η(t) h) • (d η(t) π).
Note that d η(t) π is invertible for t = 0, moreover the map t → (d η(t) π) -1 is meromorphic. It follows that t → d η(t) h is meromorphic. In particular t → ∂h ∂s (0, t) is meromorphic. We have ∂h ∂s (0, t) = ϕ ∂g ∂s (0, t) + g ∂ϕ ∂s (0, t).

Since ϕ(0, t) = 0 for t = 0, the map t → ∂g ∂s (0, t) is meromorphic and Proposition 2.7 follows.

Remark 2.8. A repeated application of Proposition 2.7 shows that for every k ∈ N,

∂ k f ∂x k 1 : U → R
is arc-meromorphic. Moreover, there exists a subanalytic stratification S of U such that for every stratum S ∈ S and every x ∈ S there is ε > 0 and a neighborhood V of x in S such that f (x + se 1 ) is an analytic function of (x, s) ∈ V × (-ε, ε). In particular, for every k ∈ N, ∂ k f /∂x k 1 : U → R is analytic on the strata of S.

3. The non-analyticity locus of an arc-analytic function is arc-symmetric.

Let U ⊂ R n be open and let f : U → R be arc-analytic with subanalytic graph. We denote by S(f ) the non-analyticity set of f and by R(f ) its complement in U . Then S(f ) is closed in U and by [START_REF] Tamm | Subanalytic sets in the calculus of variation[END_REF] (see also [START_REF] Kurdyka | Points réguliers d'un ensemble sous-analytique[END_REF], [START_REF] Bierstone | Arc-analytic functions[END_REF]) it is a subanalytic set. It follows from [START_REF] Bierstone | Arc-analytic functions[END_REF] or [START_REF] Parusiński | Subanalytic functions[END_REF] that dim S(f ) ≤ n -2.

Theorem 3.1. Let γ : (-ε, ε) → U be an analytic arc such that γ(t) ∈ R(f ) for t < 0. Then γ(t) ∈ R(f ) for t > 0 and small. In other words, S(f ) is arc-symmetric subanalytic in the sense of [START_REF] Kurdyka | Ensembles semi-algébriques symétriques par arcs[END_REF].

For the proof we need some basic properties of Gateaux differentials. For each k ∈ N we consider (4)

h k (x, v) = 1 k! ∂ k v f (x) = 1 k! d k dt k f (x + tv) |t=0 .
Proposition 3.2. Let f : U → R be an arc-analytic function. Then for any k ∈ N the function

h k (x, v) : U × R n → R is arc-meromorphic.
Proof. Let (x(t), v(t)) be an analytic arc in U × R n . Define an arc-analytic function g(s, t) = f (x(t) + sv(t)). Then

h k (x(t), v(t) = 1 k! ∂ k ∂s k g(t, s) |s=0
that is meromorphic by Proposition 2.7.

For x ∈ U , k ∈ N we denote h x,k (v) = h k (x, v) = 1 k! ∂ k v f (x)
Note that h x,k is k-homogeneous function. If f is analytic at x, then h x,k is polynomial. We have also the inverse which is Bochnak-Siciak Theorem, see [START_REF] Bochnak | Analytic functions in topological vector spaces[END_REF], which states that if h x,k is polynomial for each k ∈ N, then f is analytic at x. Traditionally if h x,k is polynomial then it is called the Gateaux differential of f at x of order k. We call h x,k generically polynomial if it is equal to a polynomial except on a nowhere dense subanalytic (and homogenous) subset of R n . Note that, by Remark 2.4, h x,k is generically polynomial if it coincides with a polynomial on an open nonempty set. Proposition 3.3. Let f : U → R be an arc-analytic function, where U is an open subset in R n . Let γ : (-ε, ε) → U be an analytic arc and k ∈ N. If h γ(t),k is generically polynomial for t ∈ (-ε, 0), then there exists a finite set F k ⊂ (0, ε) such that h γ(t),k is generically polynomial for each t ∈ (0, ε) \ F k .

Proof. Let R k [x 1 , . . . , x n ] denote the space of homogenous polynomials of degree k and let d k = n+k-1 n denote its dimension. We need the classical multivariate interpolation.

Lemma 3.4. There exists an algebraic nowhere dense subset

∆ ⊂ (R n ) d k such that for V = (v 1 , . . . , v d k ) ∈ (R n ) d k \ ∆ the map Ψ V : R k [x 1 , . . . , x n ] → R d(k) given by Ψ V (P ) = (P (v 1 ), . . . , P (v d k )).
is a linear isomorphism.

Fix V = (v 1 , . . . , v d k ) ∈ (R n ) d k \∆ generic and denote Φ V = Ψ -1 V : R d(k) → R k [x 1 , . . . , x n ]. We define an arc-meromorphic map P k : (-ε, ε) → R k [x 1 , . . . , x n ] by P k (t) := Φ V (h k (γ(t), v 1 ), . . . , h k (γ(t), v d(k) )). The map p k ; (-ε, ε) × R n → R, where p k (t, v) = P k (t)(v) is arc-meromorphic. If V is
sufficiently generic then, for t ∈ (-ε, 0) \ {finite set}, p k (t) coincides with h γ(t),k . Since they both are arc-meromorphic, by Remark 2.4 they coincide on (-ε, ε) × R n \ Z k , where Z k is a closed subanalytic set with dim Z k ≤ n. Hence there exists a finite set

F k ⊂ (0, ε) such that for t ∈ (0, ε) \ F k the intersection Z k ∩ ({t} × R n ) is of dimension less than n.
Thus, for each t ∈ (0, ε) \ F k the function h γ(t),k is generically polynomial, as claimed.

The following proposition is a version of the mentioned above Bochnak-Siciak Theorem, [START_REF] Bochnak | Analytic functions in topological vector spaces[END_REF].

Proposition 3.5. If for every k there is a nonempty open subset V k ⊂ R n and a homogeneous polynomial P k of degree k such that h x,k ≡ P k on V k , then f is analytic at x.

Proof. We first show that

k P k (v) is convergent in a neighborhood of 0 ∈ R n .
We may assume that x is the origin. Let π 0 be the blowing up of the origin, π 0 (y, s) = (sy, s), s ∈ R, y ∈ R n-1 , in a chart. The function f (y, s) := f (π(y, s)), defined in a neighborhood U ′ of the exceptional divisor E : s = 0, is arc-analytic. The set of nonanalyticity of f , denoted by S, is closed subanalytic and of codimension at least 2. For y / ∈ S, f is analytic in a neighborhood of (0, y) and, moreover, by analytic continuation, (5)

h x,k (v) = P k (v) for v = t(y, 1), t ∈ R, y / ∈ S.
Fix A ′ an open non-empty subset of E such that the closure of A ′ does not intersect S. Let A ⊂ R n be the cone over A ′ . Then, by [START_REF] Bochnak | Analytic functions in topological vector spaces[END_REF], k P k (v) is convergent in any compact subset of A. The convergence in a neighborhood of 0 in R n follows from the following lemma.

Lemma 3.6. Let V ⊂ R n be starlike with respect to the origin, a ∈ V , and suppose that

|P k (v)| ≤ L on V ′ = a + V. Then |P k (v)| ≤ L on 1 2e V.
Proof. Since P k is homogeneous of degree k

(6) P k (v) = 1 k! s=k s=0 (-1) k-s k s P k (a + sv).
Indeed, ( 6) can be shown recursively on k using Euler's formula as follows. First note [START_REF] Fukui | Blow-analytic equisingularities, properties, problems and progress, Real Analytic and Algebraic Singularities[END_REF] holds for a = 0 and the derivative of the RHS of ( 6) with respect to a equals

(7) 0 = 1 k! s=k s=0 (-1) k-s k s Q(a + sv),
where

Q(x) = n i-1 a i ∂P k ∂x i (x) is a homogeneous polynomial of degree k -1. By the inductive assumption s=k s=0 (-1) k-s k s Q(a + sv) = s=k-1 s=0 (-1) k-1-s k -1 s Q(a + sv) + + s=k s=1 (-1) k-s k -1 s -1 Q(a + sv) = -Q(v) + Q(v) = 0
This shows [START_REF] Fukui | Blow-analytic equisingularities, properties, problems and progress, Real Analytic and Algebraic Singularities[END_REF].

Thus, if v ∈ 1 k V , |P k (v)| ≤ 1 k! L k s=0 k s = L 2 k k! , that means that for v ∈ 1 2e V |P k (v)| ≤ L (2k) k k! 1 (2e) k ≤ L.
This ends the proof of lemma 3.6.

Then k P k (v) is an analytic function in a neighborhood of the origin that coincides with f on a set with non-empty interior. Hence f (v) = k P k (v) in a neighborhood of the origin. This shows proposition 3.5.

Proof of theorem 3.1. We may assume that γ is injective otherwise the image of t > 0 equals the image of t < 0 and the statement is obvious. Let F := F k , where F k are finite subsets of (0, ε) given by Proposition 3.3. Clearly the complement of F is dense in (0, ε), so by Proposition 3.5 our function f is analytic at γ(t) for t ∈ G, where G is an open dense subset of (0, ε). Hence theorem 3.1 follows.

Consider the subanalytic sets

Rk 0 (f ) = {x ∈ U ; ∀k ≤ k 0 , h x,k is generically polynomial }, R k 0 (f ) = {x ∈ U ; ∀k ≤ k 0 , h x,k is polynomial }.
Clearly Rk+1 (f ) ⊂ Rk (f ) and R k+1 (f ) ⊂ R k (f ). We recall from [START_REF] Kurdyka | Points réguliers d'un ensemble sous-analytique[END_REF] the following result 

compact K ⊂ U there is k ∈ N such that R(f ) ∩ K = R k (f ) ∩ K. Proposition 3.8. For any compact K ⊂ U there is k ∈ N such that R(f )∩K = Rk (f )∩K.
Proof. By Remark 2.8 there exists a stratification S of U × S n-1 such that for every k, h k is analytic on the strata. Refining the stratification, if necessary, we may suppose that for every stratum S ⊂ U × S n-1 its projection to U has all fibers of the same dimension. In the proof we use only these strata for which all the fibers of projection to U are of maximal dimension n -1. We denote the collection of them by S n and their union as Z. Now it is easy to adapt the proof of Lemma 6.1 of [START_REF] Kurdyka | Points réguliers d'un ensemble sous-analytique[END_REF] (based on multivariate interpolation) and show the following lemma. Lemma 3.9. There are analytic subanalytic functions

w i : U × S n-1 → R, i ∈ N,
analytic on each stratum of S such that h x,i is generically polynomial if and only if w i ≡ 0 generically on {x} × S n-1 . Now Proposition 3.8 follows from Lemma 2.5 of [START_REF] Kurdyka | Points réguliers d'un ensemble sous-analytique[END_REF] that shows that for every stratum there exist k such that

∞ i=1 {w i = 0} = k i=1 {w i = 0}.
We complete this section with two results, one that controls the change of non-analyticity locus by blowings-up. This result will be crucial in the next section. The last result of this section, Proposition 3.11, though not used in this paper, indicates a possible analogy between our approach and the theory of complex analytic functions.

Proposition 3.10. Let T = {x k = x k+1 = • • • = x n = 0}
and let π T be the blowing-up of T . Suppose that the origin is in the closure of R(f ) ∩ T and that f • π T is analytic at least at one point of π -1 T (0) (hence on a neighborhood of this point). Then f is analytic at 0. Proof. Let Π : R n ×R×R n → R n be given by Π(x, t, v) = x+tv and let Π T : T ×R×R n → R n be the restriction of Π. First we show that if f • Π T is analytic at some points of Π -1 T (0) ∩ {t = 0} and 0 is in the closure of R(f ) ∩ T then f is analytic at 0. Indeed, suppose that A ′ ⊂ R n has non-empty interior and suppose that f

• Π T is analytic in a neighborhood {0} × {0} × A ′ . Let h k (x, v), x ∈ T, v ∈ R n ,
be defined by [START_REF] Bochnak | Géométrie algébrique réelle[END_REF]. Then h k is arc-meromorphic and analytic on A = U ′ × A ′ , where U ′ is a small neighborhood of 0 in T . For each k, we define by Lemma 3.4, (8)

P k (x, v) = Ψ -1 V (h k (x, v 1 ), . . . , h k (x, v d(k) ))(v)
, where v 1 , . . . , v d k ∈ A ′ are generic. Each P k is analytic on A and equals h k for x ∈ R(f )∩T . Therefore h k (0, v) = P k (0, v) for v ∈ A ′ and the claim follows from proposition 3.5.

Thus it remains to show that f • Π T is analytic at some points of Π -1 T (0) ∩ {t = 0}. For this we factor Π T restricted to {v n = 0} through π T and use the assumption on π T . Write π T in an affine chart π T (x, y, s) = (x, sy, s), where x = (x 1 , . . . , xk-1 ), y = (y k , . . . , y n-1 ) and s ∈ R. Then on these charts Π T = π T • ϕ, where

(x, y, s) = ϕ(x, t, v) = (x + tv ′ , 1 v n v ′′ , tv n ), where v ′ = (v 1 , . . . , v k-1 ), v ′′ = (v k , . . . , v n-1 ). Restricted to t = 0, ϕ is a surjective projection (x, v) → (x, 1 vn v ′′ ) onto s = 0. Hence R(f • Π T ) ∩ Π -1 T (0) ∩ {t = 0} ⊃ ϕ -1 (R(f • π T ) ∩ π -1 (0)) is non-empty. Proposition 3.11. Let x = (x 1 , x ′ ) ∈ R × R n-1
and suppose that for every x 1 > 0 and small, f (x 1 , x ′ ) is analytic at (x 1 , 0) as a function of x ′ . Moreover, suppose that for x 1 > 0 and small we have a uniform bound

|h k ((x 1 , 0), v ′ )| ≤ c k , for v ′ ≤ ε, k ∈ N,
where v ′ = (v 2 , . . . , v n ). Then f is analytic at the origin.

Proof. The function h k ((x 1 , 0), v ′ ) is arc-meromorphic as a function of x 1 , v ′ . Moreover, since continuous arc-meromorphic functions of one variable are analytic, using polynomial interpolation lemma, Lemma 3.4, we may show that each h k ((x 1 , 0), v ′ ) extends to an analytic function Ψ(x 1 , v ′ ) defined in a neighborhood of (0, 0), such that for each

x, v ′ → Ψ(x 1 , v ′ ) is a homogeneous polynomial in v ′ . Moreover, for x 1 > 0 and x ′ < ε/c f (x 1 , x ′ ) = k h k ((x 1 , 0), x ′ )
and the series on the right-hand side is convergent. Fix any k ∈ N and v ′ < ε/c. Then for

v = (1, v ′ ), 0 < t < 1, f (tv) = ∞ j=0 h j ((t, 0), tv ′ ) = ∞ j=0 t j h j ((t, 0), v ′ ) = k j=0 t j h j ((t, 0), v ′ ) + ϕ(t, v ′ ),
where ϕ is subanalytic and O(t k+1 ). Therefore for such v

(9) H k (0, v) := 1 k! d k dt k f (tv) |t=0 = 1 k! d k dt k k j=0 h j ((t, 0), tv ′ ) |t=0 .
Note that the right-hand side, and hence H k (0, v) as well, is a polynomial in v. Indeed, this follows from the fact that x → k j=0 h j ((x 1 , 0), x ′ ) is an analytic function of x and H k (0, v) coincides with its Gateaux differential. Thus proposition 3.11 follows from proposition 3.5.

Proof of Theorem 1.2.

We may suppose that U is connected. We suppose also that the coefficients g 0 and g p of G and the discriminant ∆(x) of G are not identically equal to zero. By the resolution of singularities [START_REF] Hironaka | Resolution of Singularities of an algebraic variety over a field of characteristic zero[END_REF], [START_REF] Bierstone | Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant[END_REF], [START_REF] Lodarczyk | Simple Hironaka resolution in characteristic zero[END_REF], there is a locally finite sequence of blowings-up π : U ′ → U with nonsingular centers such that (g 0 g p ∆) • π is normal crossings. Thus Theorem 1.1 follows from the following. Proposition 4.1. Let an arc-analytic function f (x) satisfy the equation (1.1) with analytic coefficients g i . If g 0 , g p and ∆(x) are simultaneously normal crossings (and hence not identically equal to zero) then f is real analytic. Proposition 4.1 was proven in [START_REF] Parusiński | Subanalytic functions[END_REF] under an additional assumption g 0 ≡ 1, see the proof of Theorem 3.1 of [START_REF] Parusiński | Subanalytic functions[END_REF]. It is easy to reduce the proof to this case by replacing f by g p f . Then, an argument of [START_REF] Parusiński | Subanalytic functions[END_REF] shows that locally f can be expand as a fractional power series. Finally, an arc-analytic fractional power series is analytic, see the proof of Theorem 3.1 of [START_REF] Parusiński | Subanalytic functions[END_REF]. If the discriminant of G vanishes identically then we replace it by the first non-vanishing higher order discriminant.

To show Theorem 1.2 we follow, for the product h(x) = g 0 (x)g p (x)∆(x), the monomialisation procedure of W lodarczyk or Bierstone-Milman. In this procedure the centre of blowing-up is defined as a the locus of points where a local invariant is maximal. Thus suppose that we have the following data described in a local system of coordinates x 1 , • • • , x n at the origin. The function h • π, where π = π k • • • • • π 0 , is of the form h • π = x A h k , where h k is the controlled transform by the preceding blowings-up. Let m = ord x h k . We may assume that H = {x n = 0} is a hypersurface of maximal contact. Then, using the notation x = (x ′ , x n ),

h k (x) = x m k + m-2 j=0 c j (x ′ )x j k ,
and mult 0 c i ≥ mi.

Let C be the next centre given by the procedure and denote by π C the blowing-up of C. We show that it cannot happen that 0 ∈ S(h • π) and 0 ∈ C \ S(f • π). Suppose, contrary to our claim, that this is the case. Then, by Proposition 3.10, the fibre over the origin of the blowing-up π C = π k+1 of C is contained in S(f • π • π C ). Since C is contained in the equimultiplicity locus of h k , at the generic point π -1 C (0) the strict transform of h k is nonzero, and hence h • π • π C is normal crossing. This contradicts Proposition 4.1.

Let C ′ denote the connected component of C containing 0. Then either C ′ ⊂ S(h • π) or C ′ ∩ S(h • π) = ∅. Thus Theorem 1.2 proven.

Remark 2 . 3 .

 23 If f is an arc-meromorphic and continuous function on an open connected set U ⊂ R n , then f is arc-analytic. Remark 2.4. Let f and g be arc-meromorphic functions on an open connected set of U . Assume that f = g on an open non-empty subset U ⊂ R n , then f = g except on a nowhere dense subanalytic subset of U . Lemma 2.5. Let U be an open bounded subanalytic subset in R n and f : U → R m be an arc-meromorphic mapping. Then there exists Γ ⊂ R n a closed nowhere dense subanalytic set, N ∈ N and C > 0 such that

Proposition 3 . 7 .

 37 [ [11], Proposition 4.4] Let f : U → R be a subanalytic (not necessarily arc-analytic) function on an open bounded U ⊂ R n . Then for any