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Abstract—In this paper, the problem of efficient 
representation of large database of target radar 
cross section is investigated in order to minimize 
memory requirements and recognition search 
time, using wavelet representation. Synthetic 
RCS of large aircrafts, in the HF-VHF frequency 
bands, are used as experimental data. Many 
parameters are evaluated like mother wavelet, 
decomposition level, and classification 
parameters. Criteria used to determine the 
efficiency of multiresolution representations are 
compression scores, false identification rate and 
search time. 
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I.  INTRODUCTION 
Requirements for future air defence radar systems are 

detection, localization, but also identification of aircrafts. With 
the increasing resolution of modern radar systems, it is 
theoretically possible to store much information, according to 
aspect, elevation, pulsewidth, etc., of a complex target and use 
them in the field of target identification. 

The advantage of the increasing resolution of radar systems 
is the opportunity to have more details characteristic of a 
specific target. The disadvantage is that these detailed 
characteristics require more and more computer memory to be 
stored, computer resources and increase the search time to 
NCTR (Non-Cooperative Target Recognition) association. 

It is therefore important to develop efficient methods to 
decrease the size of representations of high resolution data of 
radar targets. One way to compress these representations is to 
use multiresolution signal decomposition to analyze the RCS 
(Radar Cross Section) information content [1] — [3]. 

In this paper, we investigate the problem of efficient 
representation of a large database of radar range profiles in 

order to minimize memory requirements and recognition 
search time, using time-frequency representation. 

The paper is organized as follows. In a first step, the used 
synthetic RCS database of large aircrafts, in the HF-VHF 
frequency bands, is described. In a second step, after a brief 
review of the wavelet transform theory, the method of applying 
the wavelet transform to radar signal processing and the 
procedure to establish the compressed database will be 
described. In a third step, the identification algorithm and the 
data processing algorithm are presented. Finally, in a fourth 
step, the efficiency of multiresolution representations using 
wavelet transform are discussed regarding some criteria, like 
compression scores, false identification rate and search time. 

II. DESCRIPTION OF SYNTHETIC RCS DATABASE 

A. Introduction 
The synthetic RCS database has been developed during the 

MOSAR project [4, 5] with the support of the French Ministry 
of Defence (DGA). The objectives of the MOSAR project are 
to improve knowledge of frequency response of targets in 
resonance region by measurements, and to test the efficiency of 
recognition methods. These studies led to: 

• Development of a coherent, pulsed, quasi-monostatic, 
multifrequency, HF-VHF radar using the 20-80 MHz 
frequency band and the horizontal and vertical 
polarizations. 

• Development and validation of a simulated RCS 
database using numerical models of aircraft in the 
20-80 MHz frequency band. 

• Development and the tests of NCTR algorithms. 

B. Description of synthetic RCS database 
To study aircraft RCS, several possibilities exist. One can 

perform: 

• Anechoic chamber measurements on real aircrafts or 
scaled models. 

• In–flight measurements with a radar system. 

• Simulations using a computational model. 



 

Figure 1.  Example of modeling aircraft using a wiregrid model – 
Airbus A320. 

Anechoic chamber measurements are not well suited to 
collect data at various angle aspects of a target but they are 
useful to validate numerical models. To perform in-flight 
measurements, it is necessary to use a calibrated radar system 
and to wipe out propagation effects. The simulation of RCS 
behaviour, using a computational model, is a very attractive 
scheme but the model must be validated. 

To be able to use a small computer like a PC, the analysis 
has been made with the free Numerical Electromagnetic Code 
NEC2 which is based on the Method of Moments (MoM). In 
this case, the aircraft structure is considered as Perfect Electric 
Conducting (PEC) body. An example of wiregrid model is 
presented at Fig. 1. 

The synthetic database is constituted of eight aircrafts: 
Airbus A320, BAe 146-200, Boeing 727-200, 737-200, 
737-300, 747-200, 757-200 and Fokker 100. For each aircraft, 
RCS has been determined as a function of frequency and angle 
aspect, using the following parameters: 

• Frequency band: 20 to 100 MHz with a 1 MHz 
frequency step, 

• Azimuth angle: -10° to +190° with a step of 2°, 

• Elevation angle: 0° to 90° with a step of 1°, 

• Polarization: HH, HV, VH, VV. 

Then, the range profile is estimated using an inverse 
Fourier transform from the RCS frequency response. The 
synthetic database is finally constituted of around 300 000 
range profiles, on eight aircrafts [6, 7]. Fig. 2 shows an 
example of estimated range profile. 

III. APPLICATION OF WAVELET TRANSFORM TO DATABASE 
COMPRESSION 

Wavelet transforms have been found useful in a variety of 
applications. This is because they provide the analyst with an 
approximation of the signal and a detail of the signal as well. 
For a complete description of wavelet analysis, the reader 
should refer to [8] and [9]. A brief summary of how the 
wavelets were used is presented here. 

 
Figure 2.  Example of estimated range profile – Airbus A320 – 

HH Polarisation. 

The Discrete Wavelet Transform (DWT) of finite 
sequences analyzes a signal S by decomposing it into 
approximation Ai and details Di parts by quadrature filter 
systems [9], where i is the decomposition level. Fig. 3 presents 
the scheme of the filter systems. An example of wavelet 
functions used in this paper for the DWT is shown in Fig.4. 

The approximation and detail parts are respectively 
obtained by a low-pass filter and a high-pass filter. At each 
level, filtering process is followed by decimation by 2 that 
decreases the data size. Fig.5 presents an example of range 
profile and its wavelet decomposition computed in five levels. 

The approximations and details at each level are pre-
processed from the original signal and placed in the training 
data set. 
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Figure 3.  Filter systems of the wavelet transform (where S is the signal, Ai, 
the approximations, Di, the details, and i, the decomposition level). 

 

Figure 4.  Example of wavelet functions used in 1-D discrete wavelet 
transforms – Daubechies family wavelets [10]. 
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Figure 5.  Example of range profile and its wavelet transform computed in 

five levels using the Biorthogonal 3.1 wavelet. 

IV. DATA PROCESSING ALGORITHM 

A. Introduction 
To test the efficiency of database compression using 

multiresolution representation, many criteria can be used: 

• Compression scores, 

• Probability of false classification (Pfc) as a function of 
Signal to Noise Ratio (SNR), 

• Minimum SNR to obtain a Pfc lower than 1 %, 

• Search computational time (Sct) for a fixed SNR. 

To determine these parameters, processing steps are the 
following: Loading of complete target database, selection of 
wavelet function, computation of compressed database on 
several decomposition levels, estimation of Pfc and Sct as a 
function of SNR. 

B. Compression scores 
The notion behind compression is based on the concept that 

the regular signal component can be accurately approximated 
using the following elements: a small number of approximation 
coefficients (at a suitably chosen level) and some of the detail 
coefficients. 

The compression procedure contains three steps [10]: 

• Decompose: Choose a wavelet, choose a level N, and 
compute the wavelet decomposition of the signal s at 
level N. 

• Threshold detail coefficients: For each level from 1 to 
N, a threshold is selected and thresholding is applied to 
the detail coefficients. 

• Reconstruct: Compute wavelet reconstruction using the 
original approximation coefficients of level N and the 
modified detail coefficients of levels from 1 to N. 

Two parameters can be calculated to estimate the 
compression scores [10]: 

• The retained energy E defined as: 
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Where C are the coefficients of original signal, CC, the 
coefficients of current decomposition, and ||.||, the vector norm. 

• The number of zeros NZ defined as: 

NZ (%) = 100 × 
Number of zeros of the decomposition

Number of coefficients 
  (2) 

C. Probability of false classification 
Probability of false classification Pfc is defined for M target 

classes as: 
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Where mi is the number of classification error, and ni, 
number of element in the class i. 

The nearest neighbour algorithm [11] is used to recognize 
the target. It is a simple algorithm and is useful to use it to test 
the efficiency of database compression using multiresolution 
representation. 

The distance used to find the nearest neighbour is the 
Euclidean distance dT

k,r,s between the RCS magnitudes: 
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Where AT is the magnitude of unknown aircraft T, Ak,r,s, the 
magnitude of database element (aircraft k, azimuth angle r, 
elevation angle s), i, the sample number, and n, the number of 
sample. 

Then, minimal distances to each aircraft are computed and 
the nearest neighbour kT for the measure T is extracted like: 
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D. Signal to Noise Ratio 
To see the effect of random noise, zero-mean white 

Gaussian noise has been added to the signal. The Signal 
to Noise Ratio is defined as: 
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Where si is the sampled signal, N, the length of the signal, 
and σ2, the variance of Gaussian noise. 

E. Search computational time 
In computing, to estimate the search computational time 

(Sct), a standard parameter is the number of MFLOPs. It’s an 
acronym meaning “Million FLoating point OPerations”. With 
this parameter, it is very easy to make a comparison between 
performances of different processing algorithms. 

V. WAVELET APPLICATION TO TARGET RECOGNITION 

A. Introduction 
The multiresolution aspect of the wavelet decomposition is 

a solution to “compress” database because the target signature 
on each decomposition levels correspond to the measured 
signals with multiresolution radar. By the reduction of the 
number of samples, the use of low resolution decomposition 
level decreases the search computational time. 

To evaluate the performances due to the use of 
decomposition levels with lower resolution, some parameters 
must be determined: Mother wavelets, optimum decomposition 
level, and classification parameter. 

B. Selection of mother wavelets 
Previous work [1] has shown that there is no statistically 

significant difference in performance of the classifier when 
different wavelets are chosen. To confirm this result, some tests 
have been realized using a great number of mother wavelets 
applied to compression techniques. 
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Figure 6.  Example of original range profile and compressed range profile 

using Haar wavelet and hard threshold until decomposition level 4. 

TABLE I.  COMPRESSION SCORES AS A FUNCTION OF WAVELETS AND    
THRESHOLD UNTIL DECOMPOSITION LEVEL 4. 

Number of zeros (NZ) Retained energy (E) 
Wavelet Hard 

threshold 
Soft 

threshold 
Hard 

threshold 
Soft 

threshold 
Haar 89.06 89.06 95.99 89.24 

Daubechies 2 88.3 88.3 95.65 82.84 
Daubechies 6 84.89 84.89 98.67 91.33 
Daubechies 10 82.37 82.37 98.2 82.37 

Biorthogonal 3.1 88.3 88.3 99.53 96.83 
Biorthogonal 5.5 84.89 84.89 97.88 92.71 

Reverse 
biorthogonal 2.4 85.47 85.47 98.13 90.16 

Reverse 
biorthogonal 5.5 84.89 84.89 98.24 92.83 

Coiflets 4 81.21 81.21 99.33 95.98 
Symlets 2 88.3 88.3 95.65 82.84 
Symlets 6 84.39 84.39 98.5 91.7 

The original signal is decomposed at level N and an 
adaptive threshold is applied on detail coefficients on each 
level from 1 to N [12, 13]. The signal is then reconstructed 
using the approximation coefficients of level N and the 
modified detail coefficients of levels 1 to N.  

Fig. 6 shows an example of an original range profile and its 
compressed one. Differences between these range profiles can 
be observed. 

Tab. I presents a resume of obtained results with different 
wavelets as a function of compression scores (retained energy 
E, number of zeros NZ). We can observe that the efficiency are 
very similar (80 % < NZ < 90 %, E > 95 %), but better 
performances are obtained with a hard threshold (retained 
energy is largest) due to a better agreement between original 
and compressed range profiles. A compromise must be found 
between E and NZ. This means that the simplest wavelet to 
implement will do as good a job as any other wavelet, at least 
for the high resolution radar target recognition problem. 

Thus, in the next sections, three wavelets have been chosen: 
Haar, Daubechies 2 and biorthogonal 3.1. Fig. 7 presents an 
estimation of Pfc as a function SNR for different wavelets. 
Results are very similar whatever the wavelet families. 

SNR (dB) 

Pfc (%) 
Original signal 
Haar wavelet 
Daubechies 2 wavelet 
Biorthogonal 3.1 wavelet 

 
Figure 7.  Probability of false classification Pfc as a function SNR for three 

different wavelets (Haar, Daubechies 2, biorthogonal 3.1) using an adaptative 
hard threshold and a decomposition until level 4. 



Minimum SNR 
(dB) 

Decomposition level  
Figure 8.  Variation of minimum SNR to obtain a Pfc < 1 % as a function of 

level decomposition, using Haar wavelet and adaptative hard threshold. 

Finally, Fig. 8 presents the minimum SNR to obtain a 
probability of false classification Pfc lower than 1 %, as a 
function of decomposition level. We observe an important 
increase of the SNR for a level decomposition larger to 2. This 
characteristic can be used to make de-noising procedure on 
measured radar signals. 

C. Determination of optimum decomposition level 
Determination of the optimum decomposition level is a 

sensitive parameter because the resolution decrease has a 
smoothing effect on the target signature and eliminates the 
identifiable scatterers. Fig.5 presents an example of range 
profile and its wavelet decomposition computed in five levels. 

In theory, a maximum possible number J of scales can be 
considered for a signal composed of N = 2J samples. In 
practice, the maximum decomposition level can be chosen 
using a criterion characterizing the smoothing effect on 
scatterers. 

To evaluate the maximum decomposition level, a similarity 
measure, like intercorrelation, between the original set of 
vector samples and the approximations on each level re-
sampled on the finest resolution can be realized (Fig. 9). 

Decomposition level 

Haar wavelet 
Daubechies 2 wavelet 
Biorthogonal 3.1 wavelet 

 
Figure 9.  Intercorrelation between the original set of vector samples and the 

approximations as a function of level decomposition. 
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Figure 10.  Probability of false classification Pfc as a function SNR for the 

original set and the approximation sets using a Haar wavelet and a 
decomposition until level 4. 

We can observed a good correlation, larger than 0.9, for a 
maximum decomposition level equal to 4. 

Fig. 10 and 11 present respectively, the results of Pfc as a 
function of SNR, and the minimum SNR to obtain a Pfc lower 
than 1 %, as a function of decomposition level. 

Smoothing effects on target signature as a function of 
decomposition level increases the probability of false 
classification Pfc and to preserve a maximum Pfc of 1 %, SNR 
must be increased of 11 dB. In compensation, search time (Sct) 
is decreased by a factor of 10 (Fig. 12). 

D. Selection of the classification parameter 
NCTR association can be made on the different 

decomposition levels using the “approximation” signatures but 
also on the “detail” signatures. But in this case, the 
classification time gain is the same than previously due to the 
same size of data vectors. 

Minimum SNR 
(dB) 

Decomposition level  

Figure 11.  Variation of minimum SNR to obtain a Pfc < 1 % as a function of 
level decomposition, using Haar wavelet and approximation signals. 
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Figure 12.  Search computational time Sct as a function of level decomposition 

for three wavelets (Haar, Daubechies 2, biorthogonal 3.1) and a fixed SNR. 

Fig. 13 presents the variation of the minimum SNR to 
obtain a Pfc lower than 1 %, as a function of decomposition 
level for a classification using detail or approximation signals. 

Better results are obtained with the approximation signals. 
A 1 dB difference is approximately observed for a fixed 
probability of false classification. 

VI. COMMENTS AND CONCLUSION 
The objective of this paper is to evaluate the efficiency of 

multiscale algorithm to minimize the computational search 
time to NCTR association. The wavelet transform is one 
solution to this problem, because it is suitable to the 
representation of radar returns as a function of decomposition 
levels corresponding to signals measured by a multiresolution 
radar system. 

No significant difference in performance of the classifier is 
observed when different wavelets are chosen. This means that 
the simplest wavelet to implement will do as good a job as any 
other wavelet, at least for the high resolution radar target 
recognition problem. 

NCTR procedure can be made on the different 
decomposition levels using the “approximation” or the “detail” 
signatures. A same decrease of the estimated probability of 
false classification can be observed but better results are 
obtained with the approximation signals. To have the same 
probability of false classification, signal to noise ratio must be 
increased by a factor of 1 to 11 dB as a function of the 
decomposition level. In this case, the computational search 
time is respectively decreased by a factor of 1.9 to 10. 
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Figure 13.  Variation of minimum SNR to obtain a Pfc < 1 % as a function of 

level decomposition, using Haar wavelet and approximation and details 
signals. 
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