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Introduction

Optimization-based automatic clustering algorithms greatly rely on a cluster validity function (optimization criterion) the optima of which appear as proxies for the unknown "correct classification" in a previously unhandled dataset [START_REF] Jain | Data clustering: a review[END_REF]. Different formulations of the clustering problem vary in the optimization criterion used. Most existing clustering methods, however, attempt to optimize just one such clustering criterion modeled by a single cluster validity index. This often results into considerable discrepancies observable between the solutions produced by different algorithms on the same data. The single-objective clustering method may prove futile (as judged by means of expert's knowledge) in a context where the criterion employed is inappropriate. In situations where the best solution corresponds to a tradeoff between different conflicting objectives, common sense advocates a multiobjective framework for clustering.

Although there has been a plethora of papers reporting several single-objective evolutionary clustering techniques (a comprehensive survey of which can be found in [START_REF] Jain | Data clustering: a review[END_REF][START_REF] Xu | Clustering, Series on Computational Intelligence[END_REF]), very few research works have so far been undertaken towards the application of evolutionary multi-objective optimization algorithms (EMOA) for pattern clustering [START_REF] Bandyopadhyay | Multiobjective genetic clustering for pixel classification in remote sensing imagery[END_REF][START_REF] Handl | An evolutionary approach to multiobjective clustering[END_REF]. A state-of-the-art literature survey indicates that DE has already proved itself as a promising candidate in the field of evolutionary multi-objective optimization (EMO) [5 -8]. Earlier it has also been successfully applied to singleobjective partitional clustering [9 -11]. The work reported in [START_REF] Bandyopadhyay | Multiobjective genetic clustering for pixel classification in remote sensing imagery[END_REF] is based on Deb et al.'s celebrated NSGA (Non Dominated Sorting genetic Algorithm)-II [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF] and the clustering method described in [START_REF] Handl | An evolutionary approach to multiobjective clustering[END_REF] is based on PESA (Pareto Evolution based Selection) II [START_REF] Corne | The pareto-envelope based selection algorithm for multiobjective optimisation[END_REF], and both the algorithms are multi-objective variants of Genetic Algorithm (GA). However, the multi-objective variants of DE have not been applied to the general data clustering problems till date, to the best of our knowledge. Since DE, by nature, is a real-coded population-based optimization algorithm, we here resort to centroid-based representation scheme for the search variables. A MOO algorithm, in general, ends up with a number of Pareto optimal solutions. Here we consider the Xie-Beni index [START_REF] Xie | Validity measure for fuzzy clustering[END_REF] and the Fuzzy C Means (FCM) measure ( m J ) [START_REF] Bezdek | Cluster validity with fuzzy sets[END_REF] as the objective functions. The performance of GADE has also been contrasted with two best-known EMOA-based clustering methods till date. The first of these is MOCK by Handl and Knowles [START_REF] Handl | An evolutionary approach to multiobjective clustering[END_REF] while the second one is based on NSGA II and was used by Bandyopadhyay et al. for pixel clustering in remote sensing satellite image data [START_REF] Bandyopadhyay | Multiobjective genetic clustering for pixel classification in remote sensing imagery[END_REF]. Here we report the results for ten representative datasets including the microarray Yeast sporulation data [START_REF] Chu | The transcriptional program of sporulation in budding yeast[END_REF].

Multi-objective Optimization Using DE

The MO Problem

In many practical or real life problems, there are many (possibly conflicting) objectives that need to be optimized simultaneously. Under such circumstances there no longer exists a single optimal solution but rather a whole set of possible solutions of equivalent quality. The field of Multi-objective Optimization (MO) [17 -19] deals with simultaneous optimization of multiple, possibly competing, objective functions.

The Differential Evolution (DE)

Algorithm DE [START_REF] Storn | Differential evolution -a simple and efficient heuristic for global optimization over continuous spaces[END_REF][START_REF] Storn | Differential Evolution -A Practical Approach to Global Optimization[END_REF] is a population-based global optimization algorithm that uses a floating-point (real-coded) representation. It uses crossover (binomial in this case) and mutation operations to optimize a given cost function. For want of space, we avoid mentioning the details of the DE algorithm here and refer the reader to the aforementioned literatures.

The Multi-objective Variant of DE

We have used the Multi-objective DE (MODE) [START_REF] Handl | An evolutionary approach to multiobjective clustering[END_REF]. MODE was proposed by Xue et al. [START_REF] Iorio | Solving rotated multi-objective optimization problems using differential evolution[END_REF]. This algorithm uses a variant of the original DE, in which the best individual is adopted to create the offspring. A Pareto-based approach is introduced to implement the selection of the best individual. If a solution is dominated, a set of nondominated individuals can be identified and the "best" turns out to be any individual (randomly picked) from this set.

Multi-objective Clustering Scheme

Search-variable Representation and

Description of the new algorithm In the proposed method, for n data points, each d-dimensional, and for a userspecified maximum number of clusters max K , a chromosome is a vector of real numbers of dimension

d K K × + max max
. The first max K entries are positive floatingpoint numbers in [0, 1], each of which controls whether the corresponding cluster is to be activated (i.e. to be really used for classifying the data) or not. The remaining entries are reserved for max K cluster centers, each d-dimensional. For example, the ith vector is represented as:
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The j-th cluster center in the i-th chromosome is active or selected for partitioning the associated dataset if , the particular j-th cluster is inactive in the i-th vector in DE population. Thus the j i T , s behave like control genes.

IF 1 , = j i T THEN the j-th cluster center j i m , r is ACTIVE ELSE j i m , r is INACTIVE. ( 1 
)
Conjunction of GA and DE algorithms:

The Differential Evolution algorithm is applied on the first K max members of the chromosome (as activated by the corresponding control genes), whereas, the control genes form a binary encoded GA population, which are operated by the Genetic operators of Selection, Crossover and Mutation. Binary tournament selection is employed in this case. The different GA operators are not reiterated here due to space limitations.

Simple generational genetic algorithm pseudo code:

1. Choose initial population 2. Evaluate the fitness of each individual in the population 3. Repeat until termination: (time limit or sufficient fitness achieved)

1. Select best-ranking individuals to reproduce 2. Breed new generation through crossover and/or mutation (genetic operations) and give birth to offspring 3. Evaluate the individual fitnesses of the offspring Replace worst ranked part of population with offspring.

Selecting the Objective Functions

Conflict among the objective functions is often beneficial since it guides to globally optimal solutions. In this work we choose the Xie-Beni index XB q and the FCM objective function J q as the two objectives. The FCM measure J q may be defined as:
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where q is the fuzzy exponent, d indicates a distance measure between the j-th pattern vector and i-th cluster centroid, and ij u denotes the membership of j-th pattern in the i-th cluster. The XB index is defined as a function of the ratio of the total variation σ to the minimum separation sep of the clusters. Here σ and sep may be written as: 

Avoiding Erroneous Vectors

There is a possibility that in our scheme, during computation of the XB or J q , a division by zero may be encountered. This may occur when one of the selected cluster centers in a DE-vector is outside the boundary of distributions of the data set. To avoid this problem we first check to see if any cluster has fewer than two data points in it. If so, the cluster center positions of this special chromosome are re-initialized by an average computation.

Selecting the Best Solution from Pareto-front

For choosing the most interesting solutions from the Pareto front, we apply Tibshirani et al. Gap statistic [START_REF] Tibshirani | Estimating the number of clusters in a dataset via the Gap statistic[END_REF], a statistical method to determine the number of clusters in a data set.

Evaluating the Clustering Quality

In this work, the final clustering quality is evaluated using two external measures. Specifically we choose the Adjusted Rand Index [START_REF] Hubert | Comparing partitions[END_REF] (which is a generalization of the Rand index [START_REF] Rand | Objective criteria for the evaluation of clustering methods[END_REF]) and the Sihouette index [START_REF] Rousseeuw | Silhouettes: A graphical aid to the interpretation and validation of cluster analysis[END_REF]. Silhouette width reflects the = is defined as the mean silhouette width over all the data points:
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4 Experimental results

Datasets used

The experimental results showing the effectiveness of multi-objective DE based clustering has been provided for six artificial and four real life datasets. Table 1 presents the details of the datasets. The real-life datasets are iris, wine, breast-cancer [START_REF] Blake | UCI repository of machine learning database[END_REF] and the yeast sporulation data. The sporulation dataset is available from [31]. 

Parameters for the Algorithms

Presentation of Results

The mean Silhouette index values of the best-of-run solutions provided by six contestant algorithms over the 10 datasets have been provided in Table 2. The best entries have been marked in boldface in each row. Table 3 enlists the adjusted rand index values except for Yeast sporulation data as no standard nominal classification is known for this dataset.

Significance and Validation of Microarray Data Clustering Results

In this section the best clustering solution provided by different algorithms on the sporulation data of yeast has been visualized using the cluster profile plot (in parallel coordinates [START_REF] Keim | Visualization techniques for mining large databases: a comparison[END_REF]) in MATLAB 7.0.4 version. It is a common way of visualizing highdimensional geometry. Cluster profile plots (in parallel coordinates) of seven clusters for the best clustering result (provided by GADE) on yeast sporulation data has been shown in Figure 1. The blue polylines indicate the member genes within a cluster while the black polyline indicates the centroid of that gene. The heatmap and fatigo results may be obtained from [33].

Table 1. Details of the datasets used. 
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  The membership value of the j-th pattern in i-th cluster k while pj u is set equal to one. Subsequently the centers encoded in a vector are updated using:

  compactness and separation of the clusters. Given a set of data points }

1 .

 1 GADE has been used with 40 parameter vectors in each generation and each run of each algorithm was continued for 100 generations. The value of scale factor F is a random value between 0.5 and 1. The other parameters for the multi-objective GA (NSGA II) based clustering are fixed as follows: number of generations = 100, population size = 50, crossover probability = 0.8Please note that GADE and the NSGA II use the same parameter representation scheme. Clustering with MOCK was performed with the source codes available from[32].

  This paper compared and contrasted the performance of GADE in an automatic clustering framework with two other prominent multi-objective clustering algorithms. The multi-objective GADE-variant used the same variable representation scheme. Tables2 to 4indicate that GADE was usually able to produce better final clustering results as compared to MOCK or NSGA II in terms of both adjusted Rand index and Silhouette index when all the algorithms were let run for an equal number of generations. Future research may extend the multi-objective GADE-based clustering schemes to handle discrete chromosome representation schemes that no longer depend on cluster centroids and thus are not biased in any sense towards spherical clusters.

Table 2 .

 2 Mean value of sil index found and standard deviations (in parentheses) by contestant algorithm over 30 independent runs on ten datasets.

	Dataset Dataset_1		Number of points 900	Number of clusters 9	Number of Characteristics 2
	Dataset _2		76		3	2	
	Dataset _3		400		4	3	
	Dataset _4		300		6	2	
	Dataset _5		500		10	2	
	Dataset_ 6		810		3	2	
	Iris		150		3	4	
	Wine		178		3	13	
	Breast-Cancer	683		2	9	
	Yeast Sporulation	474		7	7	
				Algorithms Compared		
	Dataset Dataset_1 Dataset_2 Dataset_3 Dataset_4 Dataset_5 Dataset_6 Iris Wine Breast Cancer Yeast Sporulation	k 9.12 (1.46) 3.36 (0.65) 4.14 (0.36) 6.04 (0.25) 9.24 (3.89) 5.19 (0.93) 2.31 (0.76) 3.16 (0.46) 2.08 (0.38) 7.08 (0.12)	GADE Silhouette Index 0.735312 (0.254134) 0.664993 (0.123610) 0.872521 (0.127479) 0.705079 (0.115616) 0.771040 (0.042776) 0.792000 (0.208000) 0.429655 (0.331443) 0.582197 (0.00427) 0.648297 (0.00734) 0.641630 (0.212575)	k 9.37 (1.72) 3.16 (0.072) 3.57 (0.51) 6.28 (0.46) 12.43 (0.939) 4.65 (1.58) 2.16 (1.06) 3.88 (0.67) 2.57 (0.60) 7.22 (0.68)	NSGA II Silhouette Index 0.669317 (0.0892) 0.654393 (0.00927) 0.765691 (0.005686) 0.827618 (0.02871) 0.768379 (0.005384) 0.642091 (0.002833) 0.566613 (0.082651) 0.5767342 (0.009415) 0.6004642 (0.004561) 0.641306 (0.04813)	k 8.52 (2.81) 3.33 (1.03) 3.78 (1.25) 6.08 (0.51) 10.41 (0.80) 5.16 (0.38) 3.05 (0.37) 3.59 (0.46) 2.10 (0.53) 6.67 (0.857)	MOCK Silhouette Index 0.66342 (0.0736) 0.658921 (0.004731) 0.768419 (0.006721) 0.832527 (0.007825) 0.769342 (0.006208) 0.640957 (0.008349) 0.6003725 (0.005129) 0.576834 (0.000812) 0.626719 (0.01094) 0.613567 (0.005738)

Table 3 .

 3 Mean value of adjusted rand index found and standard deviations (in parentheses) by contestant algorithm over 30 independent runs on ten datasets.