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Abstract

We compute (algebraically) the Euler characteristic of a complex of sheaves with con-
structible cohomology. A stratified Poincaré-Hopf formula is then a consequence of the
smooth Poincaré-Hopf theorem and of additivity of the Euler-Poincaré characteristic with
compact supports, once we have a suitable definition of index.
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1 Introduction

M.-H. Schwartz has defined radial vector fields in [Sch65a] and extended the classical Poincaré-
Hopf theorem to real analytic sets, equipped with a Whitney stratification for these vector fields
[Sch86], [Sch91]. In their turn, H. King and D. Trotman have extended M.-H. Schwartz’s result
to more general singular spaces and generic vector fields [KT06].

Radial [Sch65a], [Sch65b] (and totally radial, see [KT06], [Sim95]) vector fields are impor-
tant because of their relation with Chern-Schwartz-Mac Pherson classes. Chern-Mac Pherson
classes are written as an integral combination of Mather classes of algebraic varieties with co-
efficients determined by local Euler obstructions [Mac74]. A transcendental definition (and the
original one) of local Euler obstruction is the obstruction to extend a lift of a radial vector field,
prescribed on the link of a point in the base, inside a whole neighborood of Nash transform.
Chern-Schwartz classes [Sch65a], [Sch65b] (which lie in cohomology of the complex analytic va-
riety) are defined as the obstruction to extend a radial frame field given on a sub-skeleton of a
fixed triangulation. These two points of view coincide: Chern-Mac Pherson classes are identified
with Chern-Schwartz classes by Alexander duality [BS81]. In [BBF+95], it is shown that these
Chern-MacPherson-Schwartz classes can be realised (in general not uniquely) in intersection
homology with middle perversity.

This paper concerns a Poincaré-Hopf theorem in intersection homology for a stratified
pseudo-manifold A ([GM83]) and a vector field v which does not necessarily admit a globally
continuous flow. Our main result is that we still have a Poincaré-Hopf formula when the vector
field is semi-radial [KT06] :

Iχp
c(A) =

∑

v(x)=0

Indp(v, x).

More precisely, we compute (algebraically) the Euler characteristic of a complex of sheaves
with constructible cohomology. A stratified Poincaré-Hopf formula is then a consequence of
the smooth Poincaré-Hopf theorem and of additivity of the Euler-Poincaré characteristic with
compact supports, once we have a suitable definition of index.
Given a vector field with isolated singularities on a singular space, which admits a globally
continuous flow, one can already deduce a Poincaré-Hopf theorem from a Lefschetz formula in
intersection homology with middle perversity [GM85], [GM93], [Mac84].
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A. Dubson announced in [Dub84] a formula similar to ours for a constructible complex
in a complex analytic framework. In [BDK81], J.-L. Brylinski, A. Dubson and M. Kashiwara
expressed the “local characteristic” of a holonomic module as a function of multiplicities of polar
varieties and local Euler obstructions.

M. Goresky and R. MacPherson have proved a Lefschetz fixed point theorem for a sub-
analytic morphism and constructible complex of sheaves [GM93]. They show that a weakly
hyperbolic morphism (i.e. whose fixed points are weakly hyperbolic) can be lifted to a mor-
phism (not necessarily unique) at the level of sheaves. The Lefschetz number can be written
as a sum of contributions of the various connected components of fixed points, a component
being itself possibly stratified; every contribution is a sum of multiplicities (relative to the mor-
phism), weighted by Euler characteristics in compactly supported cohomology of the strata of
the connected component.

In Section 2 we give a formula to calculate the characteristic of a constructible complex of
sheaves. Then, in section 3, we apply the preceding results to the intersection chain complex. A
brief recall of definitions and results on stratified vector fields is given in section 4. A theorem
of Poincaré-Hopf type appears in section 5, where the vector field considered is totally (or only
semi-) radial. Sections 6 and 7 are devoted to illustrate the theorems of section 4.

I am very grateful to D. Trotman for numerous valuable conversations, and for his constant
encouragement. I thank equally J.-P. Brasselet for the discussions we have had related to this
work. I am also greatly indebted to E. Leichtnam for his active interest and for many helpful
suggestions during the preparation of the paper.

2 A formula to calculate the Euler-Poincaré characteristic of a
complex of sheaves with constructible cohomology

First we recall some definitions. Let R be a principal ideal domain. We shall consider sheaves
of R−modules.

Definition 2.1 A stratified set A is a topological space which is a union of a locally finite
family of disjoint, connected subsets (strata) which are smooth manifolds, satisfying the frontier
condition. We shall denote by A the set of strata and suppose that this stratification is fixed
once and for all.

Definition 2.2 Let A be a stratified set. We say that A is compactifiable if there exists a
compact abstract stratified set (B,B) ([Mat70], [Mat73], [Tho69], [Ver84]), such that A ⊆ B is
a locally closed subset of B which is a union of elements of B. We then say that (B,B) is a
compactification of A.

Definition 2.3 Let A be a stratified set and F a sheaf on A. We say that F is A−constructible
on A if for every stratum X of A, the sheaf F|X is locally constant of finite rank on R.

Recall that Hc(A;F) ∼= IHc(A;F) where IHc denotes hypercohomology with compact sup-
ports. As usual, suppose that Hp

c (A;F) has finite rank for p ≥ 0 and is null for large enough p.
Then we call Euler characteristic of A with compact supports and coefficients in F , the alter-
nating sum of the ranks of the modules Hp

c (A;F) and denote it by χc(A;F). When the sheaf
F is the constant sheaf R, we simply write χc(A). We shall see that the Euler characteristic is
always defined in our situation.

Proposition 2.1 Let X be a locally compact topological space, G a locally constant sheaf on
X of finite rank g and suppose that X admits a finite partition T into open simplexes, i.e.
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there exists a finite simplicial complex (resp. subcomplex, possibly empty) K (resp. L) and a
homeomorphism ϕ : K \ L → X. Then

χc(X;G) = χc(X).g.

Proof. As simplexes of X are contractible, the restriction of G is isomorphic to the constant sheaf
over any one of them. Consider the finite union U of open simplexes of maximal dimension m.
By induction on m and using the long cohomological exact sequence (with compact supports)
of (U,X), we are reduced to showing the result for U . But, applying Mayer-Vietoris to the
partition of U , this shows that χc(U ;G|U ) is well defined and establishes the formula.

Proposition 2.2 Let A be a compactifiable stratified set and (B,B) a compactification of A.
Let A = (Xi)i∈{1,...,N} be the strata of A and F an A−constructible sheaf. Then we have :

χc(A;F) =
N

∑

i=1

χc(Xi).rk F|Xi
.

Proof. Write A for the closure of A in B. Thanks to the triangulation theorem for abstract strat-
ified sets of M. Goresky [Gor78], there exists a triangulation T of A adapted to the stratification
A. As A is compact, this triangulation is finite. Moreover, it is also adapted to A.
We are going to do induction on the number of strata of A and apply the method of proof of
proposition 2.1. Let X be a stratum of maximal depth ([Ver84]) in A. Remark that X is closed
in A. If A = X we apply proposition 2.1 with X and F .

Suppose the cardinal of A is strictly greater than 1.
We have then a long exact sequence in cohomology :

· · · → Hp
c (A \ X;F|A\X) → Hp

c (A;F) → Hp
c (X;F|X ) → · · ·

As the number of strata of A \X is strictly smaller than that in A, we can apply the induction
hypothesis to A \ X and F|A\X . This shows that rk Hp

c (A;F) is finite, so χc(A;F) is defined.
On the other hand, we have :

χc(A;F) = χc(A \ X;F|A\X ) + χc(X;F|X).

We conclude by using the induction hypothesis and proposition 2.1.

Let F• be a complex of sheaves. Let H•(F•) be the complex of derived sheaves.

Definition 2.4 Let A be a compactifiable stratified set and F• a complex of sheaves on A. We
say that F• has A−constructible cohomology if :

(i) F• is bounded

(ii) H•(F•) is A−constructible.

Theorem 2.1 Let A be a compactifiable stratified set, A = (Xi)i∈{1,...,N} its stratification and
F• a complex of c−acyclic sheaves with A−constructible cohomology. Then we have :

χc(A;F•) =
N2
∑

q=−N1

(−1)qrk IHq
c(A;F•) =

N
∑

i=1

χc(Xi)χ((H•(F•)|Xi
)
xi

)

where Fp = 0 except for −N1 ≤ p ≤ N2 and xi is any point of Xi, 1 ≤ i ≤ N .
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Proof. As Fp is c−acyclic for all p ∈ ZZ , we have Hp(Hq
c (A;F•)) = 0 for all p ∈ ZZ and q ≥ 1.

So the second spectral sequence, of second term ‘Epq
2 = Hp(Hq

c (A;F•)), degenerates. As F• is
bounded, the filtration of the associated double complex is regular, so the first spectral sequence
is convergent and we have according to theorem 4.6.1 of [God73] p. 178 :

E
p,q
2 = Hp

c (A;Hq(F•)) ⇒ IHp+q
c (A;F•).

As F• has A−constructible cohomology and A is compactifiable, we can define :

χ(E2) =
∑

p∈IN,q∈ZZ
(−1)p+qrg Hp

c (A;Hq(F•))

=
∑

q∈ZZ
(−1)q

∑

p∈IN(−1)prg Hp
c (A;Hq(F•))

=
∑N2

q=−N1
(−1)qχc(A;Hq(F•))

for F• is bounded. Remark that, since A is triangulable, every point of A (which is paracompact)
admits a neighborhood homeomorphic to a subspace of some IRp, so that A is of cohomological
dimension lower or equal to p (< ∞ because A is compactifiable), according to theorem 5.13.1
of [God73] p. 237.

Apply then proposition 2.2 to A and Hq(F•) :

χ(E2) =
∑N2

q=−N1
(−1)q

∑N
i=1 χc(Xi)rg (Hq(F•)|Xi

)xi

=
∑N

i=1 χc(Xi)
∑N2

q=−N1
(−1)qrg (Hq(F•)|Xi

)xi

=
∑N

i=1 χc(Xi)
∑N2

q=−N1
(−1)qrg Hq(F•)xi

=
∑N

i=1 χc(Xi)χ(H•(F•)xi
)

with xi ∈ Xi for i ∈ {1, . . . , N}. As Er+1 = H(Er), we have χ(Er+1) = χ(Er) for all r ≥ 2. So

χ(Er) = χ(E2) for all r ≥ 2.
As F• is bounded, E

p,q
2 = 0 for q big enough or small enough and p ∈ IN. Thus the spectral

sequence degenerates and so
Ep,q

r = Ep,q
∞

for r big enough.
Hence

χ(E∞) = χ(Er) = χ(E2).

But (Ep,q
∞ )p+q=s is the associated graded module to IHs

c(A;F•). We have thus :

rg IHs
c(A;F•) =

∑

p+q=s

rg Ep,q
∞ .

Finally
χc(A;F•) =

∑

s∈ZZ
(−1)srg IHs

c(A;F•)
= χ(E∞)
= χ(E2)

=
∑N

i=1 χc(Xi)χ(H•(F•)xi
).

Remark. Theorem 2.1 works also with the weaker hypothesis of (finite) triangulabity.

3 Application to intersection homology

Suppose now that A is a pseudo-manifold, and let A be its stratification. Here the strata of A

will no longer be necessarily connected, but we shall work with connected components of strata.
We denote by Lx the link of the point x in A.
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Proposition 3.1 ([Ba84]) Let A be an n-pseudo-manifold and p a perversity. Let IC
p
• be the

intersection chain complex for perversity p with coefficients in R [GM93] and set IC•p =sheaf

associated to the presheaf {U 7→ IC
p
n−•(U)}. Then IC•p is a complex of c−soft sheaves (so

c−acyclic). Moreover we have :

IH•
c(A;IC•

p) = IH
p
n−•(A;R).

Proposition 3.2 (Proposition 2.4 of [GM83]) Let A be an n-pseudo-manifold, x any point
in a stratum Xk of A of dimension k and Lx the link of Xk at x in A. The fibre of the complex
of derived sheaves H•(IC•

p) is given by :

Hi(IC•
p)x =















{

IH
p
n−i−k−1(Lx) if i ≤ pn−k

0 otherwise
if x ∈ Xk ⊂ A \ Areg

{

R if i = 0
0 otherwise

if x ∈ Xn ⊂ Areg.

As usual the Euler-Poincaré characteristic in intersection homology Iχp
c(A) of an n-pseudo-

manifold A is the Euler-Poincaré characteristic with compact supports of the complex of sheaves
IC•p multiplied by (−1)n, i.e. Iχp

c(A) = (−1)nχc(A;IC•
p).

Theorem 3.1 Let A be an n-pseudo-manifold such that (A,A) is compactifiable, N the number
of connected components of strata of A and p a perversity.
We have :

Iχp
c(A) =

N
∑

i=1

(−1)nχc(Xi)

pn−dim Xi
∑

j=0

(−1)jrg IH
p
n−j−dimXi−1(Lxi

;R)

where xi is an arbitrary point of Xi for 1 ≤ i ≤ N and we make the convention that rg IH
p
−1(Lxi

;R) =
1 if dim Xi = n.

Proof. Application of theorem 2.1 and proposition 3.2.

Remark. As in theorem 2.1 we can weaken the hypothesis by only assuming the existence of a
(finite) triangulation compatible with the stratification.

Proposition 3.3 Let A be a 2n-pseudo-manifold such that (A,A) is compactifiable, the dimen-
sion of strata being even and let m be the middle perversity. We have :

Iχm
c (A) =

n
∑

i=0

Ni
∑

k=1

χc(X
2i
k )

n−i−1
∑

j=0

(−1)jrg IHm
2n−j−2i−1(Lxi

k

;R)

where we have written X2i
k (resp. Ni) for the k-th connected component of the stratum (resp.

number of connected components of the stratum) of dimension 2i, xk
i an arbitrary point of X2i

k

and χc(X) =
dimX
∑

i=0

(−1)irg Hc
i (X;R).

Proof. We apply theorem 2.1 with p = m and we remark that χc(X) = χc(X) for a manifold X

of even dimension.
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4 Totally radial and semi-radial vector fields on abstract strat-

ified sets

M.-H. Schwartz constructed certain frame fields to define (by obstruction) her Chern-Schwartz
classes in the cohomology of a singular complex analytic variety equipped with a Whitney
stratification [Sch65a], [Sch65b]. These were called radial fields. When one is concerned with
1-frame fields (i.e. vector fields), they are called radial vector fields. She showed that they
verified a Poincaré-Hopf formula [Sch86], [Sch91].

This section is an easy transcription to abstract stratified sets of some notions and results
of [KT06] which were given in the more general setting of “mapping cylinder stratified space
with boundary”. In their paper, H. King and D. Trotman extend M.-H. Schwartz’s work on
Poincaré-Hopf formulas, to more general spaces, and to generic vector fields. Notice that abstract
stratified sets are not (necessarily) embedded nor are vector fields (necessarily) continuous.

Definition 4.1 ([KT06]) Let (A,A) be an abstract stratified set and v a stratified vector field
on A ([Mat70],[Mat73], [Tho69], [Ver84]). We say that v is a totally radial vector field if for all
strata X ∈ A there exists a neighborhood UX of X in the control tube TX such that dρX(v) > 0
on UX \ X (i.e. v is pointing outwards with respect to the level hypersurfaces of the control
function ρX).

In [KT06] such a vector field was called radial. To avoid confusion with the radial vector fields
of M.-H. Schwartz, we have adopted the terminology totally radial, which also expresses the fact
that one imposes that dρX(v) > 0 on a whole neighborhood UX of X in TX . The analoguous
condition is only imposed on a neighbourhood of some closed subset of X by M.H. Schwartz. See
[Sim95] for a detailed discussion of the differences between the radial fields of [Sch86], [Sch91]
and the radial fields of [KT06], called totally radial here.

Proposition 4.1 Let (A,A) be an abstract stratified set and Y a stratum of A. Then there
exists a vector field ξY on TY \ Y such that :

for all y in TY \ Y we have

{

ρY ∗y(ξY ) = 1
ρX∗y(ξY ) = 0 if X < Y .

Proof. It suffices to consider the stratified submersion (πY , ρY ) : TY \ Y → Y × IR∗
+ and to lift

the constant field (0, ∂t) to a field ξY on TY \Y . Thanks to the compatibility conditions, we see
that ρX∗(ξY ) = 0 for X < Y .

Definition 4.2 ([KT06]) Let (A,A) be an abstract stratified set, v a stratified vector field
on A and Y a stratum of A. Let (Yi)1≤i≤m be the strata such that Y < Yi. Set BY (v) =
{x ∈ TY \ Y |(∃ci ∈ IR−|0 ≤ i ≤ m) : v(y) = c0ξY (y) +

∑m
j=1 ciξYi

(y) with c0 < 0}. A point

x ∈ BY (v) ∩ Y is called a virtual zero of v.

Definition 4.3 ([KT06]) Let (A,A) be an abstract stratified set and v a stratified vector field
on A. Then v is called semi-radial if v has no virtual zero.

Examples. Totally radial vector fields, and controlled vector fields, are semi-radial.

Definition 4.4 Let (A,A) be a compactifiable stratified set, (B,B) a compactification of A such
that A ⊆ B and v a stratified vector field on A. We say that v is strongly totally radial (resp.
strongly semi-radial) if and only if there exists a totally radial (resp. semi-radial) extension u

of v to (B,B).
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Lemma 4.1 ([KT06]) Let (A,A) be an abstract stratified set (resp. compactifiable stratified
set) and v a semi-radial (resp. strongly semi-radial) vector field with isolated singularities on A.
Then there exists a (resp. strongly) totally radial vector field v′ having the same singularities as
v and the same indices at these points.

5 Towards a Poincaré-Hopf theorem

Definition 5.1 Let A be an n-pseudo-manifold, p a perversity and x a point of a stratum X.
We call multiplicity of A at x for perversity p the following integer :

mp
x(A) =











n
∑

i=n−pn−dimX

(−1)irg IH
p
i−dimX−1(Lx;R) if x ∈ A \ Areg

(−1)n if x ∈ Areg.

Remark. The multiplicity is nothing else than Iχp
c(A,A−{x}) (which equals (−1)n if x ∈ Areg).

Definition 5.2 Let A be an n-pseudo-manifold such that (A,A) is a compactifiable abstract
stratied set, p a perversity and v a stratified vector field having an isolated singularity at x ∈ X.
We call singular index of v at x, and we denote by Indp(v, x) the integer:

Indp(v, x) = mp
x(A).Ind(v, x).

Recall that if the stratum X is reduced to a point, then Ind(v, x) = 1.

Theorem 5.1 Let A be an n-pseudo-manifold such that (A,A) is a compactifiable abstract
stratified set, p a perversity and v a strongly semi-radial vector field admitting a finite number
of singularities on A. We have :

Iχp
c(A) =

∑

v(x)=0

Indp(v, x).

Proof. As in [Bek92], for all strata X of A, let fX be a carpeting function, i.e. let Ub(X)

be a neighborhood of b(X) = X \ X in X, and let fX : Ub(X) → IR+ be a continuous function
(constructed using the control functions {ρX}X⊆A induced by the compactification of A), smooth
on the stratum X such that f−1

X (0) = b(X) and fX |Ub(X)∩X is submersive. Now, apply lemma

4.1 to v; this gives a totally radial vector field v′. Then we remark that if v′ is a totally
radial vector field, for all strata X, v′ is entering X≥ǫ = X \ {fX < ǫ} along ∂Xǫ for ǫ small
enough, where the symbol ∂Xǫ denotes the level hypersurface {fX = ǫ}. This is because
grad(fX) =

∑

Y <X aY .grad(ρY ), where the aY are non-negative smooth functions, at every point
of X. So we have χc(X≥ǫ)−χc(∂Xǫ) =

∑

v′(x)=0 Ind(v′, x) thanks to the classical Poincaré-Hopf
theorem. Finally, we have χc(M) = χc(M) − χc(∂M) for every compactifiable manifold M by
adding a boundary ∂M . Use the “additivity” formula of theorem 3.1 and the definition of the
singular index to complete the proof.

6 A few examples

In the following computations, as we are only interested in the rank of intersection homology
groups, we shall take R = Ql and work with the dimension of Ql −vector spaces. Moreover, this
will permit us to apply Poincaré duality to calculate some associated groups. In the remainder of
the text, T 2 will denote the torus S1 ×S1. The stratifications of spaces will be the evident ones
and we shall not go into details. See [Ba84] for classical tools to compute IH• of the following
spaces.
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6.1 An inevitable example : the pinched torus T
2
p

We have a unique perversity p = 0 and we have evidently a totally radial vector field u on T 2
p

with a unique singularity at the isolated singular point x0 of T 2
p , of indice 1. The link at this

point is Lx0 = S1 ⊔ S1. We have :

IH0
i (T 2

p ) =







Ql si i = 2
0 si i = 1
Ql si i = 0

so that
Iχ0(T 2

p ) = 2.

On the other hand :
m0

x0
(T 2

p ) = dim IH0
1 (Lx0)

= dim H1(S
1 ⊔ S1)

= 2.

Finally we have Iχ0(T 2
p ) = 2 = 2.1 = Ind0(u, x0).

6.2 A well-known example : the suspension of the torus ΣT
2 (H. Poincaré,

1895)

This time, we have two different perversities 0 and t and two isolated singularities (which are
the two vertices of suspension). The link at these points is Lx0 = Lx1 = T 2. We still have a
totally radial vector field v with two singular points of indice 1 at singularities of ΣT 2. Remark
that this pseudo-manifold is normal so we have IHt

∗(ΣT 2) = H∗(ΣT 2), i.e.

IHt
i (ΣT 2) =















Ql if i = 3
Ql 2 if i = 2
0 if i = 1
Ql if i = 0.

Hence
Iχt(ΣT 2) = 2

and by duality we find

Iχ0(ΣT 2) = −2.

On the other hand :
m0

x0
(ΣT 2) = − dim IH0

2 (Lx0)
= − dimH2(T

2)
= −1

and
mt

x0
(ΣT 2) = dim IHt

1(Lx0) − dim IHt
2(Lx0)

= dimH1(T
2) − dim H2(T

2)
= 1.

Finally we have :

Iχ0(ΣT 2) = −2 = −1 − 1 = 2.Ind0(v, x0)

and
Iχt(ΣT 2) = 2 = 1 + 1 = 2.Indt(v, x0).
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6.3 A hybrid example : the suspension of the torus of dimension 3, twice
pinched, ΣT

3
2p

We have ΣT 3
2p = Σ(Σ(T 2 ⊔ T 2)). Here we have four perversities 0,m, n, t. Calculate to begin

with the homology of T 3
2p :

Hi(T
3
2p) =















Ql 2 si i = 3
Ql 4 if i = 2
Ql if i = 1
Ql if i = 0

.

Then its intersection homology is :

IH0
i (T 3

2p) =







Hi(T
3
2p) if i > 2

Im (Hi(T
2 ⊔ T 2) → Hi(T

3
2p)) if i = 2

Hi(T
2 ⊔ T 2) if i < 2

=















Ql 2 if i = 3
0 if i = 2
Ql 4 if i = 1
Ql 2 if i = 0

where we deduce

IHt
i (T

3
2p) =















Ql 2 if i = 3
Ql 4 if i = 2
0 if i = 1
Ql 2 if i = 0

.

And at last the intersection homology of the suspension ΣT 3
2p is :

IH
p
i (ΣT 3

2p) =











IH
p
i−1(T

3
2p) if i > 3 − p4

0 if i = 3 − p4

IH
p
i (T 3

2p) if i < 3 − p4

=

































































































Ql 2 if i = 4
0 if i = 3
0 if i = 2
Ql 4 if i = 1
Ql 2 if i = 0

if p = m



























Ql 2 if i = 4
0 if i = 3
0 if i = 2
Ql 4 if i = 1
Ql 2 if i = 0

if p = 0.

It is easy to construct a totally radial vector field w with four singularities : two at the vertices
of suspension, say x0, x1, of indice 1 and two others on strata of codimension 3, say x2, x3, of
indice −1. Links are Lx0 = Lx1 = T 3

2p and Lx2 = Lx3 = T 2 ⊔ T 2. Calculations of multiplicities
give :

mp
x0

(ΣT 3
2p) =























dim IHt
1(T

3
2p) − dim IHt

2(T
3
2p) + dim IHt

3(T
3
2p) = −2 if p = t

− dim IHt
2(T

3
2p) + dim IHt

3(T
3
2p) = −2 if p = n

− dim IH0
2 (T 3

2p) + dim IH0
3 (T 3

2p) = 2 if p = m

dim IH0
3 (T 3

2p) = 2 if p = 0
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and

mp
x2

(ΣT 3
2p) =















− dimH1(T
2 ⊔ T 2) + dim H2(T

2 ⊔ T 2) = −2 if p = t

− dimH1(T
2 ⊔ T 2) + dim H2(T

2 ⊔ T 2) = −2 if p = n

dimH2(T
2 ⊔ T 2) = 2 if p = m

dimH2(T
2 ⊔ T 2) = 2 if p = 0

.

Finally we have

Iχ0(ΣT 3
2p) = 0 = 2 + 2 + 2.(−1) + 2.(−1)

Iχm(ΣT 3
2p) = 0 = 2 + 2 − 2 − 2

Iχn(ΣT 3
2p) = 0 = −2 − 2 + (−2).(−1) + (−2).(−1)

Iχt(ΣT 3
2p) = 0 = −2 − 2 + 2 + 2.

7 A partial converse

We present here a partial converse to theorem 5.1 in the sense that we study when a stratified
set admits a strongly totally radial vector field without singularity. This result is in the line of
[Sul71], [Ver72] or [Sch91], [Sch92]. See also [Mat73], theorem 8.5. The result is partial because
of the example below. Indeed, it shows that we cannot expect the condition Iχp

c(A) = 0 to
imply the existence of a non singular totally radial vector field.

Theorem 7.1 Let A be a compactifiable n-pseudo-manifold. There exists a strongly totally
radial vector field (relatively to A) on A without singularity if and only if χc(X) = 0 for all
strata X of A.

Proof. To show sufficiency, we use the carpeting functions of the proof of theorem 5.1. Let v be a
strongly totally radial vector field on A with isolated singularities ; the vector field vX is entering
on the boundary ∂X≥ǫ (defined by a level hypersurface of a carpeting function). Remark that,
as χc(X) = 0, we can deform vX on X≥ǫ (without modifying it near ∂X≥ǫ) so as to have no
singularities ([Hir88]). We have evidently ρX∗(v) > 0 on TX \ X for all strata X. Necessity is
proved in an analogous manner.

Corollary 7.1 Let A be a compactifiable n-pseudo-manifold, stratified with strata of odd dimen-
sion. Then there exists a strongly totally radial vector field without singularity on A.

Remark. Existence of a totally radial vector field without singularity, on an abstract stratified
set, is equivalent to the existence of a controlled vector field without singularity.

Example. Finally, here is an example of a compact pseudo-manifold without strata of dimension
0 for which Iχp

c(A) = 0 for every perversity p and admitting no totally radial vector field without
a singularity. Consider A = Σ(T 3

2p) × S2 ; it is clear that Iχp(A;R) = 0 for all p. Nevertheless,

there does not exist a totally radial vector field without a singularity (look at strata {∗} × S2

or {∗∗} × S2). This is also evident as a consequence of theorem 7.1.
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