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Abstract

Product Driven Systems (PDS) architecture needdatimm systems [13]. Discrete events simulatiothisn often used to
build this emulation tool, but emulation model dgsis not a trivial task. Also, the goal of thisppa is the study of the
design of a simulation model by reducing its comiye According to theory of constraints, we wanot luild reduced
models composed exclusively by bottlenecks and wahenetwork. Particularly a multilayer perceptrds, used. The
structure of the network is determined by usingunimg procedure. This work focuses on the impécliscrete data on the
results. This approach is applied to sawmill in&supply chain.
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1 Introduction

In Manufacturing, Planning and Control processestfalized way to control physical flow in a Supfiain),
evaluation of planning or scheduling scenario byusation is very useful for the decision makersdded,
simulation highlights the evolution of the machirstates, the WIP (work in process), and the quetlbis
information is useful in order to perform a “Pradie scheduling” [8] or a rescheduling. On the othand, in
Product Driven processes (distributed way to cémingsical flow in a Supply Chain) dedicated arebitires are
implemented. These architectures consist of a ebsystem and an emulation system. The last owerisuseful

for PDS design and validation and for control scienavaluation. So, the PDS architectures requiesuse of
emulation models which are sufficiently precise fiepresenting correctly the system while remairgimyple in
order to decrease computing times. Discrete evemilagtion is also often used to build this emulatigystem,
but emulation model design, which is not a trivesk, relies on reusability, modularity and gerigriconcepts
[13]. At these levels of planning and control amd dstimate how the whole physical system works, the
“management of critical resources” (bottlenecks)ften pertinent [16]. Goldratt and Cox, in “The &0[6] put
forward the Theory of Constraints (TOC), which prses to manage the whole supply chain by bottleneck
control. Dynamic discrete events simulation of matedlow permits this management [12]. In factnsiation
models of actual industrial cases are often vempiex and the modellers encounter problems of gddlg
Also, many works have highlighted the interest $e simplest (reduced/aggregated) models of sirouldti, 2,
17]. In addition, neural networks have proved tladilities to extract performing models from expegital data
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[14]. So the use of neural networks appears recestlan interesting approach within the framewdrihe

supply chain [15]. Neural networks are generallgdug order to perform a mapping between contingpages.
However, in the considered cases, continuous Marigs length, speed ...) are mixed with discretesdias
category, colour ...). The main goal of this papébpimvestigate the impact of these discrete datthe learning
process and on the quality of neural model usedrder to reduce simulation models. This is studiadone
industrial example which is a sawmill flow shop €al the next part, the used approach of reductiodel and
the multilayer perceptron are presented. The thad will be devoted to the presentation of theustdal

application which is a sawmill flow shop case. Therth part presents the inputs and output datheheural
network, and the learning. The results are invagig in order to evaluate the comportment of thevork in

function of the considered data in the last part.

2 Themode reduction

2.1 The algorithm

Zeigler [18] has been the first to deal with theldem of model reduction. For Him, complexity ofrendel is
relative to the number of elements, connectionsraadel calculations. He suggests different waysinplify a
discrete simulation model, in replacing part of thedel by a random variable, in degrading the rasfgelues
taken by a variable and in grouping parts of a rhaogether. Innis et al. [7] first listed 17 sinfpdation
techniques for general modelling. Their approactommprised of four steps: hypotheses (identifyithportant
parts of the system), formulation (specify the mpdeoding (build the model) and experiments. Broaind
Tobias [1] suggest a “simplification of models” apach for cases where the indicators to be folloassthe
average throughput rates. Other cases have bediedstdhe reduction algorithm used [15] is an esi@m of
those presented by Thomas and Charpentier [13jrilisipal steps are recalled and explained below:

1. Identify structural bottleneck (work center (WC)ialtihfor several years has been mainly constrained i
capacity).

2. ldentify conjunctural bottleneck for the bundleMé&nufacturing Orders (MO) of the considered MPS.
3. Among the WC not listed in 1 and 2, identify theedsynchronisation WC) satisfying these conditions:
- present at least in one of the MO using a bottlenec
- widely used considering the whole MO.
4. If all MO have been considered go to 5 if not g&to

5. Use neural networks for model the intervals betwa&n which has been found during preceding steps
(figure 1).

0
BOTTL
wo | P I

Fig. 1. Reduction model algorithm

v

So, the Work Centers (WC) remaining in the modele&ither conjunctural or structural bottleneck$\ which
are vital to the synchronization of the MO. All ethWC are incorporated in “aggregated blocks” gastr or
downstream of the bottlenecks.
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“Conjunctural bottleneck” is a WC which is satudhfer the MPS and predictive scheduling in questitms is
to say that it uses all available capacity. Byustural bottleneck” we mean a WC which (in the pasis often
been in such a condition. Effectively, for one sfieportfolio (one specific MPS) there is only ohettleneck —
the most loaded WC — but this WC can be anothertN4@ the traditional bottlenecks.

“Synchronization work centers” are resources usdaly with bottlenecks for at least one MO anddiger the
planning of different MO which do not use bottlekeTo minimize the number of these “synchronizatieork
centers”, the WC which have the most in common agsball this bundle of MO using no bottlenecks arnich
figure in the routing of at least one MO using lasteck must be found.

In function of the variation of the MO, the botterk may vary. So, different structures should béopmed in
order to consider the different case occurring.

2.2 The multilayer perceptron

Works of Cybenko [3] and Funahashi [5] have protlet a multilayer neural network with only one hédd
layer using a sigmoidal activation function andcoatput layer using a linear activation function eguproximate
all non linear functions with the wanted accurathis result explains the great interest of thisety neural
network which is called multilayer perceptron (MLR) this research work, our hypothesis lies infda that a
part of the modelized production system could bpr@aamate by a non linear function obtained thatika
MLP. The structure of the multilayer perceptrorrésalled here. Its architecture is shown in figareThe i-th

0 0

neuron in the hidden layer (figure 2) receive@puts {xf,m,xno} with associated weighgpv il,-~-,wi?]0}. This

neuron first computes the weighted sum of thaputs:

Ng
zi = 3. Wih Xp + b} (1)

h=1
where bil is a bias or threshold term. The output of thermeis given by an activation function of the subj (
xt=glet) @
where g(.) is chosen as an hyperbolic tangent:

2 1-e
g(x) = -2X -1= -2x
1+e€ 1+e€

3)

Fig. 2. Architecture of the multilayer perceptron

The neuron in the last layer simply performs tHefeing sum, its activation function being choserehbr:

n
z= lewiz.xil+b2 (4)
i=1
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where Wi2 are the weights connecting the output of the hiddeurons with the output neuron arfdid the

threshold of the output neuron. Now, only the numbgk hidden neurons is always unknown. In order to
determine it, the learning starts from an overpataimed structure. A weight elimination method &ed to
remove spurious parameters [11]. The learning@MhP is performed in three steps:

- Initialisation of the weights of an oversized stwe by using the Nguyen Widrow algorithm [9].
- Learning of the parameters by using Levenberg-Mandjalgorithm with robust criterion [14].

- Weights elimination by using the algorithm proposgdsetiono [11].

3 Theoverview of the sawmill

At the time of the study, the considered sawmitl hacapacity of 270.000 m3 / year, a 52 millionosuurnover
and 300 employees. The sawmill objective is todfam logs into main and secondary products respeet
cutting plan. The considered cutting plan is présginto figure 3.

. Smaller diameter of the log
Main products

')"" 77
Secondary produc A )

Larger diameter of the log
(first and second passage)

Fig. 3. The cutting plan

The physical industrial production system is conggb®f sequential work centers (kockums saw, trimmer
sorter ...) and queues or conveyors (named respgcR@M4, RQM5, RQM?7 ...). The log enters the system i
RQML1 then it is steered to RQM4 or 5 accordingsacharacteristics. After that, it passes to th@rgumachine
(Canter). It then enters the edger. After this phéise log is transformed into main and secondesdyrcts. The
final operation is the cross cutting which consistgutting up products to length. Two importardpst occur
during this process. The first one is the choicthefconveyors RQM4 or RQMS5 in order to store thréval log.

In function of this choice, the time spending bg thg to wait the Canter saw may be very differé@hie second
one is the type of product considered. When th&nguplan is considered, two types of products appmain
and secondary ones. Only the secondary products tawse the kockums saw when secondary and main
products use the trimmer. However, when the physichustrial system is considered, three typesrofipcts
have to be considered. In fact the Cutting mactiaster works into three steps. First, one saw (CBEMHKs two
faces of the considered log and produces the teonskary products (hatched on figure 3). These twalycts
are driven to kockums saw in order to be finishiéelxt the log is rotated of 90° and stored into @yor RQM?7.
After that, the log is driven once again to the amachine. The saw (CSMK) cuts the two other aufethe
log, and produces the two other secondary produttieh are driven to kockums saw. At this time, a
parallelepiped is obtained which is divided intoetth main products by another saw (MKV). The madpcts
are finally driven to the trimmer.
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4  Thesimulation model

4.1  The complete model

During preceding works [12] the complete model ted sawmill process has been constructed. This misdel
presented figure 4. It is composed of different mled. The first one serves to model the log arrivhich
follows a homogeneous Poisson process. In this lapthe characteristics of the log which are meadiny a
scanner are associated with it. A second moduke,“itiput sorter”, directs the log to RQM4 or RQMS i
function of its characteristics as explain in threqeding part. It may also eject the log of thecpss if it is
machine gunned or if its dimensions are out of eafithe logs go to the next module which modelsRiM4
and RQM5 queues. Conveyors RQM4, RQM5 and even R@ive of input inventory for the canter line. So a
policy is needed in order to determine the priofitly choosing between these conveyors the nextre&med by
the Canter line. Two modules are used for the sitrad of the canter line and the passage of tharsguin
RQM?7. Canter line model uses two sub-models fomth@agement of main and secondary products. Clamger
has three outputs which lead to kockums line fersicondary products and to trimmer line for thanroaes.

Log
arrival Canter line ‘
= |
® = | =1 Sorter
= B Kockums saw Trimmer

| i
1 I
1
T JCE—I = La L“ = IFL-@EHiféljF
= L = —EHE et e e e EI B
Input sorter : |

Fig. 4. The complete model

@ Log arrival Trimmer =1 Sorter
— (]
i 1 —]
= o2-8 = T=E— %
Input sorter =]
e
= Lljj—¢
Neural Network —0]

Fig. 5. The reduced model

4.2 The reduced model

As we can see, the design of a complete modeh#osimulation of a workshop is a difficult task aihileads to
a complex model. Somewhere else, the bottlenedkisfline is the trimmer [12], and to optimise thge of
bottleneck is the main industrial objective accogdio theory of constraints concept [6]. Consedyesand
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within this framework, modelled the functioninginfentories RQM4 RQM5 and RQM7 and of the cantez Is
unnecessary. Also, all the part surrounded by deshed line on figure 4 gives no direct and useformation
for the evaluation of a MPS. In fact, only the aatitimes of the products in trimmer queue are ulsaforder to
simulate the load of this bottleneck. Also a maitédr perceptron is used to replace all the parbsaded by
grey dashed line on figure 4. Then neural netwsdstthe available shop floor information. The rediy@and so,
simplified model is presented on figure 5. The dateration of the neural model is the core of thelgbem.

4.3 The data and the learning

Neural model is a black box obtained with a sugeilearning of a non linear relation between irgma output
data sets. For this, we need to collect the avVeileiput data of the process and to determine #s&red output
[15]. First, each log gives information which idleoted by a scanner in input of the canter lingisTnformation

is relating to the product dimension, as length)(hgd three values for timber diameter (diaPB Gdia;
diaMQY). These variables serve to control the lodRQM4 or RQM5 queues which is additional inforroati
(RQM). In addition of this dimensional informatiowe have to characterise the process variabldsedime of
the log arrival. Particularly, the input stock be&ttrimmer (Q_trim), the utilisation rate of th@rtmer (U_trim)
and the number of logs present in the differentvegars RQM4, RQM5 and RQM7 (Q_rgm4; Q_rgmb;
Q_rgm?7) must be taken. Moreover, the sum of thesaber is also used (Q_rgm = Q_rgm4+Q_rgm5+Q_rgm?7).
The last type of information is related to the ioigttplan of the logs. In fact, each log will be @uib n main or
secondary products. In our application, the cuttitagn (figure 3) divides the log into 7 products:

- 2 secondary products resulting from the first stbputting process on saw CSMK of the canter line,

- 2 secondary products resulting from the second stifing process on saw CSMK of the canter line
after staying in the RQM7 queue,

- 3 main products resulting from the third step dfiog process on saw MKV of the canter line.

These two saws (CSMK and MKYV) belong to the cafitez. These 7 products can be classified into three
categories according to the location (CSMK or MKaAf)d the time during the cutting process (first eond
cutting). This information is given by the varialfle_piece) which can take as values typel type2ypeB. The
last information is the thickness (in mm) of thegbuct which is also the reference. In our caseangdaking into
account only two references: main products 75; isga&y products 25 (ref). However, preceding works] [
have shown that this data has no impact on thétrasd so it will no be taken into account. Consagly, the
neural networks input variables are: Lg; diaGB;Mbg; diaPB; T_piece; Q_trim; U_trim; Q_rgm; Q_rgm4;
Q_rgm5; Q_rgm7; RQM. In our application 12775 pratduare simulated. Among these 12 inputs data, two
different categories exist:

- Continuous one (quantitative) [Lg; diaGB; diaMoya®B; Q_trim; U_trim; Q_rgm; Q_rgm4; Q_rgmb5;
Q_rgm7]. These data are continuous ones and seediradapted to be used by learning procedure.

- Discrete one (qualitative) [T_piece; RQM]. Thesé¢adare qualitative. So the study of their impact on
the learning process is the core of this paper.

Our objective is to estimate the dela@yl]j corresponding to the duration of the throughioue for the 12775
products AT is measured between the process input time anttithmer queue input time. In practi@ is the
output of the neural network:

ni 12
AT=2w%.g[2w%h.xﬁ+b%)+b2 ©)
i=1 h=1

The learning of the network is supervised. Sos ihécessary to divide the database into two datadsetrning
and validation ones. Only the number of hidden oesitis always unknown and should be determinedrder
to determine it, the learning starts from an oveapeetrized structure and a weight elimination meétisoused to
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remove spurious parameters [11]. The initial oveapeetrized structure used 10 hidden neurons. 8deérning
begins with a structure using=a.0 hidden neurons (5) which correspond to 141maters.

5 Theresaults

The learning approach corresponds to a local seafrehminimum. So, in function of the initial weigh the
results may be different. In order to evaluatedispersion of the results, 30 different sets dfals weights are
used. In a first step, all the input data are preskto the network in order to produce the motteh second
step, in order to improve the results, a secondaogmh will be presented.

5.1 First approach

Table 1
Learning residual Learning residual Validation residual Validation residual
Mean StD Mean StD

Mean 78.61 586.09 74.33 582.06

StD  43.94 146.50 41.61 145.44

Min 17.11 408.45 12.35 413.93

Max 213.08 1168.80 206.75 1170.93

The 30 learning on the different weights sets Hzeen performed with the 12 inputs and the 10 hiddamons.
In the table 1, the mean and the standard deviatighe residuals obtained on the learning andvielation
data sets are presented.

(s) (s) T
6000 [ 1 5000 |-
H
sooo 4000
i
4000 - 2000 g
3000 [ H
2000 !
2000 [ 7
1000
1000 [ 7
0 ° | I
¥
-1000
-1000
2000, w000 o0 w0 e w00 w0 Product umber 20005 : 5 (RQM)
Fig. 6. Residual obtained on the learning data s Fig. 7. Residual ftioe of RQM

These results shows that the residuals obtainedlamys bad. In particular, the mean of the redidbtained
may vary, in function of the initial weights fron¥ ll1s to 213.08s on the learning data set. Fowalidation
data set, the results are very similar, with a mefaresidual varying from 12.35s to 206.75s. It t&nnoticed
that the mean of the residuals is lower than 30@mlg 10% of the cases in learning and 16.67% efd#ses in
validation. Concerning the standard deviation valukey are large and varying from 408.45 to 1168c&he
learning data set and from 413.93 to 1170.93 fenvtdidation data set. These two facts show theatearning is
not efficient. Figure 6 shows an example of redidifaracteristic of those obtained on the validatand
learning data sets for the 30 different initial gigs. The residual presented figure 6 shows cldhdy some
dynamics of the input data are not taken into astothis fact may be due to different causes: Sermdicative
variables aren’t present in the input data, orrthmber of hidden neuron is not sufficient, or tieeinal network
doesn’t succeed to learn some dynamics.
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Other tries with much more hidden neurones (up 3p Bave shown that 10 hidden neurons are sufficient
Moreover, the pruning algorithm prunes some of ¢hies hidden neurons into 56% of the cases. Inrdade
determine if some dynamics presents in the datdtaeden into account by the learning, the cotielabetween
the different inputs and the residuals can be pedd on the learning data set (table 2). The takjeesents the
mean, standard deviation, minimal and maximal \&lok the absolute value of the correlation coeffits
obtained between the 30 residuals and the 12 inputke learning data set. Similar results canltained on
the validation data set. These results are verylasiwith those obtained on the validation data #etan be
noticed that Lg, diaGB, diaMoy, T_piece, U_trim ggats a correlation coefficient with residuals Wwhig never
significant (always smaller than 0.0959). U_trim, r@m, Q_rgm5, Q _rgm7 present a minimal value of
correlation to 0 because the pruning algorithmsame case have pruned these inputs. Only two irlpaite
always a significant coefficient correlation withetresidual: diaPB and RQM. So, on the two discirgtets,

T _piece and RQM, the correlation coefficients shbat the dynamic of the first one is well takerpiaccount
by the network when the RQM not. However, these data are discrete ones. So, the correlation $atthe
most significant. Figure 7 presents an examplenefresiduals in function of RQM. It can be notithdt two
different residuals exist depending of the valugRgfM. So, in order to estimate the influence of RQMthe
residual the best approach is to compare thessdwples.

Table 2

Lg diaGB diaMoydiaPB T piec&® trim U trim Q rgm Q_rgm@® rgm5Q rgm7RQM
mean 0.0354 0.0118 0.0393 0.1619 0.0350 0.048498.020707 0.0628 0.0697 0.0525 0.2875
StD 0.0245 0.0096 0.0238 0.0692 0.0261 0.0324 0.0210467 0.0531 0.0456 0.0355 0.1310

Min 0.0002 0.0013 0.0014 0.064 0.0001 0.0002 O 0 00Zp O 0 0.1124
Max  0.0882 0.0342 0.0843 0.3411 0.0959 0.1172 ®0811774 0.2280 0.1831 0.1314 0.6706

For this, two tests can be performed. The firstisrtbe T Student test which tests if the two samplf mean,
andp, have the same mean. The null hypothesis (HO)taradternative (H1) are:

{HO: My —pp =0

HL: (©)
© M1~ H2 %0

The second test is the F Fisher test which isékie of the two variancesﬁqax and oﬁqin of the samples. The

null hypothesis (HO) and its alternative (H1) are:

{HO: 02max/o'rznin =1 7)

L2 2
H1: Gmax/omin >1
The table 3 presents the results of these two wéisa confidence of 95% and 99% for the two da@M and

T _piece for the 30 tries on the validation data Fae results on the learning data set are verjfasinThe data
T piece can take 3 values: typel; type2 and type3the F test and the T test have to be perfotmedy two.

Table 3

RQM T_piece 1-2 T _piece 2-3 T piece 1-3
F test T test F test T test F test T test Ftest tesT
Threshold 95%1.092 1.961 1.070 1.961 1.077 1.961 1.070 1.961
Reject HO 100% 100% 96.67%  73.33%  43.33% 76.67% 6796. 66.67%
threshold 99% 1.130 2.583 1.101 2.583 1.127 2.583 .101 2.583
Reject HO 100% 100% 93.33% 60% 10% 63.33%  90% 36.67

These results show that RQM has an important inflaeon residual. Even with a confidence interva®@#6 no
relation can be found between residuals obtaindd RQM=4 and RQM=5. This is not the case with the
T_piece data because the hypothesis of equalityeain (T test) is often not rejected and even tipetmesis of
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equality of variance (F test) is accepted to 90%veen T_piece type2 and type3 with a confidencervat of
99%.

5.2 Second approach

The RQM data has a great influence on the systé@m.cbmportment of the system is very different@WR is 4

or if RQM is 5. So, an approach to deal with ttastfis to make two different models in order to elotthe
comportment of the system in these two cases amswvitch from one to another with the value of RQNMhis
approach can be related to the multiple-model aagrd4]. Two neural models have to be learned bygus
respectively the RQM=4 data uniquely and the RQMkba uniquely. These two neural networks have 11
inputs: Lg; diaGB; diaMoy; diaPB; T_piece; Q_triit; trim; Q_rgm; Q_rgm4; Q_rgm5; Q_rgm?7. The learning
begins with a structure using=.0 hidden neurons (5) which correspond to 131maters. 30 different sets of
initials weights are used. The table 4 presentsrban and the standard deviation of the residuatireed on
the learning and the validation data sets by usmguely RQM=4 data and RQM=5 data.

Table 4
RQM =4 RQM =5

Learning Learning Validation Validation Learning Learning Validation Validation

residual residual residual residual residual residual residual residual

Mean StD Mean StD Mean StD Mean StD
Meanl2.36 478.00 8.40 528.33 7.22 332.80 7.75 335.54
StD 13.15 66.30 13.88 64.08 19.99 42.64 19.35 2811.
Min -3.68 352.33 -19.55 376.15 -39.92 291.57 .287 291.83
(abs)0.17 0.33 0.02 1.02
Max 35.09 620.01 34.28 678.21 33.48 485.03 33.95 2.418
Table 5

Lg diaGB diaMoy diaPB T piece Q trim U trim Q rqm® rgm4Q rgm5Q_rgm?7
mean  0.0225 0.0366 0.0371 0.0225 0.0257 0.0263 89.00.0135 0.0157 0.0283 0.0168
StD 0.0313 0.0262 0.0262 0.0237 0.0227 0.0174 @0200134 0.0132 0.0216 0.0106
Min 0.0005 0.0007 0.0020 0.0011 0.0000 0.0016 @1000.0005 0.0003 0.0002 0.0011
Max 0.1305 0.0854 0.0870 0.1093 0.1123 0.0653 @Q.0M0397 0.0451 0.0798 0.0398

Table 6

Lg diaGB diaMoy DiaPB T piece Q trim U _trim Q rgn® rgm4Q rgm5Q_rgm7
mean 0.0135 0.0195 0.0227 0.0189 0.0405 0.0501 75.02.0770 0.0722 0.0623 0.0530
StD 0.0257 0.0213 0.0272 0.0314 0.0453 0.0566 @.02B0682 0.0695 0.0609 0.0445
Min 0.0009 0.0009 0.0002 0.0000 0.0000 0.0012 @00Q.0000 0.0000 0.0020 0.0005
Max 0.1058 0.0760 0.1053 0.1326 0.1330 0.2267 @O0922211 0.1847 0.2349 0.1577

The line (abs) presents the minimum of the meaabiolute value. It can be noticed that these vavewyery
close to 0 to be compared with the results predetaigle 1 where the mean value is always greater 112.35s.
These results show that neural models presentsimilar residuals. In particular, the mean of thsiduals is in
the worst case, to 35.09s for the RQM=4 data an8385s for the RQM=5 data. These results are to be
compared with those presented table 1 where the wiethe residuals moves from 12.35s to 213.08svérate
only 10% of the cases in learning and 16.67% ofctee in validation give a mean lower than 30srtter to
determine if some dynamics present in the data'tataken into account by the learning of the twaurs
models, the correlation between the different ispand the residuals can be performed on the lgadata set
for the RQM=4 data(table 5) and for the RQM=5 dgble 6). Similar results can be obtained on telation



IESM 2009, MONTREAL — CANADA, May 13 - 15

data set. The table 5 and 6 present the mean,asthdg@viation, minimal and maximal values of thedabte

value of the correlation coefficients obtained kestw the 30 residuals and the 11 inputs on theilgpdata set
for the RQM=4 neural network and the RQM=5 neuetivork respectively. It can be noticed that, for thvo

neural models, no input is significantly correlateith the residual. In the worst case, the coriatatoefficient
obtained between Q_rgmb5 input and the residuath®RQM=5 neural network is of 0.2349. However, tfos

input, in 76.67% of the cases, the correlation facieht is lower than 0.01.

6  Epilogue

The use of neural network in order to construct@duced model of emulation is investigated herehWithis
framework, this paper focuses on the impact ofrdiscdata on the learning results of the neuralahdthe
results have shown that some discrete data (T )oaeeperfectly taken into account without adaptatiThis
can be explained by the fact that, even if, théserete data are useful for the comprehensione§yistem, they
don’t produce some very different comportment andingque neural model can explain all its evolution.
However, some discrete data (RQM) implies that sdifierent comportments of the process occur. Thizde
imply that different models should be used in orlemodel all the system. Our perspectives ar@vestigate
how to use these discrete data in the best wayvaldate this approach on different applicationesadn
addition, the system modelised may be changinthigncase, it may be interesting to use an onléaeing rule
in order to adapt the neural model to the evolutiamother perspective will be to investigate theatdages and
disadvantages of this reduction model algorithm garatively to a complete model. The computing tinwds
be particularly studied.
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