N
N

N

HAL

open science

KauNet: Improving Reproducibility for Wireless and
Mobile Research

Johan Garcia, Emmanuel Conchon, Tanguy Pérennou, Anna Brunstrom

» To cite this version:

Johan Garcia, Emmanuel Conchon, Tanguy Pérennou, Anna Brunstrom. KauNet: Improving Repro-
ducibility for Wireless and Mobile Research. MobiEval 2007, Jun 2007, Puerto Rico, United States.

p.21-26. hal-00388795

HAL Id: hal-00388795
https://hal.science/hal-00388795
Submitted on 27 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00388795
https://hal.archives-ouvertes.fr

KauNet: Improving Reproducibility for Wireless
and Mobile Research

Johan Garcia
Karlstad University / ENSICA
Universitetsgatan 2

. Karlstad, Sweden
johan.garcia@kau.se

Emmanuel Conchon
LAAS-CNRS / ENSICA
7 avenue de Colonel Roche
Toulouse, France
econchon@ensica.fr

Tanguy Pérennou
LAAS-CNRS / ENSICA
7 avenue de Colonel Roche
Toulouse, France
perennou@ensica.fr

Anna Brunstrom
Karlstad University
Universitetsgatan 2
Karlstad, Sweden
anna.brunstrom@kau.se

ABSTRACT

This paper presents the KauNet emulation system that pro-
vides pattern-based emulation. KauNet enables bit precise
placement of bit-errors, exact and repeatable packet losses,
delays and bandwidth variations. The design and perfor-
mance of KauNet is discussed. An example is also provided
of how it can be integrated in a specific emulation framework
to enhance emulation for mobile and wireless systems.

Categories and Subject Descriptors

C.2.m [Computer-Communication Networks]: Miscel-
laneous— Emulation; C.4 [Computer Systems Organi-
zation]: Performance of Systems

General Terms

Experimentation, Performance, Verification

Keywords
Network emulation, Pattern files, W-NINE

1. INTRODUCTION

Wireless and mobile networks provide their users with new
levels of convenience, flexibility and freedom. New tech-
nologies and continuous research promise more connectivity
and higher bandwidths. When developing and researching
new technologies and architectures, means to assess their
performance is paramount. However, evaluating the perfor-
mance of wireless and mobile systems is challenging due to
the complexities and number of variables involved. Perfor-
mance can be evaluated by several metrics and at several
levels of abstraction ranging from analytical evaluation, via

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MobiEval’07, June 11, 2007, San Juan, Puerto Rico, USA.

Copyright 2007 ACM 978-1-59593-762-9/07/0006 ...$5.00.

simulation or experiments in an emulated environment, up
to full scale live experiments. Each of these approaches pro-
vides different trade offs with regards to the amount of detail
considered, model validation requirements, degree of exper-
imental control, reproducibility, and so on. In many cases
the approaches are complementary and can provide differ-
ent insights about the topic under study. In this paper we
focus on the emulation approach and present the KauNet
emulation system that enables a new degree of control and
reproducibility, and thus provides a slightly different trade
off compared to most other emulation systems. By employ-
ing fine-grained pattern-based control over the emulated be-
havior, KauNet enables emulation-based experiments with
a high degree of control and reproducibility of the emulated
conditions. The system is flexible with regards to the origin
of the patterns which can be created from collected traces,
previous simulations or analytical expressions.

The design of KaulNet is centered around a number of
pattern-handling extensions to the well known Dummynet
emulator [13], together with user-space programs for pat-
tern creation and management. The use of Dummynet as
a starting point provides a stable code-base that has been
in wide-spread use for several years, as well as the integra-
tion with the ipfw program for emulation setup and man-
agement. Dummynet has the ability to loose packets and to
apply bandwidth restrictions and delays to the packets, thus
emulating the desired link or network conditions. KauNet
extends these abilities by also including the ability to in-
troduce bit-errors. Furthermore, KaulNet allows determinis-
tic losses in addition to the probabilistic losses provided by
Dummynet. In fact, KauNet allows bit-errors, packet losses,
delay and bandwidth changes to be exactly and reproducibly
controlled on a per packet or per-millisecond basis with the
use of patterns.

With regards to emulating multiple connections or links,
KauNet inherits the Dummynet firewall rule capabilities that
are specified with ipfw. These capabilities make it easy to
create multiple emulated flows emulating for example the
effective bandwidths and delays for a set of nodes in a mo-
bile network. When the nodes move around their effective
conditions change, and the conditions in the emulated en-
vironment should change over time to reflect this. While
Dummynet allows emulated conditions to be changed dur-

ing the run of the emulation, these changes must be done
using command line tools (typically under the control of a
script). Using regular Dummynet, there would be a need
to precisely synchronize the invocation and execution of the
command line tools in order to try and create an exact re-
production from one experimental run to the other. In-
stead of using command line tools to change the emulated
conditions, KauNet uses patterns that describe the desired
changes and also allow precise control over packet loss and
bit-errors. These patterns are inserted into the KauNet ker-
nel space at the start of the emulation, and allows a much
more exact control of when the conditions change. Thus the
fine-grained control over the evolution is under the control of
the patterns, but higher-level dynamic events can still be in-
corporated by using the command line tools to dynamically
switch between multiple patterns.

While this papers focus on KauNet in the context of eval-
uation of mobile and wireless systems, it should be noted
that KaulNet is more generally applicable. It is also useful
as a help for protocol implementation verification, and for
general transport layer and application layer performance
evaluations. KaulNet has for example been used to examine
web service response times, see [6].

The rest of the paper is structured as follows. Section 2
provides some background and discusses related work. Sec-
tion 3 presents a more detailed description of the design
and capabilities of the KauNet system. Section 4 gives an
example of how integration between KauNet and a pattern-
generation and emulation control system can be performed.
Finally, some conclusions are provided.

2. BACKGROUND AND RELATED WORK

When evaluating performance there are four common ap-
proaches; analytical modeling, simulation, emulation and
live network experiments.

Analytical modeling tries to describe the essential behav-
ior of an entity (such as a network) with a mathematical
expression that given some input parameters, provides some
metric of interest. When a suitable expression has been de-
rived, it can then easily be used to predict the performance
of the entity under a range of conditions. However, in order
to create a tractable formula the expression must often be
simplified which introduces inaccuracies. This highlights the
importance of model verification to ensure that the model
does not deviate too much from the actual behavior. Never-
theless, modeling can be useful to get approximate behavior
that can be mathematically analyzed.

The simulation approach also uses abstract representa-
tions of the entity under study, but in this case the ab-
stractions are much more detailed and can include much
more of the functionality. Also with simulations, there is a
need to verify that the abstractions used in the simulation
are correct and representative. The simulation approach is
very flexible and can handle both small and large network
topologies. Simulation allows a large parameter space to be
explored and can provide considerable detail in the output.

In contrast to analytical modeling and simulation, the em-
ulation approach uses a mixture of real entities and abstrac-
tions. By attaching real entities to an emulator, all aspects
of the real entities are naturally captured. The emulator
contains an abstraction of some underlying entity, and mim-
ics the behavior of this emulated entity in real time. The
emulation approach can provide insights into various envi-

ronmental factors for the real entities such as possible in-
teraction effects with the operating system, device drivers
and communications hardware. However, emulation is typi-
cally less scalable in topology size and parameter space than
simulation.

The live network approach entails performing experiments
on a running communications network. This naturally in-
cludes all aspects, both at the endpoints and at the network
level. However, live experiments are hard to control and
repeat. Getting access to live networks to the extent nec-
essary may also be problematic in some instances. If the
experiments study a behavior that occurs only for specific
network conditions, this requires that these conditions can
be introduced in the live network, which may not always be
the case.

Considering network emulation, it has been used for quite
some time in the networking community, and there exists a
number of emulation packages. Dummynet [13] is a network
emulator originally designed for testing networking proto-
cols. It enforces queue and bandwidth limitations, delays,
and packet losses. It is implemented in the FreeBSD ker-
nel, and can be used on users workstations, or on dedicated
PCs acting as routers or bridges. Since Dummynet is in-
tegrated with the firewall functionality, packets can easily
be classified according to IP address, port number, type
of service, and other fields. Matching packets can then be
put into different pipes, where different pipes can have their
own parameters for bandwidth limitations, delays and loss
probability. A similar functionality is provided by NIST
Net [3], which allows a Linux PC to emulate a wide variety
of network conditions. These include tunable packet de-
lay distributions, bandwidth limitations, packet reordering
and packet duplication. Like in Dummynet, NIST Net in-
duces non-congestion related losses using a random process.
Neither emulator can introduce bit errors. Seawind [7] is
designed to study data transfer for a single user, mainly in
a cellular environment. Packet loss in Seawind can be based
upon various random distributions, but may also be based
upon a sequence in an external file.

Trace-driven approaches such as described in [9, 10, 11]
measure real traffic and then use the information in the em-
ulated scenario. In [9], probe packets are actively sent to
another host, and the delay and loss are measured. In [10,
11], traffic is passively observed and distilled traces can then
be used for example in the PaM [10] network emulator. PaM
can then drop, corrupt or delay intercepted packets, using
the distilled trace as a model representation of the time-
varying characteristics of the network.

Other related tools include EMPOWER [17] which is a
distributed emulation system capable of emulating large wire-
line and wireless networks, and it includes the EMWin [16]
emulator that is specifically designed to handle mobility is-
sues. NCTUnus [15] is a hybrid emulator and simulator capa-
ble of emulating a wide range of network devices and proto-
cols. Ns-2 [2] is a popular simulator that has been extended
with limited emulation capability [5]. However it primarily
remains a discrete event simulation tool.

A differentiating factor between previous trace-based em-
ulators and KauNet is the level of detail that the traces rep-
resent. While most other trace-driven emulators only use
traces to calculate parameters for stochastic generation of
delays and losses, KauNet traces can be used to control the
behavior of each individual packet with regards to bit-errors,

packet loss, delay, and effective bandwidth. The ability to
precisely control the conditions for each individual packet,
efficiently and for large numbers of packets, is the major
novelty of KaulNet.

3. KAUNET DESIGN

KauNet is composed of two major parts. Extensions to
the dummynet code inside the FreeBSD kernel, and tools to
create and manage pattern files.

3.1 Overview

KauNet extends the Dummynet functionality with the
ability to precisely position losses, introduce bit-errors, con-
trol delays and bandwidth changes. Using patterns, this
new functionality can be precisely controlled on a per packet
basis (data-driven mode), or a per millisecond basis (time-
driven mode). Compressed patterns are created ahead-of-
time and then inserted into kernel space under the control of
KauNet. During emulation these patterns are then “played”
to control the emulated behavior. During emulation setup
the ipfw command can be used to create multiple rules that
specify how different flows should be sent to different pipes,
which in turn have different patterns. This allows the emu-
lation of multiple hops using many different patterns.

3.2 Usage

This section provides a glimpse of how KauNet is con-
trolled and managed by the user. In order to control the
kernel part of KauNet, the ipfw pipe config command has
been extended with the following commands that applies to
a specified pipe:

pattern <filename>
This specifies the pattern file that should be used for setting
up a pattern.

pindex <pipe number> ber|pkt|del|bw

This specifies that a pipe should use the same pattern file
as used by another pipe for the specified patterntype. Note
that if the specified pipe number itself is redirected, the
pattern redirected to is used, i.e. redirections are transitive.
Each pipe has its own independent pointer into its current
position in the shared pattern.

appendpattern <filename>

This specifies a pattern that should be used once the cur-
rently running pattern is exhausted. When the end of the
current pattern is reached, the default behavior is to wrap-
around and start from the beginning of the same pattern.
The appendpattern command allows a new pattern to be
specified that will be seamlessly switched over to when the
end of the current pattern is reached.

[timedr|datadr]

These optional keywords explicitly specify which mode to
use for advancing the index of the pattern file preceding the
keyword in the command line. Normally the mode specified
in the pattern header is used, and this parameter is left out.
In some instances it may be desirable to override the mode
specified in the pattern file, which is possible with these key-
words. The time-driven mode advances the index once per
millisecond regardless of whether or not any data is trans-
ferred. For time-driven bit-errors the amount of movement
by the index is coupled to the bandwidth restriction used

in the same pipe. This restriction indicates how many bits
to process per millisecond. Other kinds of time-driven pat-
terns do not require a bandwidth restriction to be set since
they work only on a millisecond level and individual bits do
not need to be accounted for. For data-driven patterns the
index move forward one step for each packet, except for bit-
error patterns where the index is increased according to the
number of bits in the packet.

[nosync]

This optional keyword specifies that forwarding of the index
coupled to the time-driven pattern file should start imme-
diately, and not wait for the first packet to be transferred.
The default behavior is to wait until the first packet is re-
ceived, and then start the clock that controls the forwarding
of time-driven patterns.

3.3 Pattern Generation Tools

In addition to the kernel pattern management that is
handled by ipfw as described above, a command line tool
has been developed to create and manage patterns. The
patt_gen tool can generate patterns according to several
parametrized distributions. It is also capable of importing
uncompressed pattern descriptions from simple texts files.
These text-files can be written manually, or generated by
arbitrarily complex models, off-line simulators or trace col-
lection equipment. A detailed description of the patt_gen
tool can not be provided due to space restrictions. To com-

-+ Pattern Generator GUI [=1[o][x]
Pattern type
% Bit error ~~ Packet loss ~r Delay ~ Bandwidth

Pattem generation

~- Position ~» Random L L
~r Interval # Gilbert-Elliot L
Drive mode

% Data driven ~ Time driven

Gilbert-Elliot Parameter

Good state Bad state

Loss probability |0.00001 Loss probability (0015

Transition prob. [0.00001 Transition prob. |0.002

Random number generation
@ Use built in seed routine Seed: [0

Filename:

Size: (frooo Kilobytes
Cancel |

Create & Save Create & Show |

Figure 1: The pg_gui pattern creation GUI

plement the patt_gen tool a GUI called pg_gui was devel-
oped. The appearance of pg_gui is shown in Fig 1, where
the panels for bit-error pattern generation are shown. From
Fig 1 it can be seen that there are several possible generation
functions, but only some of them are active for bit-errors.
Using the GUI it is also possible to visually view the gener-
ated patterns and interactively explore various pattern gen-
eration parameters. Fig 2 shows an example of the pattern
generated by the settings shown in Fig 1. The figure shows

the distribution of bit-errors for the 2 Mbyte pattern, and
the vertical error streaks visualizes the bit-error aggregation
caused by the Gilbert-Elliot parameters. A considerable
part of the power and flexibility of the pattern approach,
however, lies in its ability to import patterns from other
sources via the command line tool as discussed in section 4.

Type: Biterror File: pg_guiTmp.patt Size: 2000 kButes

o
2
=3

w
@
£

1-1024 Bytes (1 kByte)
@
a
5}

0 500 1000 1500 2000

kBytes
1662, 77, 1304 .40

Figure 2: A visualized Gilbert-Elliot bit-error pat-
tern

3.4 Pattern and Scenario Files

The pattern files are stored and imported into the kernel
in a compressed format. This compressed format has several
components including:

e Pattern type. This byte indicate if the pattern was
produced to be used in time-driven or data-driven mode
and what pattern type it is.

e Pattern size. This unsigned integer specifies the length
of the pattern. The unit of the size is either kilobytes,
packets or milliseconds dependent on the type of pat-
tern in the pattern file.

e Indicator array. This array of shorts contains indicator
values. Each bit in the indicator array indicates if the
short at the corresponding position in the data array
contains a run-length value or a data value.

e Data array. This array contains shorts that are either
a run-length number indicating the distance to skip
(i.e run-length value) until the next short is evaluated,
or a data value whose semantics are dependent on the
pattern type.

The patt_gen utility natively generates this compressed for-
mat, but it can also import uncompressed numerical lists
or binary files and generate compressed pattern files from
these.

One pattern is necessary for each of the controllable as-
pects, i.e. bit-errors, packet losses, bandwidth changes and
delay changes. Since many experiments require simultane-
ous control of several aspects, multiple patterns need to be
managed. Consider for example the case of a handover,
where the worsening link conditions as a node moves away

from an access point might increase both delays and losses,
and possibly also induce bit-errors depending on the specific
emulated technology. To simplify the management of pat-
tern files and to allow simple packaging of several pattern
files, a scenario file format has been defined. A scenario file
is a concatenation of several pattern files with an additional
header. The scenario file header includes a scenario ID (SID)
and a free text field that contains a textual description of the
scenario. Scenario files are also created using the patt_gen
utility, and the user specifies the pattern files, the SID and
the free text. The SIDs are of special interest as the pro-
gram is designed to only accept SIDs which include a correct
checksum digit. The idea is that the SIDs should be used by
users who wish to make their scenario files publicly available
in order to share scenarios or simplify replication of their ex-
periments. We intend to distribute series of globally unique
SIDs to any interested researcher, and set up a repository of
scenario files and related scenario meta-information where
users can share their scenario files.

3.5 Emulation Performance and Scalability

Due to very efficient pattern handling inside the kernel,
the performance impact of the KauNet extensions are min-
imal. Initial experiments performed on a standard desktop
computer (2.4 GHz Dell OptiPlex, 512 Mb RAM) acting as
a gigabit Ethernet router shows that the maximum achiev-
able throughput goes down from approximately 368 Mbps
(circa 31 kppsl) when Dummynet/KauNet is not used, to
around 352 Mbps (circa 29 kpps) with KauNet enabled and
a bit-error pattern with a BER of 107°. This indicates that
moving forward in the pattern and applying the bit-errors 2
require very little overhead.

With regards to the memory requirements needed to keep
the patterns inside the kernel, it should be noted that the
patterns are stored using a run-length compressed format,
and that decompression occurs stepwise as the pattern in-
formation is consumed. As an example, take the storage re-
quirements needed for the 2 Mb bit-error pattern shown in
Fig 2. That specific pattern contains 1483 bit errors result-
ing in a BER of 9.1 x 1075, As an uncompressed bit-pattern
this pattern would need 2 Mb, expressing the loss positions
as a textual list requires 12285 bytes, and as a compressed
pattern the space required is 5234 bytes. The actual stor-
age requirement for a pattern is dependent on the type of
pattern and the amount of bit-errors, losses, etc. in the pat-
tern. We have successfully imported compressed patterns
over 20000 times the size of the example compressed pat-
tern described earlier (i.e. > 100Mb). This fact, in conjunc-
tion with the ability to seamlessly integrate a new pattern
when the current pattern is ended, minimizes the risk for
scalability problems due to the pattern data requirements
of KauNet.

Considering that the FreeBSD kernel is not a real-time
kernel, the exact timing of imposed packet delays cannot be
guaranteed if the system is overloaded. In the experimental
work performed so far with KauNet, this has not been a no-
ticeable problem. However, most of this work has not been
performed at heavy loads. Further examination of KaulNet
when emulating high bandwidths and at extreme loads are
part of our current work.

Ykpps=kilo packets per second

on average, there is one bit-error in every packet for this
experiment

4. PATTERN CREATION FOR MOBILITY

As previously mentioned, the ability of KauNet to pre-
cisely introduce delays, losses and bandwidth restrictions
based on pattern files greatly improves the reproducibility
of an experiment. The main difficulty is to obtain patterns
reflecting realistic conditions in a complex situation, e.g.
multiple mobile nodes communicating via a fading channel.
While writing such patterns from scratch is impossible, gen-
erating them using analytical models, simulations and/or
previously collected traces is possible.

For example, an analytical model was used to create the
patterns needed by KauNet to emulate a Land Mobile Satel-
lite (LMS) channel in the context of satellite IP video broad-
casting. Nine packet loss patterns corresponding to 3 differ-
ent mobile speeds (1.5, 15 or 30 m/s) and 3 different environ-
ments (suburban, light or heavy tree shadow) were used [1].
These patterns were dynamically loaded into KaulNet ac-
cording to the position and speed of an interactively guided
virtual mobile. This setup allowed to qualitatively demon-
strate the quality of the decoded H264 stream (300 kbps).

A more general approach can also be used to generate
patterns for mobile and wireless emulation. The remainder
of this section presents how such an approach was developed
by integrating KauNet in the emulation core of the W-NINE
wireless emulation platform.

4.1 W-NINE Overview

W-NINE (Wireless NINE, NINE standing for NINE Is
a Network Emulator [4, 12]), depicted in Figure 3, is an
IP-level wireless network emulation platform developed by
LAAS-CNRS and ENSICA. W-NINE aims at using accu-
rate and time-consuming models with a small time granu-
larity while respecting real-time constraints. For this pur-
pose, W-NINE proposes the use of a simulation stage prior
to emulation to reduce the number of events computed in
real time.

The simulation stage uses SWINE (Simulator for Wireless
Network Emulation), a dedicated wireless network simula-
tor, which computes all of the mobility and propagation as-
pects of a wireless network based on a high level description
of the experiment. In addition to mobility and propagation,
it also computes the quality of service that will be encoun-
tered at the IP-level according to the radio communication
technology used in the wireless network (e.g. 802.11b/g).
This evolution of quality of service over time is synthesized
in an emulation scenario that will then be read in real time
during the emulation.

The emulation stage relies on NINE, a fully centralized
emulation platform where experimentation nodes are con-
nected via a router /emulator with a dedicated Ethernet net-
work. An emulation manager periodically sends update
commands to the emulator to refresh the QoS according to
the simulated emulation scenario. All of these commands
are sent on an administration network so that this traffic
will not collide with the experimental traffic.

4.2 SWINE Architecture

To generate an emulation scenario SWINE uses a high
level description file provided by the end user. In this file,
the user specifies the number of nodes, the way they will
move, the obstacles and the models that represent the prop-
agation of the radio signal in the network. Finally, the end
user specifies the technology model and the communication-

W-NINE

Emulated Wireless
Network

((9)

- /
High level Emulation S~

descri(scena NINE @ @ Experimentation
node
XML SWINE ST m Administration| >
& e T Experimentation network

Emulation manager KauNe

Figure 3: The W-NINE platform

level behavior such as hidden terminals or handover mecha-
nisms that have to be considered for the network to emulate.

To compute the resulting emulation scenario, SWINE uses
three steps: a mobility step, a propagation step and a com-
munication step. At the end of each step, traces are gener-
ated and can then be reused in any other simulation.

The mobility step computes all the node positions at every
time step of the experiment. At the current time, SWINE is
able to deal with classical mobility models such as the ran-
dom waypoint model or group mobility models (e.g. pur-
sue mobility model). Other mechanisms such as obstacle
avoidance have been implemented to deal with the environ-
ment. In addition, a predefined path mobility model has
been implemented allowing every kind of mobility traces to
be fed into SWINE (e.g. traces produced by a dedicated mo-
bility simulator such as VanetMobiSim [8], an extension of
CanuMobisim [14] for vehicular mobility, or even the setdest
mobility tool used in Ns-2 [2]).

Based on the positions of the nodes, the propagation step
computes the radio signal strength for every pair of nodes of
the network at every time step of the experiment. Several
models have been considered to compute such a radio signal.
The large scale propagation model, such as the pathloss ex-
ponent model, mainly deals with the impact of the distance
on a radio communication. To manage the absorption of
the signal caused by the obstacles, some shadowing models
such as the lognormal shadowing model have been consid-
ered. Finally, fading models (e.g. Rayleigh) can be used to
deal with multi-path radio signal propagation effects.

During the communication step SWINE computes the IP-
level QoS conditions that will be encountered by terminals
in the emulated wireless network. Based on the radio level
computed during the propagation step and according to ven-
dor specifications, it is possible to determine the appropriate
transmission rate at the physical level. With this transmis-
sion rate, it is then possible to compute the maximum avail-
able throughput at the IP-level, taking into account MAC
parameters such as backoff times and inter-frame spacings
for 802.11b/g networks. In addition to the technology, the
communication step also simulates some traffic dependent
phenomena such as the effect of hidden terminals that can
occur in ad-hoc networks.

More details about the models implemented in SWINE
can be found in [12]. Due to its open architecture, SWINE
also allows the introduction of new models without any re-
compilation of the simulator’s core. For example, it is pos-
sible to add a ray tracing model to the propagation step
to more accurately compute the radio signal power that
is received by a mobile node. Such a model is very time-
consuming, but can safely be used during the simulation
stage which is not submitted to real-time constraints.

SWINE

Pﬁu =P, - PLij(d)
ps

Tisi

~ R(o)
4Zo Pl
where 00 = \/ ——=+

(@)
i i(t co PHt) = by(t)| Emulation
High Mobility MPmpagaﬁon)—rb@ommumcﬁtion scenario
I T

level
\ Loss seq (t) ‘eference
trace trace ﬂé
patt_gen KauNet

pattern

Figure 4: Pattern generation process with SWINE
using a Rayleigh fading model

4.3 Generating Patterns with SWINE

W-NINE and KaulNet have been integrated to provide a
realistic and reproducible emulation platform. For example,
the ability of KaulNet to precisely introduce losses in a com-
munication has shown its usefulness to reproduce conditions
that can be encountered during a multicast communication
or when the 802.11 auto rate fallback (ARF) mechanism is
deactivated [4]. For this purpose, SWINE now generates
loss patterns during the communication step of the simula-
tion stage according to the computed radio signal strengths.
Figure 4 presents such a computation of the radio signal us-
ing a pathloss exponent model to deal with the large scale
effects (Pf”) and using a rayleigh fading model to compute
the small scale effects (Pﬁi’j). In this example, the sequence
of losses is computed based on a communication table where
a single transmission rate is specified assuming the ARF
mechanism is deactivated (i.e. if the received radio signal is
below the reception threshold for the current transmission
rate, a loss is introduced in the communication).

To prevent any loss of precision between the simulation
phase and the emulation phase, losses are computed every
millisecond, which corresponds to a good KauNet granu-
larity. This loss sequence is then sent by SWINE to the
patt_gen tool to generate the corresponding loss pattern file.

More complex scenarios can also be modeled. The 802.11
ARF algorithm introduces changes in the transmission rate
when a certain amount of packets is lost or received in
sequence. At the IP level, this leads to both a through-
put change and a delay change, which can be modeled by
KauNet scenarios and their ability to link a throughput vari-
ation with an introduction of delay. Currently, SWINE de-
termines the moments of change of the physical transmission
rate. These moments can be used to produce the adequate
changes in a KauNet scenario.

S. CONCLUSIONS AND FUTURE WORK

The KauNet trace-based emulation system has been de-
veloped to allow fine-grained and repeatable control of bit-
errors, packet losses, bandwidth and delay changes. The
use of scenario files and a central scenario repository simpli-
fies the reproduction of experiments and encourages shar-
ing. The integration of KauNet and W-NINE was presented
as one example of integration and how complex mobility
and propagation models can be used to create patterns used
by KauNet. Current work includes further refinement of
KauNet as well as more radical extensions. These extensions
will allow run-time loading of finite-state-machines and con-

strained programmability. The aim is to further increase
the dynamicity of the emulation system while retaining the
good performance of the pattern-based foundation.

6. ACKNOWLEDGMENTS

The authors wish to acknowledge the funding by the EU
NEWCOM network of excellence and thank all who have
contributed to the KauNet and W-NINE effort.

7. REFERENCES

[1] A. Bouabdallah, M. Kieffer, J. Lacan, G. Sabeva, G. Scot,

C. Bazile, and P. Duhamel. Evaluation of cross-layer reliability
mechanisms for satellite digital multimedia broadcast. IEEE
Transactions on Broadcasting, 53(1):391-404, 2007.

[2] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann,

A. Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu, and
H. Yu. Advances in Network Simulation. IEEE Computer,
33(5):59-67, May 2000.

[3] M. Carson and D. Santay. NIST Net: A linux-based network
emulation tool. ACM SIGCOMM Computer Communication
Review, 33(3):111-126, 2003.

[4] E. Conchon, J. Garcia, T. Pérennou, and M. Diaz. Improved

IP-level Emulation for Mobile and Wireless Systems. In

Proceedings of the IEEE Wireless Communications €

Networking Conference (IEEE WCNC), March 2007.

K. Fall. Network emulation in the VINT/NS simulator.

Proceedings of the fourth IEEE Symposium on Computers

and Communications, July 1999.

[6] J. Garcia, P. Hurtig, and A. Brunstrom. The effect of packet
loss on the response times of web services. In Proceedings 3rd
International Conference on Web Information Systems and
Technologies (WebIST2007), Barcelona, Spain, March 2007.

[7] M. Kojo, A. Gurtov, J. Manner, P. Sarolahti, T. Alanko, and
K. Raatikainen. Seawind: A wireless network emulator. In
Proceedings of 11th GI/ITG Conference on Measuring,
Modelling and Evaluation of Computer and Communication
Systems, September 2001.

[8] M. Fiore and J. Haerri and F. Filali and C. Bonnet. Vehicular
Mobility Simulation for VANETSs. In Proceedings of the 40th
IEEE Annual Simulation Symposium (ANSS), March 2007.

[9] B. Melander and M. Bjérkman. Trace-driven network path
emulation. Technical report 2002-037, Department of
Information Technology, Uppsala University, Sweden, 2002.

[10] B. Noble, G. Nguyen, M. Satyanarayanan, and R. Katz. RFC
2041: Mobile network tracing, October 1996.

[11] B. Noble, M. Satyanarayanan, G. Nguyen, and R. Katz.
Trace-based mobile network emulation. In Proceedings of ACM
SIGCOMM ’97, September 1997.

[12] T. Pérennou, E. Conchon, L. Dairaine, and M. Diaz. Two-stage
Wireless Network Emulation. In Proceedings of the 2004
Workshop on Challenges of Mobility (WCM 2004), August
2004.

[13] L. Rizzo. Dummynet: A simple approach to the evaluation of
network protocols. ACM Computer Communication Review,
27(1):31-41, January 1997.

[14] I. Stepanov, J. Hahner, C. Becker, J. Tian, and K. Rothermel.
A Meta-Model and Framework for User Mobility in Mobile
Networks. In Proceedings of the 11th International Conference
on Networking 2003 (ICON 2003), September 2003.

[15] S. Wang, C. Chou, C. Huang, C. Hwang, Z. Yang, C. Chiou,
and C. Lin. The Design and Implementation of the NCTUns 1.0
Network Simulator. Computer Networks, 42(2):175-197, 2003.

[16] P. Zheng and L. Ni. EMWin: Emulating a Mobile Wireless
Network using a Wired Network. In Proceedings of the 5th
ACM international workshop on Wireless mobile multimedia,
2002.

[17] P. Zheng and L. Ni. Empower: A network emulator for wireline
and wireless networks. In Proceedings of IEEE InfoCom. IEEE
Computer and Communications Societies, March 2003.

5

