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Abstract

A mechanical equilibrium equation of a vesicle membrane under a generalized
elastic bending energy is obtained in this paper. Moreover, the derivation of this
equilibrium equation bases on some shape optimization tools. This approach is
new and more concise than the tensorial tools previously used for this problem.
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1. Introduction

Phospholipid membranes are abundant in biology. They represent the ma-
jor component of the cytoplasmic membrane of real cells. They are also present
within the cell cytoplasm (e.g. Golgi apparatus, a complex assembly of phos-
pholipid layers which serve to form small vesicles for protein transport). Phos-
pholipid membranes are also used in many industrial application (e.g. giant
liposome emulsions for cosmetics). Pure phospholipid vesicles (a closed mem-
brane suspended in an aqueous solution) constitute an attractive model system
in order to describe mechanical and viscoelastic behaviors of many cells, like red
blood cells. They are also regraded as promising drug carriers for a delivery at
specific sites in the organisms. This explains the increasing interest for biological
membranes from various communities ranging from biology to applied mathe-
matics. This contribution is concerned with a certain aspect of mathematical
modeling of vesicles, or more generally of phospholipid membranes.
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Vesicles are formed by amphiphilic molecules self-assembled in water to build
bilayers, in a certain range of concentration and temperature. Many recent
experimental and theoretical studies focus on the configuration and equilibrium
shape of elastic biomembranes under flow (see [1]) with the aim of understanding
dynamics and rheology.

At room, as well as at the physiological temperature, the membrane is fluid (a
two dimensional incompressible fluid). Due to incompressibility, the main mode
of deformation of a vesicle is bending. A basic ingredient for biomembranes
is thus bending energy. Helfrich [2] introduced a model in which the cost in
bending energy is given by

α

2

∫

Γ

(H − H0)
2 ds +

β

2

∫

Γ

K ds,

where H = κ1 + κ2 is the mean curvature of the membrane surface, with κ1

and κ2 are the principle curvatures, K = κ1κ2 is the Gauss curvature and H0

represents the spontaneous curvature that describe the asymmetry effect of the
membrane or its environment. The membrane surface is denoted by Γ while Ω
represents the inside volume of the vesicle, such that Γ = ∂Ω. The integrals are
performed along the membrane surface where ds denotes a surface area, while,
in this paper, dx will represent a volume element. The constants α and β have
the dimension of an energy and represent the bending rigidity and the Gaussian
rigidity, respectively. The second term in the Helfrich model is a topological
invariant by the virtue of the Gauss-Bonnet theorem that says if one is not
interested in change of topology, then this contribution is a constant and can be
ignored. We shall disregard in the energy the contribution coming from Gauss
curvature, since we do not account for topological changes.

The equilibrium shape of vesicle membranes is determined by minimizing
the bending energy subject to two constraints: fixed volume (incompressible
enclosed fluid) and fixed area (inextensible membrane). It is a shape optimiza-
tion problem that writes in the saddle point formulation as follows: find (Ω, ζ, p)
such that

inf
Ω⊂IR3

sup
ζ,p∈IR

L(Ω, (ζ, p)),

where L is the Lagrangian

L(Ω, (ζ, p)) =

∫

Γ

f(H) ds + ζ

(
∫

Γ

ds − A0

)

+ p

(
∫

Ω

dx − V0

)

. (1)

The scalars ζ and p are Lagrange multipliers, and can be viewed as an effective
surface tension and pressure difference, respectively. They enforce constant area
A0 and constant volume V0 of the vesicle, respectively. The Helfrich energy has
been generalized by introducing f , an arbitrary smooth function defined in IR.
Notice that the classical case corresponds to the choice f(H) = α

2
(H − H0)

2.
The notion of saddle point can be intuitively understood as follows. We

would like the energy to be minimal (or L to be minimal with respect to shape
variation) and that at the same time L should behave with respect to ζ and p
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in a such a way to be maximum, so that to enforce constant volume and area
(i.e. to suppress the terms proportional to ζ and p in L).

Since L is differentiable, any saddle-point (Ω, (ζ, p)) of L satisfies three con-
ditions:

∂L

∂Ω
(Ω, (ζ, p)) = 0,

∂L

∂ζ
(Ω, (ζ, p)) = 0 and

∂L

∂p
(Ω, (ζ, p)) = 0.

The two last conditions leads directly to the area and volume constraints, re-
spectively. The aim of this paper is to show that the first condition, that involves
the shape derivative ∂/∂Ω, leads to:

p + ζH + f(H)H + (2K − H2)f ′(H) − ∆s(f
′(H)) = 0. (2)

Notice that the choice f(H) = α
2
(H − H0)

2 leads to the classical equilibrium
condition:

p + ζH + α

(

1

2
(H − H0)[4K − H(H + H0)] − ∆sH

)

= 0. (3)

where ∆s is the surface Laplacian (known also as the Laplace-Beltrami opera-
tor), and will be defined explicity in this paper. The result (3) was first derived
in [2], relation (31). Notice that these authors used the same notation H for
−(κ1 + κ2)/2, i.e. minus half of the present definition of the mean curvature
H = κ1 + κ2. In that paper use of several concepts of differential geometry
were evoked (first and second fundamental forms) in order to arrive to the final
result.

The main objective of this paper is to provide a derivation which is concise
and self-contained. Our derivation uses quite simple and classical notions. While
we will, in passing, quote some known expressions and Lemma in the mathe-
matical literature, we shall provide their direct derivation here. In addition,
our derivation can be made general without specifying the functional expression
f(H). We shall discuss in the conclusion when generalized functionals can be
expected to arise.

The paper is organized as follow: the second section introduces some nota-
tions and preliminary results while the third one aim at obtaining the equilib-
rium condition for the generalized expression (1) of the Helfrich energy. The
paper is completed by a mathematical appendix.

2. Notations and preliminary results

All surface operators used in this paper are defined here. Let n denotes
the unit outward normal vector to the shape Ω. Let f be any scalar function
and v be any vector field. The surface gradient, the surface divergence and the
Laplace-Beltrami operator are respectively expressed by:

∇sf = (I − n ⊗ n) ∇f = ∇f − (n.∇f) n, (4)

∇s.v = (I − n ⊗ n) : ∇v = ∇.v − ((∇v).n).n, (5)

∆sf = ∇s. (∇sf) . (6)
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Γ = ∂Ω

−δ(y)

y

δ(x)

Ω

x

Figure 1: Schematic view of the geometry. δ, the distance function, is positive for x outside
Ω and negative inside. This is the signed distance.

The boundary Γ is then parameterized by a level set function δ, defined, for all
x ∈ IR3, as a signed distance (see Figure (1)):

δ(x) =







inf
y∈Γ

|y − x| when x /∈ Ω,

− inf
y∈Γ

|y − x| otherwise.

Then, the normal expresses as a gradient: n = ∇δ (since |∇δ| = 1.
Let us now express the mean and the Gauss curvatures. Let A = ∇sn. Its

characteristic polynom writes:

PA(λ) = det(A − λI) = −λ3 + I1λ
2 − I2λ + det(A),

where I1 = Aii and I2 = (AiiAjj − AijAji)/2 (repeated indices convention is
used), are two invariants; see below.

Let us first show that A = ∇sn = ∇n. From the definition (4) of ∇s,
it is equivalent to show that n.∇n = 0. On the one hand, since |n|2 = 1,
we have ∇(n.n) = 0. On the other hand, by expansion we have ∇(n.n) =
2(n.∇)n + 2n∧ rot(n). Then (n.∇)n = −2n∧ rot(n). Next, since n = ∇δ, we
have rot(n) = rot(∇δ) = 0. Finally n.∇n = 0 and then A = ∇n.

Moreover, from definition of A, it is also the Hessian of the level set func-
tion: A = (∇ ⊗ ∇)δ. Thus A is symmetric and admits three real eigenvalues.
Since n.∇n = n.A = 0, A has a zero eigenvalue, associated to the eigenvec-
tor n. Let us denote κ1, κ2 the two others eigenvalues of A. There exists an
orthonormal eigenvector system (e1, e2,n) associated to (κ1, κ2, 0) such that
A = κ1e1 ⊗ e1 + κ2e2 ⊗ e2. By definition [3, p. 47], the values κ1 and κ2 are
called the principle curvatures and the vectors e1 and e2, the principle directions
of curvature. The mean curvature and the Gauss curvature are, by definition
H = κ1 + κ2 and K = κ1κ2, respectively. Notice that as coefficients of the
characteristic polynom, they are invariant by any change of base, and thus in
the eigensystem we find: I1 = H and I2 = K. Going back to the definition of
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I1 and I2 in terms of A = ∇n leads to the following expression of the mean and
the Gauss curvatures:

H = ∇s.n = ∇.n and 2K = H2 −∇n : ∇nT . (7)

Notice that the use of the level set function δ enables us to extend the quantities
n, H and K in the whole IR3 space while their original definitions was introduced
only on the surface Γ.

3. Obtaining the equilibrium equation

Let us denote by E(Ω), A(Ω, ζ) and V (Ω, p) the first, second and third
terms of the right-hand side in (1), respectively. From Lemma A.1 derived in
appendix A, we get:

∂V

∂Ω
(Ω, p)(u) = p

∫

Γ

u.n ds. (8)

Again, from Lemma A.1:

∂A

∂Ω
(Ω, ζ)(u) = ζ

∫

Γ

H u.n ds. (9)

The rest of the paragraph deals with the E(Ω) term. From Lemma A.2 derived
in the appendix, we obtain:

∂E

∂Ω
(Ω)(u) =

∫

Γ

∂f(H)

∂Ω
(Ω)(u) ds +

∫

Γ

(

f(H)(Ω)H +
∂ (f(H)) (Ω)

∂n

)

u.n ds,

(10)
where ∂/∂n = n.∇ denotes the directional (or normal) derivative. The normal
n, which also depends on the shape Ω is differentiable and its shape derivative

in any direction u writes [4]: ∂n
∂Ω

(Ω)(u) = −∇s(u.n). This expression can be
derived by considering the elementary local displacement u of the interface Γ.
In such a case the level set function δ, that has the material derivative equal to
zero, satisfies the transport equation in time t with the velocity v

dδ

dt
+ ∇δ.v = 0

this leads to :
dδ = −∇δ.u (11)

where dδ represents an elementary local displacement of the shape.
The shape derivative of the normal is given by the Fréchet differentiation of
∇δ(x)
|∇δ(x)| , in the direction dδ, since the propriety |∇δ(x)| = 1 for all position x in

IR3, is not preserved if the displacement dδ is applied. Consequently, using (11),
the shape derivative of n is given by

lim
ε→0

n(δ + εdδ) − n(δ)

ε
=

∇(−u.∇δ)

|∇δ| − [∇(−u.∇δ).∇δ]∇δ

|∇δ|3 = −∇s(u.n) (12)
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Noting that, by considering the elementary local displacement dδ, we have
|∇δ(x)| → 1 when ε → 0. This result can be shown otherwise (see [5, eq.

A7]). From H = ∇.n, we obtain ∂H
∂Ω

(Ω)(u) = −∇. [∇s(u.n(Ω))] and then:

∂f(H)

∂Ω
(Ω)(u) = f ′(H)

∂H

∂Ω
(Ω)(u) = −f ′(∇.n) ∇.[∇s(u.n)].

Next, (10) leads to:

∂E

∂Ω
(Ω)(u) =

∫

Γ

f(H)(Ω)H u.n ds+

∫

Γ

f ′(H)
∂H

∂n
u.n ds−

∫

Γ

f ′(H)∇. [∇s(u.n)] ds.

(13)
Let us denote by T the last term of the right-hand side. The classical Green
formula leads to:

T = −
∫

Γ

f ′(H)∇. (∇s(u.n)) ds =

∫

Γ

∇s(u.n).∇(f ′(H)) ds.

Recall that, for any scalar function g and any vector field v defined over the
closed surface Γ, we have the following identity (see appendix C):

∫

Γ

∇sg.v ds = −
∫

Γ

g ∇s.v ds +

∫

Γ

g v.nH ds.

With g = u.n and v = ∇(f ′(H)), we get:

T = −
∫

Γ

∇s. (∇(f ′(H))) u.n ds +

∫

Γ

∂(f ′(H))

∂n
H u.n ds. (14)

Then (13) becomes:

∂E

∂Ω
(Ω)(u) =

∫

Γ

(

f(H)H + f ′(H)
∂H

∂n
+

∂(f ′(H))

∂n
H −∇s. [∇(f ′(H))]

)

u.n ds.

(15)
This completes our derivation, in principle. However, some useful simplifications
can be made, as shown below.

• Simplification 1. Using the summation of repeated indices convention,
we have:

∂H

∂n
= n.∇ (∇.n) = ni∂i∂jnj = ∂j (ni∂inj)−∂inj∂jni = ∇. ((n.∇)n)−∇n : ∇nT .

Next, using expression (7) of the Gauss curvature K, we obtain:

∂H

∂n
= 2K − H2 + ∇. [(n.∇)n]

Finally, since n.∇n = 0 (see section 2) we get:

∂H

∂n
= 2K − H2. (16)
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• Simplification 2. From (4) we have:

−∇s. {∇(f ′(H))} = −∇s. {∇s(f
′(H)) + (n.∇(f ′(H)))n}

= −∆s(f
′(H)) − (n.∇s) {n.∇(f ′(H))} − (n.∇)(f ′(H)) (∇.n).

Notice that, from definition (4) of ∇s, we have n.∇s = 0 and then:

−∇s.(∇(f ′(H))) = −∆s(f
′(H)) − ∂(f ′(H))

∂n
H. (17)

Using the two simplifications (16) and (17), relation (15) becomes:

∂E

∂Ω
(Ω)(u) =

∫

Γ

{

f(H)H + f ′(H) (2K − H2) − ∆s(f
′(H))

}

u.n ds.

Finally, using relation (8),(9), the previous relation leads to:

∂L

∂Ω
(Ω, (ζ, p))(u) =

∫

Γ

{

f(H)H + f ′(H) (2K − H2) − ∆s(f
′(H)) + p + ζ H

}

u.n ds.

(18)
This last expression leads directly to the equilibrium condition (2).

4. Conclusion

We have provided a new and self-contained derivation of the force for a bio-
logical membrane. We have extended the derivation to a generalized expression
of the functional f(H). The Helfrich energy can be motivated by assuming that
the stretching energy is of harmonic type (the energy is proportional to the
square of change of distance from a certain configuration). In more complex
situations, like red blood cells for example, this assumption is not obvious, in
that a nonlinear constitutive law may constitute a better approximation. The
resulting bending energy should thus lead to a different nonlinear function of
mean curvature. While this is, intuitively, a quite plausible situation in real
systems, we are not aware of any work who has dealt with this case yet.

Another, perhaps more frequent, situation is that where macromolecules
(like proteins) interact with a membrane [6]. The Helfrich energy α/2

∫

Γ
(H −

H0)
2 should be supplemented with a term of the form

∫

Γ
F (c) where F is certain

function of protein concentration. In addition, H0 (the spontaneous curvature)
is generally a c-dependent function (see [6]). Minimisation of the full energy
with respect to c yields a relation

F ′(c) + α(H − H0)H
′

0(c) = 0

Solving for c yields, generically a nonlinear relation between c and H , and
reporting the result into the original energy amounts to minimizing a generalized
functional of the form

∫

Γ
f(H), that is an expression of the form dealt with in

this paper.
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A. Some shape optimization tools

The notion and basic tools of shape derivative [7, 4, 8] is recalled in this
appendix. Starting from a smooth reference open set Ω, with boundary Γ = ∂Ω,
we consider domains of the type Ωu = (I+ u)(Ω) with I denotes the identity in
IR3 and u is any sufficiently regular vector field.

Definition A.1. The shape derivative of J(Ω) versus Ω is defined as the Fréchet
derivative at u = 0 of u → J ((I + u) (Ω)), i.e.

J ((I + u) (Ω)) = J (Ω) +
∂J

∂Ω
(Ω) (u) + o(u) with lim

u→0

‖o(u)‖
‖u‖ = 0,

where J ′ (Ω) (u) is linear and continuous with respect to u and where ‖.‖ denotes
the usual Euclidian norm in IR3.
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Lemma A.1. Considering a smooth bounded open set Ω ∈ IR3 and f(x) a
smooth function defined in IR3. Define

Jvol(Ω) =

∫

Ω

f(x) dx and Jsurf (Ω) =

∫

Γ

f(x) ds.

These two functions are shape differentiable at Ω and

∂Jvol

∂Ω
(Ω)(u) =

∫

Γ

f (u.n) ds and
∂Jsurf

∂Ω
(Ω)(u) =

∫

Γ

u.n

(

∂f

∂n
+ Hf

)

ds,

for any u smooth enough, where H is the mean curvature of Γ defined by
H = ∇.ñ and ñ is the local extension of the normal n near Γ.

Lemma A.2. (When the integrand depends on the shape). Let us consider a
smooth bounded open set Ω ∈ IR3 and f(Ω, x) a smooth function defined in IR3

depending also on the domain. Define

J(Ω) =

∫

Γ

f(Ω) ds.

This function is shape differentiable at Ω regarding Fréchet and, for any smooth
function u, we have:

∂J

∂Ω
(Ω)(u) =

∫

Γ

(

∂f

∂Ω
(Ω) + u.n

(

∂f(Ω)

∂n
+ Hf(Ω)

))

ds.

The next part is intended to give a simple derivation of the Murat-Simon
expressions: Lemma A.1 and Lemma A.2, in the two dimensional case.

B. On a simple derivation of the above announced Lemma

Let us start with a two dimensional problem (the boundary is a line)

J(Ω) =

∫

Γ

f(x)ds

ds is the curvilinear coordinate, and f is a function which does not depend
explicitly on the form, but only on x which is a 2D vector field. Of course
x is evaluated at the boundary, since the integral is along the boundary. We
have ds = dα

√
g, where α is a parametrization of a curve (for example if x(α)

is parametric representation of a curve, then g = x′2, where prime denotes
differentiation with respect to argument). We can thus write

J(Ω) =

∫

Γ

f(x)
√

gdα

Since now integration is performed on the parameter α which does not depend
on the curve (think of time parametrizing a trajectory!), the variation of J with
the shape acquires the simple Euler-Lagrange derivative

R =
∂(f

√
g)

∂x
− d

dα

∂(f
√

g)

∂x′

9



Expliciting R we have

R =
√

g
∂

∂x
f − f

d

dα

∂

∂x′

√
g − df

dα

∂
√

g

∂x′

We have ∂
√

g/∂x′ = x′/
√

g, d/dα(
√

g) = x′.x′′/
√

g, and d/dα(x′/
√

g) = [x′′
√

g−
x′(x′.x′′)/

√
g]/g. Using the result r′ =

√
gt (coming from the very definition of

the tangent vector t), and t′ = −Hn
√

g, we easily find

R =
√

g[Hfn− t
∂f

∂s
+

∂f

∂x
]

Actually the force is defined as R/
√

g (see [9]; in fact the above R is derivative
with respect to shape at given α, while the physical force is to be defined at
given s, and according to chain rule ∂/∂s = ∂/(

√
g∂α)), and we can write finally

the variation with respect to the shape

[Hfn +
∂f

∂n
n]

since only the normal enters, this means that only normal motion matters. If
u is displacement, the variation with respect to the form acquires the factor
u.n. This is the so-called Murrat-Simon expression (see Lemma A.1). We can
reconsider that f depends on shape (actually on x′, x′′ etc), we find trivially
the generalized expression which contains derivative with respect to form (see
Lemma A.2). Extension to 3D is elementary.

C. Green formula with Surface operators

The Green formula with Surface operators is demonstrated in this appendix.
Let any scalar function g and any vector field v defined over the closed surface
Γ, n is the unit outward normal vector defined as a signed distance function like
in the part 2. By (4), we have

∫

Γ

∇sg.vds =

∫

Γ

∇g.vds −
∫

Γ

(∇g.n) (v.n) ds (19)

By the green formula, using the fact that Γ is a closed surface, we have
∫

Γ

∇g.vds = −
∫

Γ

g∇.vds (20)

Using (5), (20) gives
∫

Γ

∇g.vds = −
∫

Γ

g∇s.vds −
∫

Γ

g (∇v.n) .nds (21)

In order to simplify the second term in the right hand side of (19), we use the
green formula

∫

Γ

(∇g.n) (v.n) ds = −
∫

Γ

g∇. ((v.n)n) ds (22)

10



We have ∇. ((v.n)n) = ∇(v.n).n + (v.n)∇.n, so

∇. ((v.n)n) = n. [(n.∇)v + (v.∇)n + v ∧ rot n + n ∧ rotv] + (v.n)∇.n (23)

In (23), we can write successively

n. [(v.∇)n] = nivj∂jni =
1

2
vj∂(n2

i ) =
1

2
vj∂(1) = 0

n. [(n.∇)v] = ninj∂jvi = njni∂jvi = n ⊗ n : ∇v

n. [n ∧ rot v] = 0 because [n× rot v] and n are orthogonal

rot n = rot ∇δ = 0

Combining those results with (19)- (21)- (22) and (23), we obtain

∫

Γ

∇sg.vds +

∫

Γ

g∇s.vds −
∫

Γ

g(∇.n)v.nds = 0
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