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Abstract

We perform a linear stability analysis of an elementary 1D model ob-
tained from a Level Set formulation of the coupling between an immersed
elastic interface and the surrounding fluid. Despite the striking simplicity
of the studied model, relevant instability regimes are obtained, unifying
results obtained in previous studies [5, 17]. We also present numerical tests
on the full model which further illustrate the relevance of this simplified
model.

1 Introduction

We study the numerical stability of an elastic membrane immersed in an incom-
pressible 2D fluid. This coupled model is described by an Eulerian version of
the Immersed Boundary Method of Peskin [13], proposed by Cottet & Maitre
([7],[8]), and using a Level Set formulation.
Indeed, the stability of the Immersed Boundary Method is well known to be
affected by the application of the elastic force on the structure, as soon as it is
treated explicitely. In order to remove the time step restrictions, many works
have been dedicated to the study of implicit schemes ([16], [11], [14], [15], [12]).
However these schemes seem to be unusable in practice because of the large
computational cost related to the iterative resolution of the strongly non-linear
coupling at each time step. The definition of semi-implicit or approximative
implicit schemes allows to obtain more realistic methods. See [16], [14], [15] [9]
et [2] and the references therein for details about such schemes.
There exists several ways to carry out the study of numerical stability. Among
them is the control of discrete energy conservation ([2],[12]), which is based on
the corresponding physical property. Another way is to perform a linear anal-
ysis near an equilibrium state of the system, in order to identify the modes
associated to the membrane. In ([14], [15]) this approach enables the authors
to show that the instability is in particular increased by the combination of a
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small fluid viscosity and a strong elastic force.
The aim of this work is the derivation of stability conditions on the time step
for schemes which treat the coupling explicitely, semi-implicitely or implicitely.
We perform the analysis on a 1D linearized version of the model as its original
form is not very suitable for numerical analysis. More precisely, the elastic force
on the membrane is reduced to a surface tension. Despite of these simplifica-
tions, this ad-hoc model enables us to exhibit some clear relations between the
fluid viscosity, the elastic force, and the numerical parameters. The results are
in good accordance with some conditions of the litterature, in particular those
proposed either by Brackbill et al. [5] or Vigneaux [17], depending on the phys-
ical parameters range.
In section 2 we briefly introduce the 2D Eulerian Immersed Boundary model
and we derive the 1D linearized one used for the analysis. The time-stepping
schemes studied are also presented. Section 3 is then dedicated to the computa-
tion of necessary stability conditions and to the comparison of these conditions
with existing ones. Finally, numerical experiments on a relaxation test validate
in section 4 the analytical results in the non-linear 2D case, for some range of
parameters.

2 Immersed elastic membrane problem

Let Ω be an open bounded domain of R
2, filled with a viscous incompressible

and homogeneous fluid of density ρ > 0 and viscosity µ > 0. Inside this domain,
we consider an immersed elastic membrane Γe(t) during a time interval [0, T ],
T > 0. The membrane is supposed massless, and external forces are neglected.
Let u and p be the fluid velocity and pressure fields. We introduce the Level
Set function φ initialized as the signed distance to Γe(0), and such that :

Γe(t) = {x ∈ Ω, φ(t, x) = 0}, ∀t ∈ [0, T ].

2.1 Eulerian Immersed Boundary model in dimension 2

We study the following Eulerian version of the Immersed Boundary Method for
this model [7],[8]:




ρ (ut + u.∇u) + ∇p − µ∆u = Fe

Fe =

[(
∇(E′

e(|∇φ|)) · ∇ × φ

|∇φ|

)
· ∇ × φ

|∇φ| − E′
e(|∇φ|)κ(φ)

∇φ

|∇φ|

] |∇φ|
ε

ζ

(
φ

ε

)

div u = 0

φt + u · ∇φ = 0

(1)
with the linear stress-strain relationship

E′
e(r) = νe(r − 1) (2)

where νe and κ(φ) are the stiffness coefficient and the mean curvature of Γe(t), ε
is a numerical parameter related to interface smoothing, ζ is a cut-off function,
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and Fe is finally the elastic force arising from the presence of the membrane in
the fluid.
For a complete description this system has to be supplemented with initial and
boundary conditions. One common choice is periodic or homogeneous boundary
condition for the velocity, so that no boundary condition is needed for φ.

Remark 2.1. When using this formulation, particular care must be taken of
the spatial discretization of the elastic force term. Indeed, some derivatives have
to be developed in order to avoid strong numerical instabilities, which must be
kept apart from the instabilities related to the time-stepping choice. The study
of these numerical instabilities is beyond the scope of this work and has been
developed in [4].

2.2 1D linearized model

We now introduce a 1D linearized version of the previous model. The elastic
force is first reduced to a surface tension by taking E′(r) = νe in (1).
This results in the following 2D system:





∂u

∂t
+ u.∇u − µ∆u + ∇p = −νeκ(φ)∇φ

1

ε
ζ

(
φ

ε

)
,

div u = 0,
∂φ

∂t
+ u.∇φ = 0.

(3)

which next gives rise to the 1D model:




∂u

∂t
+ u

∂u

∂x
− µ

∂2u

∂x2
= −νe

∂2φ

∂x2

∂φ

∂x

1

ε
ζ

(
φ

ε

)
,

∂φ

∂t
+ u

∂φ

∂x
= 0.

(4)

We investigate the stability of (4) around the trivial stationary solution (u, φ)
given by: {

u(x) = 0,

φ(x) = x.
(5)

Let (u, φ) = (u + ũ, φ + φ̃) be a solution of (4), where (ũ, φ̃) is a small pertur-
bation. Plugging these expressions in (4) we get:





∂ũ

∂t
+ ũ

∂ũ

∂x
− µ

∂2ũ

∂x2
= −νe

∂2φ̃

∂x2

(
1 +

∂φ̃

∂x

)
1

ε
ζ

(
φ + φ̃

ε

)
,

∂φ̃

∂t
+ ũ

∂φ̃

∂x
+ ũ = 0.

(6)

By getting rid of the non-linear terms, we then obtain:




∂ũ

∂t
− µ

∂2ũ

∂x2
= −νe

∂2φ̃

∂x2

1

ε
ζ

(
φ

ε

)
+ o(ũ, φ̃),

∂φ̃

∂t
+ ũ = o(ũ, φ̃).

(7)
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Actually,

∂2φ̃

∂x2

(
1 +

∂φ̃

∂x

)
1

ε
ζ

(
φ + φ̃

ε

)
=

∂2φ̃

∂x2

1

ε
ζ

(
φ + φ̃

ε

)
+ o(φ̃)

=
∂2φ̃

∂x2

1

ε

[
ζ

(
φ

ε

)
+

φ̃

ε
ζ ′
(

φ

ε

)]
+ o(φ̃)

=
∂2φ̃

∂x2

1

ε
ζ

(
φ

ε

)
+ o(φ̃).

The remaining simplification concerns the function ζ. We define it by:




ζ(r) = 1 if |r| ≤ 1

2
,

ζ(r) = 0 else
(8)

Let us point out that for ζ
(

φ
ε

)
= 0, namely far from the fluid-membrane inter-

face, the system (7) is no longer coupled. For the study below, we thus suppose

that ζ
(

φ
ε

)
= 1 everywhere, which means that we limit the study in a neigh-

bourhood of the membrane. We are clearly conscious of the restriction brought
by this hypothesis, since it is not clear how the presence of the membrane af-
fects the stability in the whole computational domain, and conversely whether
the computations in the remainder of the domain might bring stabilizing effects.

Finally, the 1D linearized model used for the stability analysis reads (we re-
move from now on the tilde on unknowns):





∂u

∂t
− µ

∂2u

∂x2
= −νe

ε

∂2φ

∂x2
on [0, T ] × R

∂φ

∂t
+ u = 0 on [0, T ] × R

u(0, x) = f(x), φ(0, x) = g(x) on R

(9)

where ε > 0, µ ≥ 0 and νe > 0 (we rule out the case νe = 0 in order to keep (9)
in a coupled form).
This quite simplified model is not supposed to describe in a general way the
fluid-membrane interactions, as the non-linearities, including in particular the
inertial effects, have been neglected. However it enables us to perform a stability
analysis and to draw some attractive conclusions.

2.3 Time-stepping schemes

Let ∆t > 0 and ∆x > 0 be the time and space discretization steps, xj = j∆x,
j ∈ Z, and tn = n∆t, n ∈ N. We denote by un

j ≈ u(tn, xj) and φn
j ≈ φ(tn, xj),

j = 0, ...,M + 1, the numerical approximation of solutions of (9), by some finite
difference scheme to be described. Discretizing diffusion implicitely, so that the
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stability analysis will focus on the coupling, we define the following schemes to
compute these numerical values:

• Scheme 1: Explicit (u, φ)-coupling:





un+1
j − un

j

∆t
− µ

un+1
j+1 − 2un+1

j + un+1
j−1

(∆x)2
= −νe

ε

φn
j+1 − 2φn

j + φn
j−1

(∆x)2

φn+1
j − φn

j

∆t
+ un

j = 0

u0
j = fj , φ0

j = gj

(10)

• Scheme 2: Semi-implicit (u, φ)-coupling:





un+1
j − un

j

∆t
− µ

un+1
j+1 − 2un+1

j + un+1
j−1

(∆x)2
= −νe

ε

φn
j+1 − 2φn

j + φn
j−1

(∆x)2

φn+1
j − φn

j

∆t
+ un+1

j = 0

u0
j = fj , φ0

j = gj

(11)

• Scheme 3: Implicit (u, φ)-coupling:





un+1
j − un

j

∆t
− µ

un+1
j+1 − 2un+1

j + un+1
j−1

(∆x)2
= −νe

ε

φn+1
j+1 − 2φn+1

j + φn+1
j−1

(∆x)2

φn+1
j − φn

j

∆t
+ un+1

j = 0

u0
j = fj , φ0

j = gj

(12)

In practice Scheme 1 is not used, as the new value of u is naturally available for
the resolution of φ. Scheme 2 is rather implemented, with no additional cost.
However Scheme 1 is still studied for the purpose of making comparison with
litterature conditions.

3 Linear stability analysis

This section is concerned with the numerical stability of the time-stepping
schemes defined above, which means that we expect to detect unbounded os-
cillations of the numerical solutions as the physical and numerical parameters
vary. We look for solutions un

j and φn
j that have the form of Fourier modes

sums:

un
j =

∑

k∈Z

ξn(k)e2iπkj∆x, φn
j =

∑

k∈Z

χn(k)e2iπkj∆x
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By substituting these expressions into each of the former schemes, we can com-
pute an amplification matrix A(k) defined by:

(
ξn(k)
χn(k)

)
= (A(k))n

(
ξ0(k)
χ0(k)

)
,

whose spectral radius allows to specify necessary stability conditions, through
the Von Neumann condition.
The aim of this section is the proof of the following lemma, concerning the
schemes 1, 2, and 3:

Lemma 3.1. A necessary condition for the stability of the numerical scheme
defined by (10) is

∆t ≤ µε

νe

(13)

Lemma 3.2. A necessary condition for the stability of the numerical scheme
defined by (11) is

∆t <
(µε + max(µε,

√
νeε∆x))

νe

(14)

Lemma 3.3. The scheme defined by (12) is unconditionally stable.

3.1 Proof of Lemma 3.1

Let k ∈ Z. By replacing un
j by ξn(k)e2iπkj∆x and φn

j by χn(k)e2iπkj∆x in (10),
and by removing the k-dependence of χn and ξn for the sake of readability, we
get





(
1 +

4µ∆t

(∆x)2
sin2 (πk∆x)

)
ξn+1 = ξn +

4νe∆t

ε(∆x)2
sin2 (πk∆x) χn

χn+1 = χn − ∆tξn

(15)

We define β(k) =
4νe∆t

ε(∆x)2
sin2 (πk∆x) and δ(k) = 1 +

4µ∆t

(∆x)2
sin2 (πk∆x) to

obtain

(
ξn+1

χn+1

)
=




1

δ(k)

β(k)

δ(k)
−∆t 1



(

ξn

χn

)
= A(k)

(
ξn

χn

)

The eigenvalues m± of A(k) are the solutions of

δ(k)

1 + ∆tβ(k)
m2 − δ(k) + 1

1 + ∆tβ(k)
m + 1 = 0

As δ(k) = 1 +
µε

νe

β(k), this equation is equivalent to

1 + µε
νe

β(k)

1 + ∆tβ(k)
m2 −

2 + µε
νe

β(k)

1 + ∆tβ(k)
m + 1 = 0

6



whose discriminant is given by:

∆(k) =
β(k)

(1 + ∆tβ(k))2

[(
µε

νe

− 4∆t

)
µε

νe

β(k) − 4∆t

]

Let us note that for k = 0, β(k) = 0. In this case we solve the equation
m2 − 2m + 1 = 0, which admits the double root 1. We suppose thereafter that
k 6= 0, which means β(k) > 0 as νe > 0.

Using that
1 + ∆tβ(k)

1 + µε
νe

β(k)
stands for the square of the complex root’s module

when ∆(k) < 0, we distinguish between three cases:

• For ∆t >
µε

νe

, i.e.
1 + ∆tβ(k)

1 + µε
νe

β(k)
> 1, there must hold ∆(k) < 0 and we get

two complex conjugate eigenvalues of module

√
1 + ∆tβ(k)

1 + µε
νe

β(k)
> 1. There-

fore the Von Neumann condition is not satisfied.

• For ∆t <
µε

νe

, i.e.
1 + ∆tβ(k)

1 + µε
νe

β(k)
< 1,

– If ∆(k) < 0, we get two complex conjugate eigenvalues of module√
1 + ∆tβ(k)

1 + µε
νe

β(k)
< 1.

– If ∆(k) > 0, we get two real and distinct eigenvalues, which read

m± =

2 +
µε

νe

β(k) ±
√

β(k)

√(
µε

νe

− 4∆t

)
µε

νe

β(k) − 4∆t

2 + 2
µε

νe

β(k)

Thus

2 +
µε

νe

β(k) −
√

β(k)

√(
µε

νe

)2

β(k)

2 + 2
µε

νe

β(k)
≤ m±

and

m± ≤
2 +

µε

νe

β(k) +
√

β(k)

√(
µε

νe

)2

β(k)

2 + 2
µε

νe

β(k)
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i.e.

0 <
2

2 + 2
µε

νe

β(k)
≤ m± ≤

2 + 2
µε

νe

β(k)

2 + 2
µε

νe

β(k)
= 1

Therefore |m±| ≤ 1.

– Finally if ∆(k) = 0 we get the double root

m =
2 +

µε

νe

β(k)

2 + 2
µε

νe

β(k)

Which verifies |m| < 1.

For ∆t <
µε

νe

the Von Neumann condition is therefore always sat-

isfied.

• Finally for ∆t =
µε

νe

, i.e.
1 + ∆tβ(k)

1 + µε
νe

β(k)
= 1, then

∆(k) =
β(k)

(1 + ∆tβ(k))2

[
−3

(
µε

νe

)2

β(k) − 4∆t

]
< 0,

and we get two complex conjugate eigenvalues of module

√
1 + ∆tβ(k)

1 + µε
νe

β(k)
=

1. Thus the Von Neumann condition is still satisfied.

In conclusion, a necessary condition for the numerical stability of Scheme 1 is

∆t ≤ µε

νe

(16)

We point out that for µ = 0, this scheme is then unconditionally unstable.

3.2 Proof of Lemma 3.2

By an analogous argument as in the former section, the stability analysis reduces
to the computation of the solutions m± of the following equation:

(
1 +

µε

νe

β(k)

)
m2 −

(
2 +

(
µε

νe

− ∆t

)
β(k)

)
m + 1 = 0

8



whose discriminant is given by:

∆(k) = 4∆tβ(k)

((
µε

νe

− ∆t

)2
νe

ε(∆x)2
sin2 (πk∆x) − 1

)

We rule out the case k = 0 (double root 1), and we point out that

1

1 +
µε

νe

β(k)
< 1

Let us note w =

(
µε

νe

− ∆t

)2
νe

ε(∆x)2
. As before we distinguish between three

cases:

• If w ≤ 1, i.e. ∆t ∈
[
µε

νe

−
√

ε∆x√
νe

;
µε

νe

+

√
ε∆x√
νe

]
, then ∆(k) ≤ 0.

For ∆(k) < 0 we get two complex conjugate eigenvalues of module

√√√√
1

1 +
µε

νe

β(k)
<

1.

For ∆(k) = 0 the double root reads m =

2 +

(
µε

νe

− ∆t

)
β(k)

2 + 2
µε

νe

β(k)
. So

0 ≤ m ≤ 1.
Thus the Von Neumann condition is satisfied in this case.

• If w > 1 and ∆t <
µε

νe

−
√

ε∆x√
νe

, then there exists some k values such that

∆(k) > 0.
For k such that ∆(k) ≤ 0 we obtain stability by a similar argument as
before.
If ∆(k) > 0 instead, the product and the sum of the two eigenvalues are
positive, so m± ≥ 0 > −1. As m− ≤ m+, it suffices to prove that m+ ≤ 1.
We have

m+ ≤
1 +

(
µε

νe

− ∆t

)
β(k)

1 +
µε

νe

β(k)
≤ 1

Hence the Von Neumann condition is satisfied for w > 1 and ∆t <
µε

νe

−
√

ε∆x√
νe

.

• Finally, if w > 1 and ∆t >
µε

νe

+

√
ε∆x√
νe

, as m− ≤ m+ it remains to prove

that m+ ≤ 1 and m− ≥ −1.
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We get readily m+ ≤ 2

2 + 2
µε

νe

β(k)
≤ 1.

Besides,

m− ≥ −1

⇔ 2 +

(
µε

νe

− ∆t

)
β(k) −

√
β(k)

√(
µε

νe

− ∆t

)2

β(k) − 4∆t

≥ −2 − 2
µε

νe

β(k)

⇔ 4 +

(
3µε

νe

− ∆t

)
β(k) >

√
β(k)

√(
µε

νe

− ∆t

)2

β(k) − 4∆t ≥ 0

By taking the square of each side, we get

m− ≥ −1 ⇒ µε

νe

(
2µε

νe

− ∆t

)
β2(k) +

(
6µε

νe

− ∆t

)
β(k) + 4 ≥ 0

(17)

Let’s recall that β(k) ≥ 0 and study the polynomial in β(k). Its discrimi-
nant is:

∆ =

(
2µε

νe

+ ∆t

)2

> 0

Thus its roots are β1 = − νe

µε
and β2 =

4

∆t − 2µε
νe

. For ∆t <
2µε

νe

the two

roots are negative, so (17) is always satisfied.

On the contrary if ∆t >
2µε

νe

then β1 < 0 et β2 > 0. The polynomial may

be positive for β(k) < β2, which is impossible.

At last for ∆t =
2µε

νe

, the right hand side of (17) reduces to
4µε

νe

β(k)+4 ≥
0, which is always satisfied.
Collecting conditions above we are able to conclude that (17) is verified if

and only if ∆t ≤ 2µε

νe

.

Therefore if w > 1 and ∆t >
µε

νe

+

√
ε∆x√
νe

, the Von Neumann condition is

satisfied if and only if ∆t ≤ 2µε

νe

.

To conclude, a necessary condition for the stability of Scheme 2 is

∆t <
µε + max(µε,

√
νeε∆x)

νe

(18)
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Remark 3.4. If µ = 0, (11) identically reads:




φn+1
j − 2φn

j + φn−1
j

(∆t)2
− νe

ε

φn
j+1 − 2φn

j + φn
j−1

(∆x)2
= 0

φ0
j = gj, φ1

j = gj − ∆tfj

(19)

This is a discretization of the wave equation




∂2φ

∂t2
− νe

ε

∂2φ

∂x2
= 0

φ(0, x) = g(x),
∂φ(0, x)

∂t
= −f(x)

(20)

with an explicit scheme centered in space and time. The time step stability
condition for such a scheme is known to reads:

∆t <

√
ε∆x√
νe

(21)

We can check that taking µ = 0 in (18) immediately gives (21).

3.3 Proof of Lemma 3.3

In order to determine a stability condition for the Scheme 3, we solve the fol-
lowing equation:

(
1 +

(
µε

νe

+ ∆t

)
β(k)

)
m2 −

(
2 +

µε

νe

β(k)

)
m + 1 = 0

whose discriminant is given by:

∆(k) = β(k)

((
µε

νe

)2

β(k) − 4∆t

)

As before, we rule out the case k = 0 (double root 1), and we point out that

1

1 +

(
µε

νe

+ ∆t

)
β(k)

< 1

For ∆(k) < 0 we get two complex conjugate eigenvalues of module
√√√√√

1

1 +

(
µε

νe

+ ∆t

)
β(k)

< 1

When ∆(k) > 0, the two real eigenvalues read

m± =

2 +
µε

νe

β(k) ±
√

β(k)

√(
µε

νe

)2

β(k) − 4∆t

2 + 2

(
µε

νe

+ ∆t

)
β(k)
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So

2 +
µε

νe

β(k) −
√

β(k)

√(
µε

νe

)2

β(k)

2 + 2

(
µε

νe

+ ∆t

)
β(k)

≤ m± ≤
2 +

µε

νe

β(k) +
√

β(k)

√(
µε

νe

)2

β(k)

2 + 2

(
µε

νe

+ ∆t

)
β(k)

Thus

0 ≤ 2

2 + 2

(
µε

νe

+ ∆t

)
β(k)

≤ m± ≤
2 + 2

µε

νe

β(k)

2 + 2

(
µε

νe

+ ∆t

)
β(k)

≤ 1

Therefore |m±| ≤ 1.

Finally, if ∆(k) = 0 the double root is

m =
2 +

µε

νe

β(k)

2 + 2

(
µε

νe

+ ∆t

)
β(k)

Thus |m| ≤ 1.

In conclusion, the Von Neumann necessary condition is always satisfied for
Scheme 3.

3.4 Comments

According to the Lemma 3.1, 3.2, and 3.3, we claim that Scheme 1 and 2 are
conditionally stable, whereas Scheme 3 is unconditionally stable.
Despite the conditions (16) and (18) are only necessary ones, the relation be-
tween viscous and elastic effects clearly appears. Indeed, the strongest time step
restriction occurs for a small fluid viscosity and a large elastic force. In this re-
spect these conditions are in good accordance with the condition computed in
[17] with a mathematical analysis of the continuous model.
More precisely, the parameter ε in (16) and (18) stands for the size of an in-
terface’s neighbourhood on which the elastic force is applied. In practice, this
parameter is taken in the order of ∆x. By taking ε = ∆x in (16) and (18) we
obtain

∆t ≤ µ∆x

νe

(22)

for Scheme 1, and

∆t <
µ∆x + max(µ,

√
νe∆x)∆x

νe

(23)

12



for Scheme 2.
We recognize for Scheme 1 the condition of [17]. Moreover, the semi-implicit
treatment of coupling in Scheme 2 allows us to relax easily the former condi-
tion. Indeed, for ∆x and µ fixed, beyond a certain value of νe, we reach a
1/
√

νe-dependence for the time step, instead of the 1/νe-dependence related to
the explicit coupling. Therefore this condition is by far less restrictive when νe

is large. As the scheme studied in [17] is the same as Scheme 2, we may ex-
plain this relaxation on the condition by the fact that the mathematical study
performed in [17] did not benefit fully from the semi-implicit coupling between
u and φ. We can confirm this argument by the fact that the condition of [17]
matches (22) instead.

Moreover, when the fluid viscosity is small, (23) reads approximately

∆t <

√
∆x3

νe

(24)

We then retrieve a condition similar to that computed in [5] by an heuristic

method, with a dependence in ∆x
3

2 .

In conclusion the stability condition relative to Scheme 2 is unifying the condi-
tions of [17], valid when viscous effects are large and the one computed in [5]
when inertial effect are dominating.

4 Numerical tests

In this section we numerically study the stability of the following scheme:





un+1 − un

∆t
+ un.∇un − µ∆un+1 + ∇pn+1 − F (φn) = 0

F (φn) =

[(
E′′(|∇φn|)∇

2φn∇φn

|∇φn|
∇ × φn

|∇φn|

) ∇× φn

|∇φn|
−E′(|∇φn|)κ(φn)∇φn]

1

ε
ζ

(
φn

ε|∇φn|

)

div un+1 = 0
φn+1 − φn

∆t
+ un+1∇φn = 0

This is a 2D non linear version of Scheme 2. For this model we enforce the
following condition on time step:

∆t ≤ ∆tA, ∆tA = C
(µ + max(µ,

√
νe∆x))∆x

νe

(25)

with C a positive constant determined numerically.
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We validate numerically the condition (23) on a simple test case currently
used in the litterature ([10], [2], [12]): an elastic membrane, which has initially
an elliptic shape, relaxes toward a circular equilibrium state. The membrane is
immerged in an incompressible fluid so that the interior area it delimits remains
constant. The magnitude and frequency of oscillations around the equilibrium
form depends on the fluid viscosity and the membrane’s stiffness.

The initial membrane is an ellipse with major and minor axes ã = 0.65 and
b̃ = 0.575 respectively. Its stretching, constant along the curve, is e = 1.2526.
This configuration corresponds to an equilibrium circle of radius R ≃ 0.6113.
The initial and equilibrium states are then quite close as the gap between the
final radius and the initial axes is up to 6%. The initial velocity and pressure
are set to zero. The computational domain is [0, 2] × [0, 2], and we set ρ = 1
and µ = 1 throughout the domain. We define M = 2/∆x.

Our aim is to show that our stability condition is sharper than the two other
conditions on the classical test described above when we vary coefficients. Thus
in a first test, we fix ∆x and test the dependence in νe of the condition (23), for
νe from 1 to 106, with ∆x = 0.03125 (M = 64). We control the time evolution
of the ellipse axes. Each simulation is displayed for t ∈ [0, 200/

√
νe]. The time

steps ∆tA used in the simulations, obtained from (23) are presented in table 1,
in comparison with the maximum time steps recommended by the conditions
of [17] and [5]. The same constant C is used for ∆tA and ∆tV even if we could
adjust it. However, the goal of the comparison is mostly to show the discrep-
ancy between the time steps ∆tA and ∆tV as νe grows up. The maximum time
step ∆tV , valid for small νe (with respect to viscosity), becomes far too much
restrictive for high νe.

νe ∆tA with C = 0.2 ∆tV with C = 0.2 ∆tB

1 1.25 × 10−2 6.25 × 10−3 C × 5.52427 × 10−3

102 1.72985 × 10−4 6.25 × 10−5 C × 5.52427 × 10−4

104 1.16735 × 10−5 6.25 × 10−7 C × 5.52427 × 10−5

106 1.1111 × 10−6 6.25 × 10−9 C × 5.52427 × 10−6

Table 1: The largest time steps allowed for stability, for µ = 1, M = 64 and νe

from 1 to 106: ∆tA computed with the condition (23) and used in the simula-
tions, ∆tV and ∆tB determined with the conditions of [17] and [5].
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From the pictures 1 and 2 we can deduce that the condition (23), less re-
strictive than the condition of [17] as νe grows up, enables to ensure stability for
a certain range of stiffness (νe ≤ 104). Note that for νe = 106, the equilibrium
state is not reached, but for this kind of stiffness, strong non-linear instabilities
are expected, and thus the conclusions of the linear analysis are no longer signif-
icant (this is in contrast with an unstable case with a time-step higher that ∆tA
for which the simulation blows up in a few steps). Moreover, the oscillations size
decreases quite rapidly, and becomes smaller that the grid size ∆x = 0.03125,
which may be another cause of instability.
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Figure 1: The time evolution of the membrane axes for νe = 1 (left) and νe = 102

(right), µ = 1, M = 64.
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Figure 2: The time evolution of the membrane axes for νe = 104 (left) and
νe = 106 (right), µ = 1, M = 64.

A last clue that the instability for νe = 106 has nothing to do with linear
instability is that it persists when the time step is divided by e.g. 10. This
suggests that an implicit coupling may fail to guarantee stability, in spite of
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an increased computational cost. Indeed, computations are performed with a
massless membrane, which means that the fluid density is set everywhere. Thus
we are typically in the case of a large added mass effect, with strong interactions
between pressure field variations and the membrane. It is shown in [3] that in
this case the convergence of the iterative method in order to solve each time step
may be hard to be reached, unless an under-relaxation scheme with a problem
dependent coefficient is used.

Next we study the ∆x-dependence of the condition (23), with νe = 1 fixed.
As before we present in table 2 the time steps ∆tA, ∆tV , and ∆tB , for M = 64,
128, 256. This is to advocate that the ∆x

3

2 dependence of ∆tB is not sharp
when surface tension effects are small.

M ∆tA with C = 0.2 ∆tV with C = 0.2 ∆tB

64 1.25 × 10−2 6.25 × 10−3 C × 1.10485 × 10−3

128 6.25 × 10−3 3.125 × 10−3 C × 3.90625 × 10−4

256 3.125 × 10−3 1.5625 × 10−3 C × 1.38107 × 10−4

Table 2: The largest time steps allowed for stability, for µ = 1, νe = 1 and
M from 64 to 256: ∆tA computed with the condition (23) and used in the
simulations, ∆tV and ∆tB determined with the conditions of [17] and [5].

The time evolution of the membrane axes displayed on picture 3 allows to
confirm the ∆x-dependence of the condition (23).
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Figure 3: The time evolution of the membrane axes for νe = 1, µ = 1 and ∆x
variable. Left: vertical axe. Right: horizontal axe.

In conclusion, the dependence of the condition (23) in ∆x and 1/
√

νe is nu-
merically validated on a non-linear 2D test case, for a certain stiffness range. As
far as the νe-dependence is concerned, the stability of the naturally implemented
semi-implicit scheme seems to be less conditioned than it was anounced in [17].
Furthermore, the condition (23) and that proposed in [5] give rise to time steps
of the same magnitude when the viscous effects are small with respect to the
surface tension effects.

5 Summary and conclusions

In this work we studied the numerical stability of three time-stepping schemes
for a fluid-elastic membrane coupling model. The linear stability analysis based
on a simplified 1D model enabled us to obtain stability conditions for explicit
and semi-implicit coupling. According to the flow regime, these conditions can
be compared to the conditions proposed either in [17] or in [5] with different
methods. On the one hand, the dependence in 1/

√
νe of the condition for semi-

implicit coupling accounts for a relaxation of the condition of [17], especially for
problems with strong membrane stiffness. On the other hand, the dependence
in ∆x

1

2 of the same condition allows to compare it to that of [5].
The numerical tests on a non-linear 2D case validate the analysis results for a
certain range of membrane’s stiffness.
The study of the added mass effect and the implementation of an efficient im-
plicit scheme are under consideration for further work.
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