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Abstract

Using finite element analysis, we have calculated the Hall voltage of gated Hall sensors in the

temperature range [-55oC, 125oC]. We investigated how both the sensor shape and the external

connections influence the Hall voltage and its thermal drift. The numerical results are in excellent

agreement with the experimental measurements. By contrast, we checked that simplified analyt-

ical methods lead to a large numerical error which is not acceptable in these sensors devoted to

metrological applications. In particular, it is found that the thermal drift of the Hall voltage can

be canceled for a current of the order of 300 µA, a much higher value than that predicted by the

corresponding analytical calculations.

PACS numbers: 72.20.My, 85.30.De, 72.80.Ey
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I. INTRODUCTION

Hall effect sensors are widely used for industrial applications and fundamental research1.

They cover a large range of topics, from the study of carrier transport phenomena in solids

to the detection of a local magnetic field. An important factor of merit in Hall sensors is

the Hall sensitivity KH = VH/(IB), where VH is the Hall voltage, I the injected current

and B the magnetic field perpendicular to the plane defined by the electrodes. For a given

application, the required amplitude and stability of this Hall sensitivity usually determine

the choice of specific materials and designs. Very often, sensors are made of GaAs, because:

i) this material can be designed with low carrier concentrations, which is a prerequisite to

obtain a high Hall voltage VH ; ii) it offers the possibility of using mature micro-electronic

technologies and iii) it has a large band-gap, which minimizes the temperature drift of KH .

For metrological applications, two-dimensional electron gas (2DEG) Hall sensors offer a

greater precision, a good temperature stability2, with a noise maintained at a low level3,4.

Fig. 1 shows a typical pseudomorphic GaAs heterostructure designed for Hall sensors, in

which a Si doping layer induces a 2DEG of concentration n0 in the Quantum Well (QW).

In this case, KH is given by:

KH = G
rH

n0e
, (1)

where −e is the electron charge, rH is a material parameter which is usually called the

Hall coefficient and G is a geometric factor which depends on the device shape. If the

2DEG is degenerate, which is usually the case even at room temperature, then rH ∼ 1.

The G factor can be chosen very close to unity by designing a homogeneous Greek cross

whose length is much greater than the width. If all these conditions are met, then KH is

a direct measurement of the carrier density n0. However, at room temperature, even these

sensors present a residual thermal drift of KH . The reason is as follows: the surface states

are in thermal equilibrium with the 2DEG because of thermionic processes. These surface

states are well known features of the GaAs; they correspond to dangling bonds at the GaAs

surface. The population of the surface states is strongly T -dependent, hence the Fermi

energy varies and n0 and KH are also T dependent, even if great care was taken to increase

the distance between the surface and the 2DEG. As a last resort, the T -dependence has to

be compensated by additional electronics.

In this paper, we present the method we developed to stabilize 2DEG Hall sensors over
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the temperature range [-55oC, +125oC], which corresponds to the military and extended

industrial specifications. The dramatic reduction of the temperature sensitivity is reached

by optimizing the geometric contribution G and by controlling the population of surface

states by an additional gate. In this approach, G is not equal to one and therefore it

has to be calculated numerically. It has been demonstrated recently6,7 that the Finite-

Element Method (FEM)8 is a powerful and versatile tool to study magnetotransport in

inhomogeneous samples of various shapes; here, we use the FEM analysis to model not only

the geometric factor and KH in inhomogeneous Hall sensors but also the thermal drift of

KH . As the thermal drift is small (a few hundreds of ppm in the Hall signal), the calculation

of the thermal drift is much more challenging than the simple calculation of KH at fixed T .

However we find that the FEM gives an excellent agreement with the experimental results,

which proves both i) the quality of the samples and ii) the usefulness of the predictive FEM

method when designing devices.

II. MODEL

As the thermal drift mainly originates from the surface states, the idea of implementing

a gated Hall device in the form of a pseudomorphic High Electron Mobility Transistor

(pHEMT) looks attractive9, as the Fermi energy at the surface will be controlled by the

gate voltage. Fig. 2a shows such a typical device, embedded in a circuit, where the gate

covers the central part of the Hall cross. As the distance between the gate and the 2DEG

channel is much smaller than all the considered distances in the plane of the cross, the

problem will be considered as two-dimensional. At any point (x, y) under the gate, the

2DEG concentration n(x, y) is given by

n(x, y) =
C

e
(Vg − V (x, y)) + n0 , (2)

where C is the capacitance per unit area, n0 is the 2DEG concentration without gate in-

troduced previously, Vg is the gate voltage, V (x, y) is the local voltage of the 2DEG. The

capacitance C is a planar capacitance given by the thickness and the permittivity of the

heterostructure between the gate and the 2DEG. Such a sensor behaves like a transistor and

in the linear regime, when the drain-to-source voltage Vin is small: Vin ≪ Vg + en0/C, the

charge density is constant under the gate and the potential V at the middle of the Greek
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FIG. 1: (Color online) Sketch of the conduction band of a pseudomorphic AlGaAs/InGaAs/GaAs

heterostructure with a delta-doping layer (+ sign).

cross can be approximated by

V ≈ RI/2 ≈ Vin/2 , (3)

where R is the resistance of the sample at a given gate voltage. In a first approximation,

the influence of the gate as well as the current in the lateral probes are neglected and the

resistance is given by R ≈ ρL/W , L is the length of the cross, W the width of the arm cross,

ρ the resistivity of the 2DEG. As the 2DEG concentration depends only weakly on T , the

T -dependence of ρ is the inverse of the T -dependence of the mobility, which is known to

behave like 1/T because of the lattice vibrations10.

The gate voltage Vg can be controlled by different ways, one of them is indicated in Fig. 2a,

where a resistor bridge with Rc ≫ R is used in order to have a gate bias proportional to the

drain-to-source voltage Vin:

Vg = βVin , (4)

and the coefficient β can be fixed at an arbitrary value by choosing the appropriate com-

bination of resistors. A more complicated configuration, presented in Fig. 2b, will also be
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FIG. 2: (Color online) Sketches of the electrical connections. (a): the gate voltage is proportional

to Vin; (b) the gate voltage is proportional to V 1
H +V 2

H ; (c) the red line represents the voltage drop

in the Greek cross along the direction of the current flow.

considered. In Fig. 2b, the gate voltage is proportional to the common voltage of the Hall

electrodes: Vg = βV C
H , where V C

H =V 1
H + V 2

H and V 1
H and V 2

H are the voltages of the Hall

probes. Note that in the linear regime, these two configurations are equivalent and lead

to Eq. 4. We now include Eqs. 3 and 4 in Eq. 2 and we differentiate with respect to the
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temperature. We get:
dn

dT
=

C

e

dR

dT

(

β −
1

2

)

I +
dn0

dT
. (5)

Let us now assume that the Hall sensitivity is simply given by the concentration n at the

cross center: KH = 1/(ne). From Eq. 5, the thermal drift ST = −(1/n0)dn/dT equals zero

at a critical current Ic given by:

Ic = n0S
0
T

(

C

e

dR

dT

(

β −
1

2

))

−1

, (6)

where we defined the thermal drift S0
T as S0

T = −(1/n0)dn0/dT . The resistance R and its

thermal variation basically depends on the heterostructure while, by contrast, β is easily

modified by choosing another combination of resistors in Fig. 2. In order to maximize the

magnetic gain KHI, Ic should be as high as possible so it can be necessary to reduce the

value of |β − 1/2| for some applications. However, the introduction of the coefficient β

introduces also additional complications because the gate cannot cover the totality of the

Greek cross anymore. Indeed, in this case the part of the cross which is close to the drain

would have a gate voltage much higher than the underlying channel voltage, and the device

would suffer important current leaks between the channel and the gate. Fig 2c illustrates

the need for smaller gates by depicting a linear voltage drop in the 2DEG. This figure

shows that the current leaks are negligible if β < (L − Lg)/2L, Lg the width of the gate

reduced to the central part of the cross. Besides, noise reduction and offset elimination

require spinning current and contact rotations11, which implies that the Hall devices must

keep their fourfold symmetry with respect to the cross center. Therefore the gate has to be

removed symmetrically from the four arms of the cross.

We stress now that Eq. 5 is only a crude estimation of the critical current Ic. First of all,

Eq. 5 is valid only in the linear regime of the device, at very low drain-to-source voltage Vin.

However, we try to obtain Ic as high as possible, so this condition cannot be fulfilled. When

the current increases, the potential bends under the gate and the channel voltage at the cross

center does not equal Vin/2 anymore. Second, Eq. 5 is a one-dimensional approximation,

which neglects the current in the lateral probes assumes a geometric factor G = 1. These

issues have no analytical solution; the proper way to overcome them is to develop a finite

element analysis of the device.
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FIG. 3: (Color online) Sketch of a typical Hall cross. The domain is mainly divided into two parts:

dark gray: 2DEG with gate (carrier density n), light gray: 2DEG without gate (carrier density

n0). A third part (white) defines the lateral probes and is used only to define the proper boundary

conditions. The boundary conditions are also indicated: by red lines for Dirichlet conditions

(voltage fixed) and by green lines for Neumann conditions (current parallel to the boundary).

III. FINITE ELEMENT ANALYSIS

The current flow in the structure is given by the Ohm’s law

j = σE , (7)

where j is the current density, E is the electric field, σ is the conductivity matrix:

σ =
σ0

1 + µ2B2





1 −µB

µB 1



 , (8)
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FIG. 4: (Color online) In-plane results of the FEM calculation for sample S3b with L/W =

4, B=0.3 T, Vin=1 V, Vg=0 V. Blue: domain boundaries, revealing the gate and the lateral

probes. Black: triangular mesh. Green: contour lines for the potential with a step of 0.05 V. Real

calculations involved a finer mesh.

µ is the drift mobility, B is the magnetic field applied perpendicular to the sample plane,

σ0 is the Drude conductivity at B = 0 T given by:

σ0 = neµ (9)

and n is the carrier density.

Combining the Ohm’s law with the continuity equation ∇· j=0, the steady state equation
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to be solved is

∇ · σ∇V = 0 , (10)

where V is the electrical potential E = −∇V . Eq. 10 is an elliptic equation whose solution is

uniquely determined if adequate boundary conditions are fixed. The domain and the chosen

boundary conditions are indicated in Fig. 3. The domain in which the solution is computed

includes the Hall Greek cross with the two lateral Hall probes. At the current leads, the

voltages are fixed, which gives rise to the Dirichlet boundary conditions indicated by the red

lines in Fig. 3. On the other boundaries, indicated by green lines, we impose that no current

flows across the boundaries. This corresponds to the Neumann boundary conditions. Note

that these conditions are only valid for Hall measurement, when no current flows through

the voltmeter used to measure the Hall voltage.

We detail how to express the conductivity in these inhomogeneous samples. Fig. 3 shows

that the Greek cross is divided into two parts:

1. the arms of the Hall cross, which are not covered by the central gate, where the carrier

density is given by n = n0 and the conductivity by σ= n0eµ;

2. the central part of the cross, which is covered by the gate. Here the carrier density is

given by Eq. 2.

A third part defining the lateral ohmic contacts is used to simulate the boundary condition

of the lateral probes: no net current going through and a constant voltage. These contacts

are defined with an arbitrary conductivity σc ≫ σ0 independent on B.

Eqs. 2, 9 and 10 are coupled and define a non linear problem which can be solved by a

relaxation method. Still, the current I flowing through the structure has to be evaluated in

order to compute the geometric factor G. Numerically it is simpler to evaluate the current

flowing through one of the boundary corresponding to the current leads:

I =

∫

Γ1

D

∇V · n dl (11)

where n the normal to the boundary.

We used the software FreeFem++ to define the mesh and solve the problem. For illus-

tration, Fig. 4 shows a typical mesh (green) generated for a structure with a L/W ratio of 4

and a gate polarization Vg = Vin/3. The isolines of the calculated potential are also shown in
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FIG. 5: (Color online) Comparison of the FEM method (open circles) with the analytic method

(lines) for an homogeneous Greek cross with three different aspect ratio: L/W = 4 (black), L/W =

3 (blue), L/W = 2 (red).

thick blue lines. The quality of the mesh is of prior importance to obtain a good estimation

of the Hall coefficient. We employed an additional Delaunay automatic remeshing algorithm

to minimize the errors and to refine the precision of the calculation.

We also compared the results of the calculation with well known analytical results, for

simplified geometries. Fig. 5 shows the coefficient G(µB) for 3 homogeneous Greek crosses

without central gate and with 3 different aspect ratio: L/W= 2, 3 and 4. The exact

analytical solution have been calculated by Versnel12,13 and is indicated in Fig. 5 by solid

lines. Our numerical results obtained by FEM are reported by open dots. The discrepancy

between the two methods is less than 0.2%. At higher fields (µB > 2) the FEM becomes

time an memory consuming because of the appearance of singularities at the corners of the
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FIG. 6: (Color online) SEM photographes of the three samples with different gate geometry. Left

panel: plain gate (geometry S1) ; middle panel: large central gate (S2); right panel: small central

gate (S3).

process n0 µ0 VT S0
T

dR
dT

1015 m−2 m2.V.s−1 V ppm/K Ω· K−1

a 7.3 0.71 -2.9 -205 13

b 7.3 0.71 -2.7 -187 15.6

TABLE I: Measured parameters for samples of geometry S1 originating from different wafers.

Parameters n0, µ0 and VT are measured at 300 K, S0
T is measured over the temperature range

[-55oC, 100oC] for process a and over [-55oC, 125oC] for process b. dR
dT

(only used in a refinement

of the Ceff method) is measured at Vg = 0 V.

drain and source electrodes. Results of Fig. 5 have been computed on a 2.4 GHz computer,

the number of nodal points was limited to 10000 and the calculation of a single value of KH

takes approximately two minutes.

IV. COMPARISON WITH EXPERIMENTAL RESULTS

A. Sample description

The structures used for this study are delta-doped AlGaAs/InGaAs/GaAs pseudomorphic

heterostructures grown by Molecular Beam Epitaxy on GaAs wafers. The active layer is an
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In0.15Ga0.85As quantum well of width 20 nm. The growth of the QW is followed by an

AlxGa1−xAs cap layer, whose the Al concentration x varies as a function of the depth in

order to avoid the formation of parasitic channel. The growth is terminated by an additional

GaAs layer. The total thickness of the cap layer and the GaAs layer is 240 nm. Electrons

in the QW are provided by a Si-doping layer, located 40 nm from the QW. A sketch of the

band diagram is indicated in Fig. 1.

Most of the Greek crosses are realized by mesa etching (process a), some of them (process

b) by ion implantation. Standard AuGeNi ohmic contacts are used. The gate is done from

a Ti/Pt/Au layer. Overlying passivation includes a dielectric layer either of PECVD silicon

dioxide or PECVD silicon nitride. Fig. 6 shows some of the samples analyzed in this study.

The three Greek crosses of Fig. 6 have a form factor L/W=4 with W = 80 µm. For geometry

S1 (Fig. 6 left), the gate covers the whole cross. For geometry S2 (Fig. 6 center), the gate

width Lg is equal to 140 µm; for geometry S3 (Fig. 6 right), Lg = 110 µm. Additional

reference samples, without gate, are also processed.

Samples are measured under an air flux at controlled temperature. The temperature can

be fixed between −60oC and 150oC with a temperature precision of the order of 0.1 K. The

magnetic field is generated by a resistive solenoid. Most of the Hall measurements are taken

at B = 0.106 T.

A summary of the sample characteristics is given in table I for the two different processes.

Note that the electron concentration n0 and the corresponding drift S0
T can be measured

by two methods: i) either by the use of an additional reference sample without gate, or

ii) on the samples to be studied, at very low drain-to-source voltage and with Vg = 0 V.

Experimentally, we found that the two methods gave slightly different results, possibly

because of the influence of the metal work function14. Therefore, in table I, only n0 and S0
T

obtained by the second method are reported. On average, we measured n0 ≈ 7.3×1011cm−2,

µ ≈ 0.71 m2.V−1.s−1, S0
T ≈ -200 ppm/K, (dR/dT )/R ≈ 4000 ppm/K and a threshold voltage

VT = −en0/C ≈ -2.9 V. From these values we calculated C ≈ 4× 10−4 F·m−2, in agreement

with the theoretical value deduced from the heterostructure parameters. From Eq. 6 one

therefore expects a critical current Ic≈ 70 µA for β = 0 and Ic ≈ 200 µA for β =1/3.

The two processes gave very similar results; in this paper, Figs. 7 and 8 correspond to

several samples from process a; the other experimental figures correspond to an unique

sample from the second process b.
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FIG. 7: (Color online) neff
H (Vg) measured for the three different geometries S1,S2 and S3. Open

symbols: experimental data, lines: FEM results.

B. Data vs Experiment at fixed T

Fig. 7 shows the normalized Hall density neff
H = 1/(KHe) measured at room temperature

as a function of the normalized gate voltage Vg/VT for a vanishing drain-to-source voltage:

Vin ≪ VT . The Hall density has been normalized with respect to its value at Vg = 0. For

most of the gate voltages presented in Fig. 7, the gated Hall sensors are in the linear regime.

However, the three geometries S1, S2 and S3 give systematically different results and their
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FIG. 8: (Color online) Open symbols: µeff
H (neff

H ) (6= µ(n)) measured for samples with geometries

S1, S2 and S3. Solid line: power law fit for geometry S1.

neff
H (Vg) do not superimpose. The explanation is as follows: only samples with geometry S1,

where the 2DEG is completely covered by the gate, are homogeneous and have a geometrical

correction G ≈ 1 (see Fig. 5 with L/W=4 near the origin). For the two other geometries

S2 and S3, measuring neff
H without taking into account this correction G leads to a dramatic

error in the real 2DEG concentration. Fig. 7 also shows the result of the FEM calculations

for the three geometries as solid lines. The calculations are obviously in excellent agreement

with the data. We also stress that the calculation involves no adjustment parameter, as the

vertical axis is normalized and that the horizontal axis may be expressed as a function of

VT (1− σg/σ0), where σg is the conductance of the 2DEG under the gate, and the threshold

voltage VT is measured independently, by linear extrapolation of the data obtained for the

geometry S115. The results of Fig. 7 have been reproduced for the two processes.

For the following comparisons, great care was taken to extract the mobility µ as a function
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