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Abstract 

The strong coupling regime in a ZnO microcavity is investigated through room 

temperature  photoluminescence and reflectivity experiments. The simultaneous strong 

coupling of excitons to the cavity mode and the first Bragg mode is demonstrated at 

room temperature. The polariton relaxation is followed as a function of the excitation 

density, showing a non thermal polariton distribution. A relaxation bottleneck is 

evidenced in the Bragg-mode polariton branch. It is partly broken under strong 

excitation density, so that the emission from this branch dominates the one from cavity-

mode polaritons. 
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Semiconductor microcavities are attracting a large interest related to the bosonic 

properties and the large optical non-linearities of cavity-polaritons, which arise from the 

strong coupling of excitons and confined photons. Over the last decade, the 

developments of the polariton physics led to many remarkable demonstrations such as 

polariton condensation [1, 2], first evidenced for CdTe and GaAs microcavities at low 

temperatures. The strong coupling has then been achieved at room temperature with 

GaN microcavities [3], as well as polariton lasing [4, 5]. More recently, the interest for ZnO 

microcavities has increased due to the large oscillator strength and binding energy of 

ZnO excitons[6]: these characteristics provide the most robust polaritons for inorganic 

microcavities, stable at room temperature[7-9]. However, as the coupling between 

excitons and photons is stronger than in other materials, the polariton system becomes 

more complex. Our recent works [10, 11] have shown that the upper polariton branch is 

easily damped due to the excitonic absorption and its continuum, so that the 

corresponding resonance can only be observed in ZnO microcavities with a thin (λ/4) 

active layer. Moreover, the large Rabi energies recently reported in ZnO microcavities 

are evidenced by angle-resolved spectroscopy, with anti-crossings spreading over a 

wide angular range of typically 50° and a spectral range of 200 meV. These unusual 

magnitudes imply drastic requirements on the stop band of the distributed Bragg 

reflectors (DBRs) used for such cavities: for example, the broadly used AlN/(Al,Ga)N 

DBRs yield stop bands up to 400 meV wide[12]. As a consequence, even if the excitons 

are preferentially coupled to the cavity mode in such structures, their coupling to the first 

Bragg mode is far from negligible and may reach the strong coupling regime [13, 14]. 

In this letter we evidence the simultaneous strong coupling of excitons with a 

cavity-mode and a Bragg-mode in a ZnO hybrid microcavity at 300K. We study their 

relaxation and their emission. The angular distribution of the polaritons is out of 
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equilibrium and typical of a so-called bottleneck regime for the Bragg-mode polariton, 

but this regime is partly broken as the exciton and polariton densities are increased. We 

discuss the interplay between both polariton branches and its consequences for the 

achievement of polariton lasing: under strong excitation, we show that the Bragg-mode 

polariton branch collects most of the polaritons after their relaxation, thus limiting the 

accumulation into cavity-mode polaritons. 

The investigated ZnO microcavity consists in a λ/4 bulk ZnO active layer, 

embedded between an AlN/Al0.3Ga0.7N bottom DBR and a (Si,O)/(Si,N) top DBR [11, 15]. 

The nominal mirror reflectivities are 97% and 68% respectively. The  growth of the 11-

pair nitride DBR was realized by molecular beam epitaxy (MBE) on a (111)-oriented Si 

substrate [16], leading to a crack density of 10 to 100 mm-1. The ZnO layer was grown by 

plasma-assisted MBE in a different reactor, and it is about 48 nm thick. Finally the top 5-

pair dielectric DBR was obtained by plasma-enhanced chemical vapor deposition. 

The sample was first studied by angle-resolved reflectivity at low and room-

temperature, with an angular resolution of 1° and an energy resolution of 1 meV. 

Figure 1 presents the experimental spectra measured at T=300 K at a position on the 

sample where the cavity mode is nearly at zero-detuning with respect to the exciton 

transitions. The first Bragg mode is at negative detuning (-140 meV) at normal 

incidence. It becomes resonant with excitons for a detection angle of θ=40°. For the 

present room temperature experiments, the A and B excitonic transitions, which are 

clearly resolved up to 77 K (not shown here), cannot be distinguished due to their 

homogeneous broadening [11]. In figure 2.a we compare the angle-dependent energies 

of reflectivity minima with the resonances calculated by the so-called coupled oscillator 

model. The Rabi splitting for the cavity-mode polariton around θ=0° is 40 meV at 300 K 
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and reaches 60 meV at 77 K. It is slightly larger than the homogeneous broadening of 

the cavity mode (30 meV, corresponding to a quality factor Q≈100) and of the A and B 

excitons (25 meV at 300K). Around θ=40°, the signature of the strong coupling between 

excitons and the Bragg mode is less pronounced, with a Rabi splitting of about 30 meV. 

We attribute this smaller value to the reduced quality factor of the Bragg mode 

compared to the cavity mode. Larger Rabi splittings are expected for similar 

microcavities with thicker ZnO active layers (80-100 meV for a λ cavity with identical 

properties) but the demonstration of the strong coupling is then challenging due to the 

damping of the upper polariton branch by excitonic absorption [11]. The observed Rabi 

splitting is slightly smaller than the one measured for a similar cavity with a top metallic 

mirror [11], which is explained by the weaker photon confinement: the mode penetrates 

deeper in the DBR than in the metal thereby increasing the effective cavity length [17]. 

The coupled oscillator model treats cavity polaritons as a mixture of the different 

modes (cavity and Bragg modes, exciton resonances) considered as a basis of 

independent states. Figure 2.b presents the angle-dependent composition of the cavity-

mode polariton branch. At θ=0°, the cavity-mode polariton at 3.30 eV presents a well 

balanced exciton-photon composition, whereas the Bragg-mode polariton at 3.18 eV 

has a small exciton content at θ=0° (Figure 2.c) due to the negative detuning. 

The angle-resolved photoluminescence (PL) spectroscopy provides a different 

insight into the interplay between the cavity-mode and Bragg-mode polariton branches. 

Since the negative detuning of the Bragg mode is three times larger than the Rabi 

splitting, we may expect the polariton branches based on the cavity mode to be good 

candidates for the achievement of a non-linear emission because they are well isolated 

from other branches. However, we show below that the polaritons efficiently relax to the 
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lower branch based on the Bragg mode, for which the emission is dominant under 

strong excitation density. 

PL spectra (Figure 3) were obtained under quasi-resonant pulsed excitation at 

3.49 eV, with an incidence angle of 40°, provided by the third harmonics of a Nd:YaG 

laser (P0=0.1 mJ.cm-2/pulse, pulse duration: 5ns, repetition rate 10Hz). By varying the 

detection angle (resolution of 3°), we measure the angular distribution of polariton 

emission and therefore the relative polariton occupancy of the different branches, which 

reflects the competition between relaxation and emission processes. Both cavity-mode 

and Bragg-mode polaritons are identified. The polaritons relax from the exciton reservoir 

through their interaction with phonons, at low excitation density, and also with excitons 

and other polaritons, when their density permits an efficient Coulomb interaction 

between particles [18]. 

At low excitation density (P0 and 20 P0), we observe that the cavity-mode polariton 

branch at 3.30 eV emits mainly around θ=0°, showing that the relaxation towards the 

minimum of this branch is efficient. On the contrary, Bragg-mode polaritons emit mainly 

at larger angles (typically 15° to 40° at the excitation density P0), evidencing the so-

called “bottleneck effect”: their dispersion is too steep to allow an efficient phonon-

mediated relaxation of the polaritons towards the bottom of the dispersion curve. The 

absence of a relaxation bottleneck for the cavity-mode polaritons at zero detuning has 

been recently predicted for similar ZnO microcavities [18]. Our observation of a 

bottleneck effect for the Bragg-mode polaritons at large negative detuning can be 

explained by their small exciton content, and the short photon lifetime: the polariton 

scattering rates are proportional to their excitonic component so that the relaxation of 

Bragg-mode polaritons is slower than the one of cavity-mode polaritons [19]. 
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As the excitation power P is increased (Figures 3.c, 3.d), the angular distribution of 

the Bragg-mode polariton emission changes: the maximum of the emission shifts to 

θ=±20° at P=20 P0 and to θ=0° at P=100 P0. This suggests an acceleration of the 

polariton scattering processes, as the particle density increases: in spite of their strongly 

photonic character, Bragg-mode polaritons efficiently interact with the exciton reservoir 

and relax faster. However the deduced polariton occupancy (not shown here) does not 

reach a thermal regime with a given effective temperature, for both cavity-mode and 

Bragg-mode polaritons, due to the short photon lifetime [20]. For comparison, the partial 

suppression of the bottleneck occurs at exciton densities of the same order of 

magnitude as the ones previously measured for GaN microcavities [21], even though the 

excitation conditions are very different [22]. We should notice that the top DBR starts 

deteriorating at larger power densities, thus limiting the accessible range for the 

excitation density, as reported for GaN microcavities [5]. The absence of optical non-

linearities in the investigated density range is related to the rather small quality factor of 

the present microcavity[18]. 

The relaxation to the Bragg-mode polariton branch is an important issue when 

producing a polariton accumulation in view of a non-linear emission. At large excitation 

density, the emission at θ=0° from Bragg-mode polaritons is much stronger than the one 

from cavity-polaritons (Figure 3.b). The present configuration of Bragg and cavity 

modes, i.e. a zero detuning for the cavity mode and a large negative detuning for the 

Bragg mode, is typical of most reported experimental results on ZnO microcavities [7-9]. 

We have shown here that the emission of such microcavities cannot be understood by 

assuming a relaxation from the exciton reservoir to a single lower polariton branch.  
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In conclusion, we have demonstrated the strong coupling regime at room 

temperature in a hybrid ZnO microcavity. We have observed the simultaneous strong 

coupling of excitons with the Bragg and cavity modes. The angle-resolved 

photoluminescence shows a competition between the emissions of both branches. At 

large excitation densities, the bottleneck effect on the Bragg-mode polariton branch is 

partly suppressed and its emission becomes much more intense than the one from 

cavity-polaritons. The microcavity emission should therefore be interpreted in a model 

including multiple polariton branches. This work also suggests that an efficient injection 

of polaritons into the sole cavity-mode polariton branch will require to improve the 

design of the DBRs, and especially to center the narrow stopband of the nitride DBR at 

lower energy.  

We gratefully acknowledge Dr. G. Malpuech for fruitful discussions. The authors 

acknowledge financial support of ANR under “ZOOM” project Grant No. ANR-06-BLAN-

0135. 
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FIGURES CAPTIONS 

 

Figure 1 : (a) Angle-resolved reflectivity spectra of the ZnO microcavity (T=300K; 

TE polarization); (b) detailed view of the anti-crossing between the Bragg mode and the 

exciton resonance. The green, red and blue dashed lines correspond at 5° to the Bragg-

mode polaritons, the cavity-mode polaritons, and the upper polariton branch 

respectively. 

 

Figure 2 : (a) Comparison between the measured resonances (dots) and the 

eigenstates of the coupled oscillator model (full lines). The error bars represent the 

calculated homogeneous broadening of the polariton modes. (b,c) Angular dependence 

of the composition of the cavity-mode polariton (b) and the Bragg-mode polariton (c). 

 

Figure 3 : (a,c,d) Angle-resolved PL spectra in TE polarization (false colors); (b) 

Corresponding PL spectra detected at θ=0°. 
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