
HAL Id: hal-00388422
https://hal.science/hal-00388422

Submitted on 11 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Charge redistribution in electrochemically-actuated
mechanical sensors

Fabien Amiot, F. Kanoufi, F. Hild, J.P. Roger

To cite this version:
Fabien Amiot, F. Kanoufi, F. Hild, J.P. Roger. Charge redistribution in electrochemically-
actuated mechanical sensors. Sensors and Actuators A: Physical , 2009, 152, pp.88-95.
�10.1016/j.sna.2009.03.009�. �hal-00388422�

https://hal.science/hal-00388422
https://hal.archives-ouvertes.fr


Charge redistribution in

electrochemically-actuated mechanical sensors

F. Amiot a,∗ F. Kanoufi b F. Hild c J.P. Roger d

aInstitut FEMTO-ST, CNRS-UMR 6174 / UFC / ENSMM / UTBM,
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Abstract

Many proofs of concept studies have established the mechanical sensitivity of func-

tionalized microcantilevers to a large spectrum of target molecules. However, moving

to real-life applications also requires the monitored mechanical effect to be highly

specific. Moving towards more specificity in cantilever-based sensing, monitoring the

mechanical response of electrochemically actuated microcantilevers is then thought

to provide a fast, reliable and complementary experimental information to the long-

time cantilever bending measurement for the detection of target molecules. Full-field

measurements are therefore used to investigate the way the electro-elastic coupling

is altered when a microcantilever undergoes decane-thiol adsorption. The proposed

technique reveals that the latter results in a charge density redistribution along the

cantilever in addition to the local surface passivation. Focusing on the cantilever tip

displacement under electrochemical actuation, this redistribution partially compen-

sates the electro-elastic coupling alteration due to the surface passivation, therefore

possibly yielding an ambiguous detection result. This effect should be taken into

account for the optimal design of specific electrochemically actuated mechanical

sensors.
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1 Introduction

Decreasing the size of mechanical objects induces an increase of their sur-

face / volume ratio, and thus their ability to interact with their environment.

That is the main reason for the development of MEMS-based bio-chemical sen-

sors. One of the object surfaces is functionalized to allow for chemical recog-

nition of a target molecule. When bonding occurs (regardless of its type), two

types of detection schemes are possible [1], namely, one monitors the resonance

frequency shift induced by mass changes, or one measures the quasi-static in-

duced bending arising from surface free-strains.

The measurement of the resonance frequency shift is used to detect mass

variations [2,4,3] and then to resolve small amounts of biological material [5].

This resonant frequency shift appears in conjunction with a surface free-strain,

which is preferably measured in liquids to detect DNA hybridization [6] for

instance. In low viscosity media, this quasi-static bending measurement is

carried out together with the resonance frequency shift to provide a more

robust detection procedure [7]. On the one hand, the detection specificity may

be improved by tailoring the used coatings. On the other hand, a fast and

user-controlled query mechanism of the cantilever mechanical state is highly

desirable to move towards real-life applications.

The coupling between electrochemical and mechanical effects involves small

elastic strains, thus requiring the measurement of very small strains [8], so

that electrochemical effects have been investigated through the mechanical

loading they induce on microcantilevers. An investigation of the double-layer

region [10–13] (i.e., when no electrochemical reaction occurred) as well as
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adsorption reactions [14–17] and electrodeposition [18] have been carried out

using the standard optical lever technique [1].

In order to further describe electrochemical phenomena at solid electrodes,

several interferometric techniques have been used to provide descriptions of

the electrochemically driven topographic or chemical changes occurring in

the layer adjacent to an electrode [19–21]. In the special case of microcan-

tilever inspection, it has been proven that using full-field interferometric mea-

surements [22] to investigate the electro-elastic coupling provides redundant

enough experimental information to build a model of the coupled interfacial

phenomena [23]. Using such a spatially resolved information is then necessary,

since a micro-cantilever is expected to behave as an “antenna”, thus yielding

a charge localization near geometric singularities.

It is therefore proposed to adapt such a tool to describe at the local level as

well as at the cantilever scale the way the electro-elastic coupling is altered

by molecular adsorption. As the mechanical reaction to an electrochemical

stimulus is found to be highly adsorption rate dependent, one considers the

concept of electrochemically-actuated micromechanical sensors as a potential

candidate for various real-life target molecules recognition problems. After a

description of the experimental set-up and procedures, the adsorption pro-

cess is described from the electrochemical and mechanical point of view. A

dedicated framework is then proposed to analyze phase maps acquired when

the cantilever undergoes an electrochemical actuation at different adsorption

rates. This analysis shows that both the coupling intensity and the charge

distribution are significantly altered by adsorption, so that using a device as

simple as a cantilever is not optimal to provide a reliable detection scheme

when the global mechanical response of the sensor is monitored.
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2 Experimental procedure

2.1 Experimental set-up

A home-made fluid-cell is used to host an array of gold coated microcantilevers.

This sample is fastened to a copper substrate with a conducting epoxy glue.

The temperature of this copper substrate is controlled through Peltier effect

modules and a temperature sensor. Another copper part, whose temperature

is also controlled through Peltier modules, encapsulates this fluid-cell, whose

content is modified with a fluid inlet and outlet.

The objects under consideration are micro-cantilevers (70 × 20 × 0.84 µm3)

that are made of 770-nm thick silica obtained by thermal oxidation of a silicon

wafer. Titanium (20-nm thick) and 50-nm thick gold layers are then deposited

onto the sample. The gold layer on top of the cantilevers is utilized as a

working electrode in a KCl solution. All the connections are insulated with a

thin PDMS layer to ensure that only the gold surface of the working electrode

is in contact with the solution. It has a total area of almost 1 cm2 in constant

contact with the electrolytic solution.

2.2 Surface activation

After bubbling nitrogen, the fluid cell is then filled with a KCl solution (10−2 M),

prepared from milliQ water. The gold surface is then cleaned electrochemically

by performing successive cyclic voltammograms between 0 and 0.8 V at a rate

of 10 mV/s. Gold is then successively oxidized and reduced, until a stable

voltammogram (i.e., after a few cycles) is obtained, thus ensuring a clean and
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reproducible metallic surface. The fluid cell is then purged and filled again

with a 10−2 M KCl deoxygenated solution.

2.3 Cyclic voltammetry

The potential window was chosen so that the electrode processes are not per-

turbed by any substance or electrochemical transformation of the electrode

material. For potentials less than -0.1 V vs. Ag/AgCl, oxygen reduction may

occur while a peak, presumably related to Au oxidation, is observed for po-

tentials greater than 0.5 V. During three potential cycles, an optical phase

map [22] is recorded every 0.05-V step , thus providing a set of 61 phase

maps, that is a 15 × 111 × 61 phase measurements stack covering the can-

tilever through the three potential cycles. The choice of the potential scan

rate (2 mV/s) ensures that the electrode equilibrium is established in times

much shorter than the time interval between two snapshots (25 s). The phase

map acquisition is carried out during almost 1 s. Therefore the potential of the

electrode is considered constant during this observation. Such cyclic voltamme-

try cycles have been performed before (CV0), during (CV1) and after (CV2)

decane-thiol adsorption.

2.4 Displacement field measurement

The cantilever bending is monitored using a phase-modulated Nomarski imag-

ing shear-interferometer [22]. The interference pattern is obtained as the dif-

ference of two topographies of the surface, shifted by a Wollaston prism by

a distance d. The Wollaston shear-direction is chosen to be parallel to the
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cantilever axis, denoted by x, so that the topographies involved in the inter-

ference pattern are views of the cantilever shifted along the direction of its

larger dimension (Fig. 1). The distance d is chosen to be similar in magnitude

with the cantilever length.

Monitoring the induced quasi-static cantilever bending, the recorded phase

map changes φmes are purely mechanical as long as there is no heterogeneous

chemical surface modification [22], and is thus described solely by φmec, which

arise from both surface out-of-plane displacement and rotation

φmec(x, y)=
4πnl

ιλ
(v(x, y) − v(x − d, y))

+
∂φW

∂γ

(

dv

dx
(x, y) −

dv

dx
(x − d, y)

)

(1)

v(x, y) is the out-of-plane displacement field and ∂φW

∂γ
is an experimentally

identified coefficient, nl the average refractive index of the ambient medium,

λ the used wavelength, and ι a scaling coefficient depending on the numerical

aperture of the objective lens. Section 3.3 deals with the case where hetero-

geneous surface reaction is expected. Throughout the reported experiments,

the displacement field was observed to be homogeneous across the cantilever

width, so that it is expanded onto a user-defined functions basis of the longi-

tudinal coordinate x

v(x, n) =
R
∑

r=1

ζr(n)fr(x) (2)

where {ζr(n)} for r ∈ {1 . . . R} is the projection of the displacement field v

onto the basis {fr(x)} for the time step n. The displacement is then obtained

from the measured phase stack by minimizing
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η2 =
1

Np

∑

x,y,n

χ(x, y, n)2 (3)

=
1

Np

∑

x,y,n

1

µ(x, y, n)2
(φtest(x, y, n) − φtest(x, y, n − 1)

−φmes(x, y, n) + φmes(x, y, n − 1))2 (4)

where φmes(x, y, n) − φmes(x, y, n − 1) is the measured phase change between

two consecutive loading steps, φtest(x, y, n)−φtest(x, y, n−1) the phase change

estimated from the test parameters ζr, Np the number of measurement points

and µ(x, y, n)2 the estimated phase change variance at the considered point.

The optimal parameters set then provides the cantilever displacement field.

2.5 Decane-thiol adsorption

Decane-thiol from Sigma-Aldrich was diluted in ethanol to get a 7 mM decane-

thiol solution. The latter was then diluted (1 % in volume) in the support-

ing electrolyte, namely 10−2 M KCl, before injection in the above-described

fluid-cell. The refractive index change induced when mixing the decane-thiol

solution with 10−2 M KCl is then negligible and does not perturb the imag-

ing properties of the microscope. The cantilever quasi-static bending is then

monitored (step 1: 1 image every 2 minutes during 5 hours; step 2: 1 image

each 3 minutes during 7h30). In order to monitor the adsorption process, AC

voltammetry scans have been carried before (DC0), during (DC1) and after

(DC2) the decane-thiol adsorption. The electrode impedance was measured

between -0.1 and 0.4 V vs. Ag/AgCl, at 20 Hz with a modulation amplitude

of 25 mV. These AC voltammetry scans are performed prior to the three

above-described voltammetry cycles. The experiment took place following the

sequence DC0, CV0, adsorption step 1, DC1, CV1, adsorption step 2, DC2,
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CV2, so that the consequence of decane-thiol adsorption on the electro-elastic

coupling is assessed (Fig. 2).

3 Results and discussion

3.1 Electrochemical response of the microcantilevers array

Figure 3 shows the change of the measured overall capacitance during the

adsorption process. The capacitance value decreases by a factor of 2 between

the experiment start (DC0) and the first stop (DC1). The capacitance then

does not evolve as fast, reaching a minimum value at the end of the adsorption

process, thereby proving the electrode passivation (DC2). The potential of zero

charge is obtained from the minimum of the differential capacity (DC0), and

is about −0.05 V vs. Ag/AgCl, in agreement with values already reported

for Au(111)/KCl 10−2 M systems [24]. In addition, the coverage ratio may

be roughly estimated from the minimum capacitance values, assuming that

the coverage ratio is 0 for DC0, and 1 at the end of the experiment (DC2).

Considering that the electrode behavior is described by a capacitor [25,26]

(representing the clean part of the electrode) in a branch parallel to a serial

capacitors assembly [27] (representing the covered part of the electrode), the

coverage ratio is estimated to be 0.71 for DC1, and the decane-thiol layer

capacitance is estimated to be about 0.8 µF/cm2, in agreement with reported

values [28]. The current flowing through the electrode is recorded during cyclic

voltammetry scans.
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3.2 Adsorption-induced cantilever bending

The adsorption process (i.e., moving the molecules closer to the surface and

considering their interaction) is highly favorable from a thermodynamics point

of view, so that the interfacial system provides relatively large surface strains

to reach mechanical equilibrium. This corresponds to the minimum overall en-

thalpy, leading to a decreased chemical enthalpy (because of decane-thiol ad-

sorption process) and an increased elastic energy (because of cantilever bend-

ing) [29]. Adsorption is assumed to occur uniformly along the cantilever, so

that it does not induce any additional phase contribution. The procedure de-

tailed in Section 2.4 then holds. The identified quasi-static displacement fields

along the median line of the cantilever using a polynomial basis fr(x) = xr for

r ranging from 1 to R = 3 are shown as functions of time in Fig. 4 for both

adsorption steps. The minimum value of
√

η2
min is found to be around 10−10

for both adsorption steps, thereby proving that the displacement field is well

described by a cubic polynomial. As already reported [30,31], upon adsorp-

tion of thiol the cantilever experiences a downward bending, suggesting that

this adsorption is accompanied by a gold surface expansion. The maximum

displacement is about 80 nm after 5 h (end of step 1) and 160 nm after step

2 (the initial states correspond to the beginning of adsorption steps 1 and

2, respectively). Let us underline the different time scales the displacement

follows for the two adsorption steps:

• on the one hand, adsorption on a clean surface (step 1) yields a unique

characteristic time scale;

• on the other hand, adsorption on a pre-adsorbed surface (step 2) exhibits

a mechanical effect following two very different time scales, namely, a first
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mechanical contribution takes place during a few minutes, whereas the full

mechanical effect develops during several hours.

According to the literature, the formation kinetics of alkane-thiol self-assembled

monolayer were investigated using various physico-chemical techniques includ-

ing electrochemical [26], AFM [32], surface plasmon resonance (SPR) [33] and

ellipsometry [34,35]. Even though there are some contradictions concerning

the rate of formation of the layer, most of the studies deal with a two-stage

adsorption process in agreement with what is observed herein. In principle,

the present results may be compared with the two time scales identified by

ellipsometric monitoring of adsorption process [35], even though it has been

reported that the mechanical effect and the optical thickness of the adsorbed

layer growth kinetics are not simply related [36]. For this reason and also be-

cause the adsorption process homogeneity along the micro-cantilever is difficult

to assess, a deeper description of the kinetics of formation of the monolayer lies

beyond the scope of the present paper. It is worth noting that this long-term

monitoring of the mechanical effect induced by adsorption is achieved using

differential interferometric measurements and all possible precautions to avoid

any significant drift, which are not easily implemented in real-life applications.

3.3 Electrochemically-induced cantilever bending

In order to bypass the difficulty of performing long time measurements, which

are likely to be subjected to significant drifts (e.g., thermal), the displacement

of the cantilever is modulated at a user-defined frequency. This is achieved by

using the electro-elastic coupling that is stimulating electrochemically, during

a cyclic voltammetry experiment, the deformation of the cantilever (Subsec-
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tion 2.3). In that case, the measured phase map arises from both mechanical

deformation of the cantilever and change in the interface composition owing

to changes in the chemical composition of the double layer adjacent to the

electrode, so that the procedure presented in Section 2.4 has to be modified.

Because of the presence of a (partially) adsorbed layer, the method proposed

in Ref. [23] has to be enriched. The thin electrolyte layer close to the sur-

face, whose thickness scales as the Debye length λD, is significantly modified

when charging the electrode. The concentration shift induced in this layer

modifies locally the refractive index of the solution. In addition, charging the

interface modifies the free electrons density in the metal, thus changing the

complex refractive index of the metal [37]. Both contributions (as well as

decane-thiol adsorption) modify the complex reflection coefficient of the inter-

face, and therefore generate a non-mechanically induced optical phase change

φmes = φmec + φec (5)

The measured phase φmes results from the mechanical contribution φmec and

an additional electrochemical term φec that is obtained by assuming that re-

flection occurs at the interface between two homogeneous layers:

• on the metallic side, the thickness is arbitrarily chosen to be 1 nm [37], and

the refractive index is obtained according to Drude’s model;

• the thickness of the liquid phase layer is chosen to be equal to 2λD + ϑλads,

where λads is the adsorbed decane-thiol film thickness, and ϑ is a mixing

ratio. The parameter ϑ is not a coverage ratio but describes how much the

ions penetrate the decane-thiol adsorbed layer during the cyclic voltamme-

try. The case when ϑ = 0 may thus result either from a clean electrode (i.e.,

no adsorption) or from an impenetrable adsorbed layer. The composition of
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this layer is determined to ensure the same surface excess than predicted by

the Gouy-Chapman theory, and the refractive index of this homogeneous

layer is obtained from the Lorentz-Lorenz formula [38]. This significant en-

richment, compared with the modeling we proposed in Ref. [23], allows one

to deal with partially covered surfaces.

For ions, the molar volumes and refractivities are taken from the literature [39,40],

namely, λads = 1.5 nm is obtained from published estimates [28], while the

molar refractivity for the decane-thiol is obtained from Ref. [41]. The above

assumptions allow one to compute the electrochemical contribution as a func-

tion of the surface charge density field and the mixing ratio, using Fresnel’s

equations for a given equivalent incidence angle θe and both TE and TM

polarizations [42]

φec(x, y, ϑ, θe) = φTE,TM(σm(x, y), ϑ, θe) − φTE,TM(σm(x − d, y), ϑ, θe) (6)

The influence of θe is found to be negligible when compared with ϑ. In previous

investigations of the electro-elastic coupling on clean cantilevers [23] the mi-

crocantilever bending was observed to result from a non-uniform mechanical

loading. It was interpreted as a singular charging of the microcantilever edge

in agreement with non-uniform current distribution at microelectrodes [43,44].

The integration of the current with respect to time then provides the overall

charge carried by the working electrode Q as a function of the potential. A

good correlation between the mechanical behavior of the cantilever and the

surface electrochemical response was obtained when considering that the local

charge density σm at a distance x from the field border on the substrate is

13



distributed according to

σm(x, Q) = D(x) × Q (7)

where Q is the overall surface charge of the entire electrode, and the localiza-

tion function is written as

D(x) =
cq(x0)

(x0 − x)p
(8)

where the constant cq(x0) is defined so that D(x) = 1 when x tends to the

field border on the substrate, x0 and p are used to describe the position and

order of the singular charge density field, respectively. A similar framework is

used herein.

In addition, the mechanical contribution is obtained by assuming that the can-

tilever is subjected to a shear-stress field τ(x), which is a continuous function

of the local charge density σm. This local relationship is then expanded onto

a polynomial basis

τ(x) =
T
∑

t=1

δtσ
t
m(x) (9)

where {δt} are the coefficients describing the local coupling relationship to be

found. For a given charge density field, the displacement field induced by each

component of Eq. (9) is derived by using the Euler-Bernoulli beam theory [45],

thus yielding the functions basis ft(x) defined in Eq.2. To summarize, each

cross-section is assumed to remain planar during deformation, so that the local

beam curvature is obtained from the bending moment Mb generated by the
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shear-stress τ applied to the cantilever

Mb = EI
d2v(x)

dx2
= −

L
∫

x

beτ(ξ)dξ (10)

where b denotes the cantilever width, EI its flexural stiffness, and e the dis-

tance from the neutral axis to the gold surface. Setting arbitrarily the equiv-

alent incidence angle to θe = 0.3 rad (this does not significantly affect the

following results), one is then able to compute a trial phase field, and thus to

find the optimal set of parameters {p, x0, ϑ, δt} describing the electro-elastic

test under scrutiny by minimizing the function defined by Eq. (3). Linearizing

this latter function with respect to its parameters close to the solution, an

estimate for the standard deviation of the identified parameters is obtained

from the measurement reproducibility.

Table 1 shows the identified parameters for the three electro-elastic tests,

namely, CV0, CV1 and CV2. For all the considered tests, T = 3 is found

to provide the best compromise between the coupling description and the

minimization robustness. Changing the arbitrarily chosen θe value has no sig-

nificant effect on the following results. The residual η2

min is small compared

to 1, meaning that the phase change fields all over the 3 potential cycles are

well described by the proposed modeling. In addition, an upper bound Γϑ for

the standard deviation on ϑ resulting from the measurement uncertainties is

provided to assess its identifiability.

Figure 5 shows the identified displacement field along the cantilever as a func-

tion of the loading step during the potential cycles for CV0 and CV2. Con-

trary to decane-thiol adsorption, the cantilever subjected to the electro-elastic

coupling experiences an upward bending, as already reported [10,11,23]. The
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displacement amplitude is significantly decreased when moving from the clean

electrode (CV0: above 100 nm maximum displacement) to the blocked elec-

trode (CV2: 45 nm maximum displacement). In addition, the displacement

field and its change during the test are altered, and a mechanical description

of the measured effect is obtained through the identification procedure.

The identified localization functions D(x), describing the surface charge sin-

gularity on the cantilever edge and modeled by the p and x0 parameters, are

plotted in Fig. 6. Similarly to the clean electrode case [23], the surface charge

density is highly localized close to the cantilever edge, thereby proving that

one should use local shear-stress fields instead of a global “surface stress” con-

cept to describe mechanical effects at the micro-cantilever scale. Similarly, it

is preferable to deal with charge densities measured at the level of a single

cantilever instead of the global charge density measured on a large electrode.

This is not possible with the current experimental set-up, it is currently at-

tempted to improve this issue. Alkane-thiol adsorption induces a significant

change in the surface charge distribution, namely, even though the overall

electrode charge range decreases when moving to blocked surfaces, the charge

distribution tends to be more and more uniform. One should underline that

this tendency is not satisfied for CV1, where the “antenna” effect seems to

be first enhanced by the adsorption process, probably because of an easier

electrode blockage far from the edges.

The significant change in the electrochemical behavior of the electrode is also

obtained in Fig. 7, where the identified electro-elastic coupling relationships

(defined in Eq. (9) and the identified δt coefficients reported in Table 1) are

shown in their identification range, that is in the identified charge density

range. The decrease in the overall charge together with the decrease in sin-
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gularity of the localization function yield a dramatically reduced local charge

density range for fully adsorbed state (CV2) compared to the early steps (CV0

and CV1). It is also worth noting that the deformation accumulation observed

for CV2 is well described by the charge accumulation on the electrode.

The identified ϑ value for CV0 is close to zero, which is consistent with the

fact that the electrode is initially free of thiols. The residual is not significantly

affected by enforcing ϑ = 0 during minimization. On the other hand, the

identified mixing parameter ϑ remains fairly low for the intermediate step, even

though the electrode is partially covered (Subsection 3.1), thereby proving

that the ions do not penetrate the added layer, which is thus hydrophobic.

This is known as a characteristic feature of alkane-thiol films [46]. Again, the

identification results are not significantly modified by setting ϑ = 0. For the

last step (CV2), because the charge density field becomes uniform, the optical

properties of the surface no longer influence the measured (i.e., differential)

phase field, so that the mixing parameter is no longer identifiable with the

proposed technique, as shown by the large value obtained for Γϑ (the ϑ value

is therefore not displayed in Table 1). There is therefore room for experimental

improvements.

If the coupling relationship is not significantly modified by the first adsorption

step (i.e., the identified relationship for CV0 lies within the confidence range

around the identified relationship for CV1), the increase in the initial slope

of the coupling relationship is significant after the second adsorption step,

thereby providing an information complementary to the quasi-static bending

of the cantilever (Fig. 7). Qualitatively, the alkane-thiol film increases the

closest approach distance of ions from the electrode, thereby decreasing the

charge carried by the electrode at a given potential. On the other hand, the
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dielectric constant of the surface is increased by the adsorption process, so that

the electrostatic free energy of the surface is significantly higher, for a given

charge density, when adsorption occurs. The stored electrochemical energy

is then higher for a given surface charge density, so that the electro-elastic

coupling (at a given charge) is enhanced [29]. The quantitative evaluation of

the electro-elastic coupling modification as a function of the adsorbed layer

would require a more detailed characterization of the interface [17].

Using full-field measurements to investigate the effects of decane-thiol adsorp-

tion, it is shown that the significant decrease in the maximum shear-stress (by

a factor of 10 as seen from Fig. 7) is partially compensated by the surface

charge redistribution induced by adsorption, thus resulting in a limited can-

tilever tip displacement ratio before and after adsorption (almost equal to 2

as seen from Fig. 5). It is therefore necessary to take into account these global

and local effects when designing electrochemically-actuated sensors in order to

save their tremendous potential compared with the long-term, drift sensitive,

and purely mechanical measurements developed for micro-cantilever sensors.

4 Conclusion

A metal coated micro-cantilever was utilized simultaneously as a micro-electrode

and a micromechanical sensor. Electrochemical and full-field interferometric

measurements were carried out to monitor both surface composition changes

and cantilever displacements during cyclic voltammetry, before, during and

after decane-thiol adsorption. The use of full-field measurements and a dedi-

cated identification technique allows one to monitor the effects of decane-thiol

adsorption on the electro-elastic coupling, namely, the charge density quasi-
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singularity on the cantilever edge vanishes, and the electro-elastic coupling

relationship is significantly modified. This result shows that the mechanisms

involved in the adsorption-induced electro-elastic coupling alteration on a mi-

crocantilever need to be described at the local as well as at the cantilever

scale, thus revealing the local and global nature of the alteration. The results

reported herein show that even though the local passivation decreases by a

factor 10 the maximum stress acting on the cantilever, the tip displacement is

reduced by only a factor 2 because of the simultaneous charge redistribution.

These effects should therefore be considered when designing optimized electro-

chemically actuated sensors in order to make the most of their potential.
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Table 1

Identified parameters for the different cyclic voltammetry experiments, describing

the surface charge density, the interface composition, the coupling relationship and

the identification quality. The coupling relationship coefficients are normalized with

respect to the cantilever flexural stiffness: δ̃i = beδi

EI

CV test CV0 CV0 CV1 CV1 CV2

p 2.28 2.51 3.55 3.68 4.47

x0

L
1.08 1.07 1.20 1.14 2.11

ϑ 7 × 10−2 0 9 × 10−2 0 ♯

(unitless) identified prescribed identified prescribed

Γϑ 0.32 0.19 107

δ̃1 (C−1) −3.13 × 103 −3.18 × 103 −5.25 × 103 −5.76 × 103 −2.18 × 105

δ̃2 (m2.C−2) −2.04 × 102 −2.05 × 102 −1.18 × 102 −1.31 × 102 1.66 × 105

δ̃3 (m4.C−3) 1.07 × 10−1 1.09 × 10−1 8.40 × 10−2 9.40 × 10−2 −1.48 × 105

residual η2
min 6.3 × 10−2 6.3 × 10−2 5.8 × 10−2 5.8 × 10−2 8.5 × 10−2
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Fig. 1. Schematic view of the imaging set-up and typical interference pattern. The

shear direction is parallel to the cantilever direction, and the shear distance d is

almost equal to the cantilever length. The axis system is shifted for the sake of

clarity and the origin is set at point O.
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