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This paper continues earlier investigations of the decay of Burgers turbulence in one dimension from
Gaussian random initial conditions of the power-law spectral g&) ~ |k|". Depending on the powaen,
different characteristic regions are distinguished. The main focus of this paper is to delineate the regions in
wave numbek and timet in which self-similarity can(and canndtbe observed, taking into account smiall-
and largek cutoffs. The evolution of the spectrum can be inferred using physical arguments describing the
competition between the initial spectrum and the new frequencies generated by the dynamics. For large wave
numbers, we always haveka? region, associated with the shocks. Wheis less than 1, the large-scale part
of the spectrum is preserved in time and the global evolution is self-similar, so that scaling arguments perfectly
predict the behavior in time of the energy and integral scale.i$flarger than 2, the spectrum tends for long
times to a universal scaling form independent of the initial conditions, with universal betk&ébsmall wave
numbers. In the interval 2 n the leading behavior is self-similar, independenhaind with universal behavior
k? at small wave number. When<In<2, the spectrum has three scaling regions: firgk|"aregion at very
smallk’s with a time-independent constant; seconk? segion at intermediate wave numbers; finally, the usual
k=2 region. In the remaining interval< -3 the smallk cutoff dominates and also plays no role. We find also
(numerically the subleading term-k? in the evolution of the spectrum in the interval <®i<1. High-
resolution numerical simulations have been performed confirming both scaling predictions and analytical
asymptotic theory.

DOI: 10.1103/PhysRevE.71.056305 PACS nuni®)erd7.27.Gs, 05.45:a, 43.25+y

[. INTRODUCTION veloped into a powerful tool to elucidate the statistical prop-
erties of solutions to Burgers equations with random initial

We study here the Burgers equation conditions of cosmological typ@-11]. If a random force is

o v P added to the right-hand side of Ed,), the resulting Kardar-
gt +U& = Vol (1) Parisi-Zhang(KPZ) equation is one of the most important
models of, e.g., surface growfh2-14.
in the limit of vanishing coefficient. First introduced by Investigations of Burgers turbulence have a long prehis-

Burgers as a model of hydrodynamic turbulence, this equaory, started already by Burge{$974), who was mainly con-
tion arises in many situations in physics; §ée6] for clas- ~ cerned with white-noise initial conditions. But nevertheless
sical monographs. It is fair to say that one of the main interonly recently[1_5] were the exact statistical properties of the
est in the Burgers equation over the last decade has been a84drgers equation for the caser0 found. The case of fractal
model for structure formation in the early Universe within Brownian motion for the potential or for initial velocity is

: P h more complicatefil6].
the so-called adhesion approximatiof-9). The Hopf-Cole ~ MYC . . .
transformation, to which we will return below, has been de-, , /"€ Burgers equatiofl) describes two principal effects
inherent in any turbulencgl7]: the nonlinear redistribution

of energy over the spectrum and the action of viscosity in
small-scale regions. Except for a direct physical application,
*Electronic address: anz@obs-nice.fr the Burgers equation is hence also of great interest to test
TAlso at Observatoire de la Cote d’Azur, Lab. Cassiopée, B.Ptheories and models of fully developed turbulence. This pa-
4229, F-06304 Nice Cedex 4, France. Electronic addressper follows that tradition. In an earlier contributi¢h8] we

gurb@rf.unn.ru showed how self-similarity arguments, going back to Kol-
*Electronic address: erik.aurell@physics.kth.se mogorov[19] and Loitsyansk{20], can be be disproved, in
SAlso at Radiophysics Dept., University of Nizhny Novgorod, 23, the Burgers equation, for a class of initial conditions. A simi-

Gagarin Ave., Nizhny Novogorod 603950, Russia. lar result was later arrived at by Eyink and Thompson for the
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Navier-Stokes equatiof21], within an eddy-damped, quasi- (x-a)?
normal Markovia EDQNM) scheme. In this paper, we will P(x,t) = max (@) = x|
discuss in greater detail how the self-similand non-self- é
similar) regimes are realized with initial conditions that are whereyy(a) is the initial potential. The velocity field follows
self-similar only over a finite range; that is, the initial energy by differentiation inx and reads
spectrum has a scaling foriy(k) ~ |k|" with scaling expo-

nentn in some range of wave numbedig, k,]. The range in v(X,t) = = g (x,t) =
which self-similarity can be observetbr not observed t

chaggel;s !{rr'] wa\;ﬁ-n_ur_?_b:ar spatcel Wlith time(,j in atr\]/vay that dej herea(x, t) is the argument of the maximization in EQ)
pends both on the initial specral slope and on the losnd for given givenx andt. If there are several sudix,t)’s, we

high cutofs n the |n_|t|al data. . are at a shock, where the velocity field is discontuous. See,
The paper is organized as follows: in Sec. Il we recall the, g.22%6or op. cit. for an in-depth discussion

basic properties of the Burgers equation and give a morée . S o .
. o A o In this paper we look at initial conditions with energy
precise description of the class of initial conditions we con—Spectrum

sider. In Sec. lli(n<1 andn<-3) we consider the situation
when both th(_a velocity and velocity pot_el_‘nt_ial are hc_)moge- Eo(k) = a2|k|“b0(k), (4)
neous Gaussian processes. For such initial conditions, we ] o

have asymptotically self-similar evolution with universal be-Wheren is the spectral exponent arg(k) satisfiesby(k)

havior of the spectruri(k) ~ k2 andE(k) ~k™2 at small and =1 in some regions of wave numbelis k], while going
large wave numbers, respectively. For <2, the spec- duickly to zero on either side. Thenean energy is

trum, at long, but finite time, has also the regi@? at very w

small k with time-independent constant, but followed by a Et) = <v2(x,t)>=f E(k,t)dk, (5)
regionk? which quickly becomes dominant. In Sec. (V1 0

<n<1) we consider the case of the homogeneous velocit
potential. In Sec. \-3<n<-1) we consider the case of the
nonhomogeneous velocity potential. In the last two cases the , *

long-time evolution of the spectrum is self-similar in some o) = <Uo(x)>=f Eq(K)dk. (6)
region of the(k,t) plane even when we have a cutoff wave ’°°

number at small and large wave numbers. In Sec. VI we |t is clear from formula(2) above that the solutions de-
summarize and discuss our results. Details of the numericglend solely on the initial velocity potential. Let us introduce
methods are presented in the Appendix. the variance of the initial potentidif it exists):

* Eg(k
7= = =

(2)

X —a(x,t)

: 3

¥ind the initial energy is denoted

dk. (7)
Il. LARGE-TIME DECAY, SELF-SIMILARITY, AND

BURGERS PHENOMENOLOGY ) ) o o
It is also clear that for a continuous initial velocity field the

We study in this paper the evolution of the velocity field, time of first shock formation depends on the initial velocity
when the initial conditions are random and the initial powergradients as; frs=—1/mind,o(x,to). Consequently, the vari-
spectral density is self-similar, which is of the form of a ance of the initial velocity gradieriff it exists),
power lawEy(k) ~ |k|". Let us suppose this is the case for a .
finite interval k< |k|<k,, wherek; andk, are cutoff wave 2_ 2\ — 2
numbers at Iarge| e|1nd small scales, respectively—on the in- a7 {[800X]) = f_wk Eo(kdk, ®)
frared and ultraviolet parts of the energy spectrum. We as-
sume the spectrum to go to zero faster than any power law oghould also be of interest as it determines the typical time of
either side. We are then interested in the plékg) and first shock formationts=1/0,. Since the initial conditions
specifically in the following question: where is the behaviorare scaling only in a finite range, all three characteristic
“universal,” that is, explainable in terms of a few global quantitiesay, o,, and o, exist and are finite. This is the
quantities, and where will the specific valuesnpk;, andk,  Situation we have always in numerical experiments wken
play an essential role? is determined by the size of bdx,, andk, is the inverse of

Figure 1 illustrates the results we will show. the step of discretization. However, dependingwthey are

Let us now proceed to explain how Fig. 1 can be moti-dominated by one or the other of the the cutoffs. This sug-
vated. From Eq(1) we can derive an equation for the veloc- gests hence the following first division of spectral exponents
ity potential ¢, and by the Hopf-Cole transformatiofr N (see Table)l
=2vIn 022,23, we turn this into a linear diffusion equation From the maximum representation of the solutions to the
for an auxiliary fieldd. Convolution of the initial data foy ~ Burgers equatior{2), we can introduce the scalgt), pro-
with the standard heat kernel gives the the solution of diffuportional to the typical value dfx-a(x,t) |. For large time,
sion equation, which in the limit— 0 may be computed by balancing the two terms in Eq2), we have the following
the method of steepest descent. The velocity potential in thprediction for the scal&(t) of Burgers turbulencésee Table
limit »— 0 is then ).
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FIG. 1. The universal behavidi(k,t) ~ k", k2,k2 and self-similarityE(k, t) =L3(t)t 2E(KL(t)) of the energy spectrum on ti-t) plane.
The linek, (t) ~ 1/L(t) is the border betweeki? and|k|" or k? asymptotics of the spectrum. The likgt) is the border betweelk|" andk?
behavior at smal wave number) Power indexn>2: universal self-similar behavior at>t,. (b) Power index X n<2: self-similar
behavior only whert>t, and k> kg(t). (c) Power index -3 n<1: self-similar behavior fot>t,. (d) Power index -3xn<1 and an
infrared cutoffk;: self-similar behavior fot;>t>t, andk;>k>k,.

Here we take into account that the increment of the porangen<-3 we also need to hade>0 as the solution of

tential in Eq.(2) is [g(X) — )o(0) ]~ ax™2 for n<1 and is
~ay, for n>1[5,9]. We assume further th&=0 for n<1
and that there is some cutoff numbler for n>1. In the

TABLE |. Division of domains of the spectral exponemtac-

the Burgers equation exists only if the potential grows slower
than quadraticallysee the maximum representati@)] and
this implies that the spectrum must be shallower thkah

when k—0. From Eq.(3), we have that at large time be-

cording to second moments éfvg, vg, and . An entry k; or k
indicates that the corresponding quantity is dominated, respectively, TABLE II. Division of domains of the spectral exponemtac-

by the lowk or highk cutoff.

tween the shoCkS{gnockm<X<Xshockm+1, the velocity field

cording to the predicted typical scale and energy of solutions to the

Burgers equation as depending on titme

n -3 -1

o4 Kk K, K, K, "
gy K; K Ky L(t)
gy ki ki Ky E(V)

-3 -1

( Ul/,t) 1/2 ( at)zl(3+n}
(Ul/,t)_l czzkiwrl

(at)2/(3+n)
(at)z(n+1)/(3+n)

(O_L/,t)llz
(0'¢,t)_1
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has a universal structuuix,t)z(x—am)/t and so the energy  lll. HOMOGENEOUS VELOCITY AND HOMOGENEOUS
of Burgers turbulence my be estimatedets) ~ L2(t)/t? (see POTENTIAL (n>1 AND n<-3)

Table Il). For the energy to be finite in the range <3
<-1, we require that there be some cutoff wave nuniber
>0. It has been known for some time that the behavior otl(,?l
L(t) and E(tf) in 1<n has logarithmic corrections

In this section we consider the evolution of Burgers tur-
ulence in the regiom>1 assuming that both the velocity
nd potential are homogeneous Gaussian random functions.
It means that we necessarily have some ultraviolet cutoff
[18,24-26. wave numbek,. The functionby(k) can be characterized by

If indeed Burgers turbulence is characterized by a singl%1 wave numbek, around which lies most of the initial en-

scaleL(t), by dimensional analysis the spectrum takes theergy and which is, in order of magnitude, the inverse of the

following self-similar form: initial integral scaleL,. We have a similar situation for the
3 spectrumn<-3 and cutoffk; at small wave number.
E(kt) = L—S)E(kL(t)). (9) Most of the results about the energy decay for this region
t have already been obtained by Kida], but for the discrete
model of initial condition. He introduced a model of discrete
It is well known that for an initial spectrum with>2 the independent potential values in adjacent cells, while their
parametric pumping of energy to the area at srkalleads relation to the properties of the initial conditiofisay, the
to the universal quadratic lavE(k,t) ~k?, and forn<2 we  spectrum were left unspecified. For the case of a probability
have conservation of initial spectruitk,t)=Ey(k)=a?|k|"at distribution function(PDF with a Gaussian tail, he obtained
small wave number, which is the spectral form of the prin-the functional form for the correlation function, energy spec-
ciple of the “permanence of large eddig®LE) [17,18. In  trum, and log-corrected 1/aw for the energy decaf(t)
Fourier space the self-similarity ans&®, together with the ~t‘1a¢, In~Y(t/t,), where, however, in the definition of the
PLE, gives the same relations for integral scale and the emonlinear timet, was some free parameter—the length of
ergy as written above, but now in the region <8<2. cell in the discrete model. In subsequent contributions
Clearly, this argument cannot be applied with initial data[25,26| (see alsd5]) the authors conjectured the asymptotic
such that the spectral indax=2, since the later spectrum existence of a Poisson process. This was then provgzi7in
has now ak? dependence at smalwith a time-dependent showing that, in thex-i# plane, the density of the points is
coefficient. But comparing this with Table Il, where the va- uniform in thex direction and exponential in thé direction.
lidity of L(t)~ (at)?®*" is n<1, we see that the region 1 This permits the calculation of the one- and two-point PDF’s
<n<2 has to be a case apart. In the intervaii<2 the of the velocity[25] and also the fullN-point multiple-time
self-similarity ansatz is not correct, as was showr{diB].  distributions[27]. In Refs. paper$25,26 it was also shown
The reason for this is competition between the initid!  that the statistical properties of the points of contact between
(with constant prefactos?) and the autonomously generated the parabola and the initial potential can be obtained from
k? (with prefactor increasing in time If n>2, the initial  the statistical properties of their intersections, whose mean
spectrum, at lovk, is soon overwhelmed bi? generated by number can be calculated using the formula of Ri28].
nonlinear interactions between harmonics. In this caselhus, it is possible to express the parameters in the
hence, the spectrum is fully universal, characterized by asymptotic formulas in terms of the rms initial potential and
single scalek(t) and otherwise independent of spectral indexvelocity.
n. In the limit of vanishing viscosity, as the tintetends to
For sufficiently large wave numbers, the spectrum shouldnfinity, the statistical solution becomes self-similar and the
always be dominated by shocks. In one range, we shoulé@nergy spectrum has the fori®. The integral scalé(t) and

therefore have the energyE(t) are given, to leading order, by
B(t - 1/214-1/4|
E(kt) ~ % k large, (10) L(t) = (to) ™ In (2th|)’ (11)
which is equivalent to Eq(9) if B(t)~L(t)/t>. The ampli- E(t) =t |n—1/2( t ) (12)
. [ ’

tude of the small scale part of the spectrum will decrease 27ty
with time for n>-2 and increase with time for —<3n h
-0 where

We note that the spectrum gives only partial information ty = LS/%: Lo/o,, Lo=oylo, (13

on the solutions to the Burgers equation. Indeed;?atail , ] o

does not distinguish between discontinuous solutions witf"€ the nonlinear time and the initial integral scale of turbu-

shocks and standard Brownian motion. which is almost€NCe. Using this definition we can rewrite in a first approxi-

surely continuous. S€@-11] for other characteristics of the Mation

mass and velocity distribution. _ . . L(t) = Lo(t/ty) Y2 E(t) = Eqot/t,) " (14)
The rest of the paper will establish the regionkiandt ) ) _ o ) )

for which the above tables is true if we have cutoff at largeThe nondimensionalized self-similar correlation function

and small wave numbers. B,(X), which is a function ok=x/L(t), is given by

056305-4
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(16)

1(” z
P&)_Ef_w g(YLZ)eXp[(YHz)ZJ g(?—z)exp[(’i(—z)zJ’
2 8 2 8

92 = J e52ds. (17)

Our choice of normalization of the energy B&)=L2(t)/t?

d
+

1/2
At) = &03L3<i) |n-5’4<#>. (22)

tn| 27Ttn|

So we have a spectrum with an algebrifcregion and a

imposes that for the dimensionless spectrum we havéme-increasing coefficienA(t).

fE(E)dT(zl. It may be shown that the functiod®(X) is the

probability of having no shock within an Eulerian interval of

lengthXL(t) [5].

Note that the properties of the self-similar state are uni-
versal insofar as they are expressed solely in terms of tw
integral characteristics of the initial spectrum: namely, theb
initial rms potentialo, and rms velocityr,. Observe that the
spectral exponent does not directly enter, in contrast to wh

happens whem<1 (see Secs. IV and V For the dimen-
sionless spectrum

E(k) = %T f i B, (X)exp(ikx)dx = - % J i XP(X)explikx)dx,

(18)
we have the following asymptotic:
-~ K2, k<1,
ER=1 = 5
ak? k>1,
k=KL(). (19

Thek™2 region is the signature of shocks, while tkferegion

A. Exact self-similarity (2<n)

The situation is more complicated at large but finite time
[)18]. We must now distinguish two cases. When 2, thek?
contribution(21) dominates everywhere over the" contri-
ution and we have a self-similar evolution in the whole
ange of wave numbefsee Fig. 18)], but the “self-similar”
Ime tg from which we have a self-similar stage of evolution
depends om. In the general case, the conditioft,>1 is

not enough for the Poisson approximation to hold and con-
sequently for the existence of self-similarity. Let us denote
by A, @ typical correlation length for the initial potential,
which may be greater the initial integral scdlg The self-
similarity occurs when the integral scale of the turbulence
L(t), Eq. (11), is much greater the typical correlation length
Ao This leads to the following condition on the “self-
similar” time ts[18]:

tea~t l(ACOH‘)Z
SS n LO

There are instances whef&,,/Lo)? can be large. Consider
an initial spectruniEy(k), Eq. (4), with n>1 and a function

(23)

comes due to the parametric pumping of energy to the areo(k) decreasing rather fast whén-k,,. In this case the ini-
of small k. The two constants, anda_ can be computed tial velocity field is a quasimonochromatic signal with a cen-

theoretically ag5]

a, = 1/77J *?P(X)dx=1.078...,
0

a=273%2=0359.... (20)

In dimensioned variables, the smélkegion behavior of
the spectrum is thus

L3(t)

E(kt) = a+t—2k2 =A(K?, kL) <1, (21)

where

ter wave numbek,~ Ly* and a widthAk ~[A o]t <k,. At

the early stage of evolutiofy <t <<t (Acon/Lo) We have the
saturation of the amplitude modulation and the shift of the
shocks is much smaller than the period of the quasimono-
chromatic signal. The energy of this signal is approximately
the same as the energy of the periodic weft) = L3/ 12t
[29]. Nevertheless, due to the finite width of the initial spec-
trum, we have the generation of a low-frequency component
v(x,t) whose spectrum is well separated from the primary
harmonick, and with energyE,(t) ~ Eqo(Lo/ Agor)®> <Eo. At
to(Acord Lo) <t <<ty (Acon/Lo)® the energy of the low-
frequency component is larger than the energy of the high-
frequency quasiperiodic wave, but to the large spatial scale
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oo ¢, = 0.033
o0 ift, = 0.098

o tft, =033
&g/, =33
<yt =330

¥ 7 4, =33x10°
bt/ = 33 x 10°
et =33x 10°

Energy spectrum, E(k)
Reduced energy spectrum, E(k) Lim (t)/t2

Reduced wave vector, & L, (1)

Wave vector, k

FIG. 3. Reduced energy spectEak,t)tzngxp[(t) (n=4) at the
FIG. 2. Evolution of the energy spectrum with an initial spec- S@Me times as a function of reduced wave nunkthgg,(t).
trum proportional tck* at small wave numbers The spatial reso-

lution isN=2%°. Spectra averaged over 3000 realizations. The labelgluce the relation between,,(t) andL(t), which we can get
correspond to output timegt,=0.033,..., up td/ty,=3.3X 10°. from Eq. (9):

©

we have a relatively smalg distortion of this component. And E(kk2dk
only att>ts~ty(Agon/ L)~ do we have the self-similar re- -
gime of evolution. The physical reason for this is a strong Léxpl(t) = Lz(t)? =20 | XPR)dX
correlation of the shocks in the early stage of the evolution, f E(k)dk 0
which prevents the rapid merging of shocks. We need to —
stress that we have a similar situation for a spectru ~ 1.68.2(t). (25)
-3 and a cutofk; at small wave number.

Let us now discuss the results of numerical simulations. From these, we deduce the experimental values of the
We use a smooth cutoff of the initial power spectrgal)  constantsa,=1.10 and a=0.37, both slightly larger(
with k,=N/16. We consider in all experiments periodic ini- =2%) than the theoretical values. This very small discrep-
tial conditions, so the infrared cutoff frequency in this case isancy could be due to finite-size effects contaminating the
determined by the size of simulation box ak&2w. To ~ measurement ofy?(x,t)) at small wave numbers and
check the self-similar ansatz we consider the evolution ofv?(x,t)) at large wave numbers, and thus of the experimen-
energy spectruri(k, 1), of the energyE(t)=(v?(x,1)), and of  tal integral scald eyp{t).
the integral scald,y(t) which we can measure from the  The asymptotic spectrum is reached rather quickly after

—o0

experimental data as nonlinear timet, and the asymptotic formula describes the
numerical data very well, not only in the limits of relatively
Lgxpt(t) = (PP )Y02(X,1)). (24) large and small wave numbers, but also at the top, where the

spectrum switches between the two asymptotes. From Fig. 3

In Fig. 2 energy spectréaveraged over about 3000 real- is also seen that the transition between the two asymptotics
izations of the random procesare shown at different mo- 'y2 angk2 is rather sharp.
ments of time front/t,=0.033 tot/t,=3.3x 10%. The initial
spectrum wag* at smallk. Figure 3 contains reduced energy B. Breakdown of self-similarity (1<n<?2)
spectrag(k, t)t?/ Lgxpl(t) at the same time as a function of
reduced wave numbekL,,.(t). We see the generation of
A(t)k? with growing amplitudeA(t) at smallk and k™2 at
large wave number. The switch polaft) between the\(t)k?
and o?|k|" regions of the spectrum moves quickly towards E(kt) = a?K", fork— 0. (26)
the maximum of the spectrum and finally thé&* part of the
spectrum disappeafsee Fig. 13)].

The more interesting case is<in<2, when we have
breakdown of the self-similarity18]. The permanence of
large eddies implies now that, at extremely snhkall

This relation holds only in an outer regidkl <ky(t) where
. . Eq. (26) dominates over Eq21). The switching wave num-
The preservation of the shape of each curve at large tim : ; P
t/t,>10 is evident. It is also seen that the total eneftipe Serks(t), obtained by equating Eq21) and(26), is given by
area under the curveslecreases and so does the character- a2t2 \ M@ S t ~L22-n) siazn t
istic wave numbek (t) ~1/L(t). The curves in Fig. 3 have S(t) = _L5(t) =Ly In ot )
. |
been plotted with respect to the reduced wave number
KLexpf) @s the quantity,(t) can be measured unambigu- (27)
ously from the numerical simulations. To compare the result$ et us define an energy wave numbkeft)=L"X(t), which is
with the spectrum theoretic&(k), Eq. (18), we need to de- roughly the wave number around which most of the kinetic

tnI
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Energy spectrum, E(k)

Wave vector, k

FIG. 4. Evolution of the energy spectrum with an initial spec-
trum proportional tok|" (n=1.5 at small wave numberk. Reso-
lution N=2%0. The labels correspond to output times/t,
=0.18,..., up ta/ty,=1.8x 10°,

energy resides. From Eq11) k. (t)~(te,)™? (ignoring
logarithmic corrections We then have from Eq27), still
ignoring logarithmic corrections:

k(® (i
tnI

)—(n—l)/2(2—n)
28
k(1) G
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—
<
c

o 11, = 0.18
oo gff, = 1.8

-t =18x10°
s 1/, =1.8x 10"
@a g, = 1.8x10°
* < 1, = 18x10°
> tfr, = 1.8x 10"

._
O‘
£

Reduced energy spectrum, E(k) /L, ( t/tnl)m {log(#/2mt,,), }.,/4].3 I

Reduced wave vector, k L, (#ft,)"” {log(t/2me, )i

FIG. 5. Reduced energy speckk, t)t?/L3(t) at the same times
as a function of reduced wave numbdr(t) using the theoretical
value L(t)=(t/t,) Y In(t/ 27t,) ] V4.

differentn=1.5,2, 3,4 and théheoretical curves, taking into
account the relation betweeb,,,(t) and L(t), Eq. (25,
showing that the theoretical predictions are perfectly repro-
duced by the simulations.

In all experiments, we only consider times small enough
for the characteristic wave numblgr(t) > k;, so that we still
have many shocks in the box. When this condition is broken,
it means we have a single shock in the simulation domain
and we have universal self-similar linear decay of the spec-

Hence, the switching wave number goes to zero much fastdfum E(k, )~ (k™2
than the energy wave number, so that the preserved part of

the initial spectrumk|" becomes rapidly irrelevant. Let us

also observe that the ratio of the energy in the outer region to

the total energy, a measure of how well the Kida ldu) is
satisfied, is equal tét/t,) =32 (yp to logarithms and
thus becomes very small wheert,,, unlessn is very close
to unity. Thus, for XK n<2 there is no globally self-similar

IV. HOMOGENEOUS VELOCITY AND
NONHOMOGENEOUS POTENTIAL (-1<n<1)

We begin with the case <tn<1 when the initial poten-

tial has homogeneous increments. Many aspects of this case

are well understood, thanks in particular to Burgers’ own

evolution of the energy spectrum at finite time. Of course, as

n—2 the innerk? region overwhelms the outék|" region

and asn—1 the converse happens, so that in both instances

global self-similarity tends to be reestablished.

In Fig. 4 energy spectréaveraged over-3000 realiza-
tions of the random procesare shown at different moments
of time from t/t,=0.18 tot/t,=1.8X 10'°. For the initial
spectrum we have=1.5. Figure 5 contains reduced energy
spectraE(k,t)t?/L3(t) at the same time as a function of re-
duced wave numbekL(t), when we use the asymptotic ex-
pression(11) for L(t). We see again the generationAfft)k?
with growing amplitudeA(t) at smallk andk 2 at large wave
number. The switch poinkg(t) betweenA(t)k?> and o?[k|"
regions of the spectrum tends slowly to the origin of the
spectrum and finally the?|k|" part of the spectrum disap-
pears[see Fig. 1b)].

Thus the numerical experiments support the theoretical

prediction that fom> 1 at large time we have the self-similar
behavior of the spectrurt®). Moreover, the integral scale of
turbulenceL(t), Eq.(11), and the energy of turbulenci(t),

10

)

Integral scale, L(z)/ L,
S

0

10

Reduced time, ¢/,

FIG. 6. Evolution of the computed integral scalgp(t) for n

are in perfect agreement with theoretical predictions, eveﬁ1.5,2,3,~4(d0tted line$ compared to the theoretical leading-order
for 1<n<2 where we have breaking of self-similarity. In prediction Leyy,=1.28.(t), Egs.(11) and (25) (solid line), and the

Figs. 6 and 7 we plot the evolution &f,.(t) and E(t) for

same without the logarithmic correctigdashed ling
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10

10°

Reduced energy, E(t)/E,

-10

10

Reduced time, ¢/1,

FIG. 7. Evolution of the computed integral energyt) for n
=1.5,2,3,4(dotted line$ compared to the theoretical leading-order
predictionE(t)=L2(t)/t? (12) (solid line) and the same without the
logarithmic correctior(dashed ling
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X=x/L(t), a=alL(t), v=vl/[L({t)], (31
whereL(t) is an integral scale of turbulence. Then the “maxi-
mum representation” will be rewritten in the form

(Xt =% -axt), (32
wherea(x,t) is the coordinate at which dimensionless func-

tion fi)()"(,"él,t) achieves itgglobal) maximum for giverx and
t and

- - X —a)?
Ban =@ - 2 33
HereT/;o(E,t):zpo(éL(t))[t/Lz(t)] is the dimensionless initial
potential with the following structure function:

Soy®) = gERL() 2K 1. (34)
Here we define that integral scdlét) by the relation
L(t) = (at)?/Cm (35)

and so in Eq.34) we use that(at)?/Le™(t)=1. For this
definition of the integral scale, we have for the dimensionless

work [1], who did consider the case when the initial velocity spectrum(9)

is white noisen=0 (see alsd5,6)).
The phenomenology is quite simpl{see Sec. )l Incre-
mentsAyg(L(t)) of the initial potential over a distandg(t)

=x-a(x,t) can be estimated from the square root of the

structure functior,,(L) of the potential(29):
Sou(X) = ([$h(X) = $o(0)]%). (29

Whenn<1, it grows without boundS,(x) ~ ?|x|*™. For a
given positionx, the maximum in Eq(2) will come from

thosea’s such that the change in potential is comparable to
the change in the parabolic term and this immediately lead

to L(t) ~ at?(™3 (see Table .
When the initial spectruntd) has no cutoff wave number,

we can use that scaling and then get immediately that th

above-mentioned expressions for the integral stélgand
energyE(t) (see Table Il are now exact for all time starting
from zero. For details, s€@®] (Sec. 4 and[30]. But even

-~ K, k<1,
Ek=) -~ -
ynk_z, k> 1,
k=KkL(t), (36)
and for the energy of Burgers turbulence,
E(t) - anLZ(t)/tZ - aﬂa,4/(3+n)a[—2(n+l)/(3+r1), (37)

where y, anda, are dimensionless constants, which we will
determine from the numerical experiments.

Consider first the case when we have a cutoff wave num-
ber k, only at small scalgk;=0). Then, forL(t)>L,, the
Structure function(35) may be replaced by

S = BRI, (39)

when the initial spectrum has both cutoff waves numbers athe function being independent of time and possessing no

large and small scale there is some region in (kt¢ plane
where we have self-similar evolution of the spectrum.

In the general case for the structure functi@d) of the
potential, we have

Sou(¥) = g(x) BZe? X" ™,

2
min-1)"

(30)

I'(2 =n)sin

The properties of the dimensionless functgi(x) are deter-
mined by the functiorb(k) and for b(k)=1 we haveg(x)
=1. When the initial spectrum has cutoff wave numblers
andk, the functiong(x)=1 in some spatial interval,,<x
<L; whereL,~1/k, andL;~ 1/k;. Let us introduce the di-
mensionless variables

spatial scales on its own. In this case the statistical properties
of the rescaled absolute maxima coordinédedo not vary
with time. This means that the fieldX,t), Eq. (32), statisti-

cal properties also become time independent provided the
rescaling defined by Ed31) is used with the integral scale
L(t) following Eq. (35). Thus, at large times wheh(t) is

also large, we will also have self-similar evolution of the
spectrum(36) [see also Fig. (£)]. Alternatively, we could
argue that whet is so large that the parabolas appearing in
Eq. (2) have a radius of curvature much larger than the typi-
cal radius of curvature of features in the initial potential, we
can plausibly replace that initial potential by fractional
Brownian motion of the exponertt=(1-n)/2, so that the
upper cutoffk, becomes irrelevant. Without loss of general-
ity we may assume that this fractional Brownian motion
starts at the origin fok=0. This function is then statistically
invariant under the transformation— Ax and u— Ny It
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is then elementary, using E(R), to prove that a rescaling of 10
the time is(statistically equivalent to a suitable rescaling of
x distances and af{(x,t). This implies the above expression
for L(t) andE(t) (see Table I\ 10°
For the self-similar initial spectrum with <tn<1 we g
have a divergence of the potential in the infrared part of theg
spectrum and divergence of the velocity and gradient ats 10°
small scale. So we cannot introduce now the initial scale ong,
the basis of Eq(13). Assuming that we have a cutoff wave
number at small scale, we can in this section use some othe ¢*
definition of nonlinear time and initial scale:

e r=15x107
00 t=1,5%10°
e r=15x10"
—ar=15%10"
+-at=15x10"

E|

Ener

ty=Lolo, = 1llog, Lo= o,y (39 .
It is easy to see that this time is equal to the the characteristic 1 Wave vector, k
time of shock formationts. Using this definition we can
rewrite the expression fdr(t) andE(t) in the form FIG. 8. Evolution of the energy spectrum with an initial spec-
trum proportional tok|" (n=0.5 at small wave numberk. Reso-
L(t) = Lé(t/t,’ﬂ)z/(SJ’”), (40) lutions N=21% and N’ =220 are denoted by solid or open symbols,
respectively. The labels correspond to output timgs1.5
E(t) = Eq(t/t,) 2 DIEm) (41)  x107,..., up tot=15x 10" (in absolute time, the reduced time

t/t}, depends on the value of the upper cutgff equal in this case
Assume now that we have also a cutoff wave nuntbat  to N7 or N’ 7).

large scale and we have saturation of the potential structure

function to 2 at x>L;. In this case in the interval when equal to each other for all times. Figure 9 shows the reduced
Li>L(t)>L, we can replace the dimensionless structureenergy spectr&(k,t)t?’ as a function of reduced wave num-
function (35) by Eq.(38). It means that in some time interval berkt*” at different times for these two different valueshbf
t,<t<t;, wheret,, t; are determined by the conditidr(t) =~ We see that, once again, both spectra display a perfectly
=L, L(t,)=L,, we will still have self-similar laws for the Self-similar evolution and are exactly equal in their common
integral scald.(t) and energyE(t) of turbulence. The energy 'ange of reduced wave numbers. Moreover, it possible to
spectrumE(k,t) will have the self-similar behavior on this Show that we have not only conservation of the spectrum in
time in the regiork> k. [see Fig. 1d)]. For the final state at Presence of hlgh—frequency signals byt also qonservatlon of
very large times, there are two possible situations. In the firsihe large-scale structures in each unique realizg@dn32.

one, if we have a finite box of sizk,,,=L,=27/k and a The measured vz_ilue of the dimensionless constamp
periodic initial perturbation with this period, then at very =1:62 IS reported in Table [lIl.

large time we will finally have one triangular wave on the Similarly, in Fig. 10, the energy spe/ctEik,t) are ,ShOW”
period and the energy will be decay Eet)zLiZ/12t2. Inthe at different m(_)r_n_ents of time fror_rn/tn|_:1.6 to t/_tn|:5.4_
nonperiodic case with a continuous power spectrum, we wilt® 10* for the initial spectrum, which is a classical white
have the generation of a low-frequency compongtk,t)
~A(t)k? in the regionk<k; and finally the behavior of the
turbulence will be like in the case>1 (see Sec. I\

In numerical simulations we used two different types of CONStanty,=
initial spectrum. In the first one we assume that we have the ¢
self-similar power spectruntd) in the whole wave-number
range from 2r to N7 (k;=27,k,=Nm); in the second we use
an infrared cutoff wave numberm2<k; <k,=Nasr. If the ini-
tial spectrum is self-similar inside the intervkl=2mw, k,

noise withn=0. Figure 11 contains the reduced energy spec-
tra E(k,t)t° as a function of reduced wave numbef® at

five different times. The observed value of the dimensionless
1.43 is reported in Table III.

o 1, =9.1x10°
—e g, =21

a-a fr, = 9.1x 10"
—n gty = 2.1 10°
=iy =9.1x10°
_| ey =21x10
—a 1, =9.1x10°

27

g
=N, then for the nonlinear timg, we have g i =21X10
, _(n+3)¥? 1 n+3\"2 1 %
n=\"p a(kff"”)lz— ki(3+n)/2) 7 akff””)’z' g 10°
(42 3
In Fig. 8 the energy spectiak,t) are shown at different ,
moments of time front/t/,=21 tot/t/;=9.1x 10". The initial 1

spectrum wagk|" with n=0.5, but two simulations were
done with different resolutionsl=2'> and N’ =229, so that
we have in reality two different ultraviolet cutoffg,= 2%z FIG. 9. Reduced energy specEék,t)t2’7 (n=0.5) at the same
andk/,=2%07. From the figures, one can easily see that in thetimes as a function of reduced wave numk#f’. Same conditions
frequency range; <k<min(k,,k/) the spectra are exactly as in Fig. 8.

Reduced wave vector, &k £
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TABLE IIl. Measured values of the universal constanptsand 10°

o—o fft\, = 1.6
a, characterizing thé2 spectrum shock tail and law of energy isi;:“‘ff“sxlos
decay, respectively. Values marked—do not exist or could not be__ ottt = 54 10°
measured. =2

53]

g 10°
n -25 -20 -15 -1.0 -05 00 05 10 §
Yn — 094 097 109 126 143 162 1.93 :‘E"
& — — — — 043 032 032 037 3 i*

&

From the structure of the Burgers equation we see thai
due to the nonlinear interaction of harmonics we have always 10’ -
the k? term at low wave numbeis which may be leading or Reduced wave vector, k £
subleading. The sign of this term depends on the initial spec-
trum. It is evident that fon>2 we have the generation of  FIG. 11. Reduced energy spectek,tt’ (n=0) at the same
new component at small wave number and this term infimes as a function of reduced wave numkéf®.
creases with timg¢see EQ.(22)]. Whenn<2, this term is
subleading, but its growing amplitude can make it apparening to note that all parts of the spectruik?, k°, and k™2,
so that it dominates the dynamics, as shown in Sec. Ill. Buevolve in a self-similar way for intermediate timeg<t
when n<1, this term is completely masked by the initial <t;.
components~ k|", and the only way to show that it is really In Fig. 14 the evolution of the enerdy(t) for different
present is by computing the difference of the spectrum witm=1,0.5,0,-0.5 isplotted. The law of decay is in good
the initial one, provided the statistical noise in the simula-agreement with the theoretical predictiofl) for all times.
tions is small enough. This has been done in Fig. 12, showThe constants,, have been measured and are shown in Table
ing this subleading term-k?, this time with a negative am- |II.
plitude, but displaying also perfect self-similar behavior.

Another way to display this universal low-wave-number V. NONHOMOGENEOUS VELOCITY AND
k? component is to introduce some infrared cutoff in the NONHOMOGENEOUS POTENTIAL POTENTIAL
initial condition. In the simulation shown in Fig. 13, we con- (-3<n<-1)
sider the case of the white-noise initial spectram0 but o )
with an infrared cutoff ak;=64a. For the first two displayed For the self-similar initial spectrum with <8n<-1 we

times, we have a self-similar evolution of the spectrum in thehave a divergence of the potential and velocity in the infrared
wave-number rangk < k<k,, but with the generation of a Part of the spectrum and of the gradient in the ultraviolet
component spectruri(k,t) ~A()k? in the regionk<k. At  part. Assuming that we have a cutoff wave number at small
the timet/t/,=1.6x 10% L(t) ~L; reaches the lower cutok, scalek;, we can still use the definition of the nonlinear time
and the spectrum then becomes equivalent and evolves fRrough the gradient of velocity, =1/0q, Eq.(39), which is

time as in Sec. lll, where we have self-similar evolution with

—_
=)
<

e—o fft, = 1.6
o gt = 54
e il = 16x10°
s gt = 5.4x 10°

eot=15x10"
----- t=5x%10°
e»r=15%x10"
s t=5x10"

._.
S,

Energy spectrum, E(k)
15

Reduced spectrum difference, [E(k)-E(k.z)] e

213
Reduced wave vector, k¢

Wave vector, k FIG. 12. Evolution of the difference of the reduced energy spec-
trum with the initial white-noise spectruk?, showing the universal

FIG. 10. Evolution of the energy spectrum with an initial spec- k2 term at smalk’s, which is subleading in this case.

trum independent ok (n=0) (white-noise initial velocity.

equal to the the characteristic time of shock formatitan,

i i ~ K2 k2
universal behavior of the spectrulitk) ~k ‘.’md E(k). .k Due to the divergence of the energy in the infrared part of the
at small and large wave numbers, respectively. It is interest-
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10
10° ot =16 S
=0 fff' = 54 —e ¢t=5x%x10
o =1.6x10° =2 1=0.015
o * < r=005
°, s gt =54 x10
= s 1=015
2 << t=05
$ 10° ] cot=15
E 0 F 0 —1>—>1t=5
£ g
5 g
5 8
2 &
< =
3 10° B
= 3 | .
E | | g 10
| |
| |
10° | | |
10° 10° 10° N
2/3 10
Reduced wave vector, k¢ 10° 0 o To°

Wave vector, k&

FIG. 13. Evolution of the energy spectrum with an initial spec-
trum independent df (n=0) as a function of reduced wave number  FIG. 15. Evolution of the energy spectrum with an initial spec-
kt?”® with an initial infrared cutoff wave number &=64m (corre-  trum proportional tok"2. One can see that the spectrum does not
sponding to 1/32 of the box sizeOne can see that the upper part change at all until the nonlinear time of the smallest wave-number
of the spectrum is unchanged with respect to Fig. 11. component is reacheeart~=0.15.

spectrum, the dissipation in the shocks does not lead to a | Fig. 16, the evolution of a realization of a velocity field
finite value of the energy at any time, if there is no cuteff \yith 4 k2 spectrum is plotted at different times. It is easy to
Nevertheless, we can still introduce the integral scale of turgaq that even if the spectrum does not change, the character-
bulenceL(t) showm% the region when the initial power-law jgtie distance between the shocks which is proportional to the
spectrumE(k,t)~ K" transforms to the universal spectrum geaje| (1) increases with time. The signal switches continu-

E(k,t)~k™. For the spectral form of principle of “perma- gy from a Gaussian Brownian motion with random phases
nence of large eddies,” we still have that the integral scale

grows according to Eq:35). From Eq.(10), we see that the 1 -
amplitude of the small-scale part of the spectrum decrease
for n>-2 and increases with time for <8n<-2.

Let as start with the special case of an initial spectrum
with critical indexn=-2 whenL(t) ~ (at)2. From Eq.(9), we
see that the spectrum does not change in time. In Fig. 15, th
energy spectri&(k,t) are shown at different moments of time
from t/t/,=0.005 tot/t;,=5. And we really see that it is only
when t/t;,>1 that the spectrum begins to change, simply
decaying in amplitude without changing its shape. But even

ty, v(x)

1

Veloc

if it is not apparent in the spectrum, we have an evolution in 1 s
time of each realization and of other statistical properties,

like the shock probability distribution or higher moments of 1 -
the velocity.

100 |~

Velocity, v(x)

-1

10° | 0 0.5 1

Reduced energy, E(¢)/E,

FIG. 16. Evolution of the velocity field for one particular real-
ization with an initial spectrunk™2. The upper plot is the Gaussian
Brownian motion initial condition at=0 and the lower plot is the

5 velocity field att=0.15, just before the decay of the smallest wave-

10°

|

|

|

]

10° 10 )

Reduced time, #/t', number component. Both signals have the same power spectrum.

Note that the largest scales are nonlinearly distorted, but their am-

FIG. 14. Evolution of the computed integral enerfgt) for n plitude is globally preserved, illustrating the principle of the persis-

=1,0.5,0,90.5. tence of large eddies.
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12 0

10 10
I I I o—o 1" =091 o 0r=5x10"
ea it = 2.7 ot =0015
oo =01 o ©1=005
- e it' =27 ==t =015
= <-a =91 e-at=05
5 v ¥ 1ty =270 = 10%
g — 4ft' =910 %
g !
g g
Q
g £
B 2
g B 0t
5 210
3 &
S
Q
-4
10"
Reduced wave vector, & I Wave vector, k
_4 . . . . ..
FIG. 17. Reduced energy specik,t)t™* as a function of the FIG. 18. Evolution of the energy spectrum with an initial spec-

reduced wave numbéd(t)=kt* for an initial spectrumk 2. Note  trum proportional tok| 25 One can see that the amplitude of the
that the spectrum rescaling works even if this is the case with &igh-frequency componentscreaseswith time, the |k|™25 spec-
factor decreasingwith time and allows the separation of thé’  trum transforming to &2 tail, whose energy really comes from the
spectra in differents zones coming from the initial conditions smallest wave-number components. These have a very slightly de-
[KL(t) <1] or from the shock$kL(t)>1]. creasing amplitude, so that the global energy is nearly constant, but

. . . ) slightly decays in time.
to a triangular wave with aligned phases, but these signals

have the same power spectrum and the amphtude of thﬁ%lter thant,, is also evidenced in Fig. 19 far=-1.5,-2,
spectrum is preserved by the Burgers evolution. The evolu- : B "
tion of the spectrum in numerical simulations starts and the_2'5' As the. energy does not decay utiik, the constants

i : . a, do not exist fon<-1 and are thus not shown in Table .
energy begins to decay at the timig; when the integral
scale of turbulenck(t) reaches the size of the badx,,. This
can also be seen in Fig. 17 showing the spectra rescaled with
time for Gaussian Brownian motion initial conditions. One In this work we have reconsidered again the classical
can see that the initidd™? spectrum visible fokL(t)<1 is  problem of the spectral properties of solutions of the Burgers
continuated with thé 2 spectrum of the shocks at late times equation for long times, when the initial velocity and veloc-
for kL(t)>1, but that the rescaling allows the separation ofity potential are stationary Gaussian processes. We have
both. For a given finite-size realization of the signal with shown in greater detail how the self-similand non-self-
both lower and upper wave-number cutoksand k,, the  similar) regimes are realized with initial conditions that are
spectrum will slide along the curve in Fig. 17 unkiL(t) only self-similar over a finite range. The range in which self-
>1; that is, the rescaled wave numbé&ist)>1 are larger ~similarity can be observedor not observed changes in
than 1 for allk's, at which time the spectrum will begin to Wave-number space with time, in a way that depends both on
decay linearly(as shown in Fig. 17 fot/t/,>27). the initial spectral slope and on the Idnand highk cutoffs

In Fig. 18 the energy spectk,t) with an initial power-  in the initial data.
law spectruneE(k,t) ~|k|" with n=-2.5 is shown at different
moments of time front/t/;=6.9x 1072 to t/t/,=6.9. We see
the generation of a universki? tail, the amplitude of which 10°
increases with time, and the switching point between the
k™2°andk™? parts of the spectrum moved to the small wave
numbers. The values of the dimensionless consjaim the
dimensionless spectrum in E(B6) are shown in Table IlI.
Note that the constant for=-2.5 has not been measured as
the energy begins to decay immediately as soon akthe
tail is established. This effect also perturbs the measurement
of v, for n<-1, because in a finite-size system, some
(small) dissipation occurs as soon as shocks are present, and
so the amplitude of th&? tail is diminished. This explains .
why we measure, for instance, an amplitugle,=0.94 at !
large times, even ify_,=1.0 should be observed. 10 L
We can also introduce the other nonlinear time is a time of

nonlinear decay of the first harmontg ,=k,/A;. For -3
<n<1, we have no significant decay of the energy of tur- FIG. 19. Evolution of the computed integral energft) for n
bulence untit=t, ;. The constancy of the energy until much =-1.5,-2,0,-2.5 as function of t/t.

VI. DISCUSSION

10’ — - — - — - — - —  — - — e e — e — e - — -

Reduced energy, E(t)/E,

Reduced time, #/f'

056305-12



GLOBAL PICTURE OF SELF-SIMILAR AND NON-.. PHYSICAL REVIEW E 71, 056305(2005

Depending on the statistical properties of the initial veloc-decaying sinusoidal wave with period equal to the size of the
ity and potential one can introduce the following regions onbox.
then axis. They are the homogeneous velocity and homoge-
neous potentialn> 1) with subinterval(1<n<2), homoge-
neous velocity and and nonhomogeneous poteltidkn ACKNOWLEDGMENTS

< 1), and nonhomogeneous velocity and nonhomogeneous _ ) . . .
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similarity is different in different region on then“axis” and
is determined by the properties of the initial potential. High-

resolution numerical simulations have been performed con- APPENDIX: NUMERICAL WORK
Ilr:renol?)? both scaling predictions and analytical asymptotic Normalizations of the initial spectrum
For the cas¢n> 1) we have verified by numerical experi-  We use the following smooth cutoff of the initial power

ments the asymptotic theory derived previously by severaspectrum:

groups[18,24—27. The main results are the following: At o

very large times the spectrum tends to a limiting shape, pro- Eo(K) = o?[K|"e 7%, (A1)

portional tok? at small wave numbers and t0? at large

wave numbers, such that evolution shape is determined bt¥1

the peak wave numbég (t) ~1/L(t). Due to the merging of

the shocks, the integral scale increases with tirhé&) s, o ofN+1

= (to,)Y2In"Y4(to?/ 2m0,). So asymptotically the evolution 7, ={vp) = &l 2

of Burgers turbulence and, in particular, the law of energy

decay is determined only by the variance of poterm'%ll n+3
2

The variances of the velocity, the velocity gradient, and
e potential can be computed to be

(A2)

For large, but finite time, we have a breakdown of self- oh=(ap) = aZF(—)
similarity of the spectrum when<dn<2. The spectrum then 2
has three scaling regions: first,|ld" region at very smalk
<k4(t) with a time-independent constant, secork? aegion 2 - (4B = Zr(n—l
at intermediate wave numbekg(t) <k<k (t) with increas- Ty~ Wor =
ing amplitude, and, finally, the usukt? region atk> k (t).

The relative part of the spectrum with thid" region de- . N . .
P P " reg From this equation it is easy to see the critical points of

creases with timekg(t)/k, (t) ~ (t/t,)~"D/22), . .
In the case of finite viscosity, if one introduces an instan-cOnnected with the divergence at small wave numbers.

taneous Reynolds number ®e~ L(t)EY2(t)/ v based on vis-

cosity, the typical velocity and typical spatial scale at titne Generation of initial conditions

it means that R@) ~ Rey(In t/t,) 2 Within dimensional es- _ _ _ _
timates, the Reynolds number would be constant in time. On The SC?'e of the box in the numerical experiment is taken
a practical level, we have thus established that the invisci@S the unit of space, so that wave numbego from 2r to
approximation is not valid for arbitrary long times. After a NW,’ whereN IS the ”“mberfgf points used in ”;‘3 S'm“'?‘“o”'
time, which is very long if the initial Reynolds number is YPically ranging fromN=21=3x10* to N=2%=10° in
large, about,, expR&), the viscous term in Eq1) becomes our simulations. The amplitude of the spectrifl) was

comparable to the inertial term everywhere and cannot bé'mply taken ".m:l' The Fourier components of a Gaussian
neglected. process are independent Gaussian variables. We therefore

Whenn is less than 1, the large-scale part of the spectrurﬁy.mheSize the initi.al potential of thg vglocity by first- gener-
E(k)=a2|K" is preserved in time and the global evolution is ating random Fourier componerggdistributed according to

k8+l'
k8+31 (A3)
k! (A4)

wherel'(x) is the gamma function.

self-similar, so that scaling arguments perfectly predict the 1 aﬁ
behavior in time of the integral scale(t)=(at)?®*". For p(ay) = —=—; ex “ o2
V2o, 20y

-1<n<1, the energy also decays as a power |E()

~ M2 DG 0 the case of finite viscosity the in- where
creasing of the integral scale is faster than the decay of the )
energy and we have for the Reynolds number(tRe o =E,kdk.

~ti™E0; e, the Reynolds number increases with timeang we use the well-known relation between the power
and the shape of the wave becomes more and more ”Onligpectra of the process and of its integral

ear. This last point is true only in the case when we have not

cutoff wave number at large scale. In numerical simulations EyKk) = K2Eq(K), (A5)

in a finite box, the final behavior will always be the linearly
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where the form ofEy(k) is chosen with a smooth cutoff at Fast Legendre transforms

largek according to Eq(A1). In numerical simulations the initial data are always gen-
By inverse Fourier transforming the components, we ob-erated as a discrete set Bf points. It could be assumed

tain the initial potential in real space, from which we cannaively that the number of operations necessary to compute

obtain the potential at any time using the Legendre transforrthe maximization(2) for all values ofx scales asD(N). It

(2) (see[9,33)). Repeating the whole process many timesmay, however, be shown, using H@), thata(x) is a nonde-

with different realizations of,(x), we sample the desired Ccreasing function ok. The number of operations needed in
ensemble of Gaussian initial conditions. an ordered search therefore scalesOéN log, N) when us-
ing the so-called fast Legendre transform procedure
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