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Abstract. We compute numerically the threshold for dynamo action in Taylor–
Green (TG) swirling flows. Kinematic dynamo calculations, for which the flow
field is fixed to its time average, are compared to dynamical runs, with the Navier–
Stokes and induction equations jointly solved. The dynamo instability for the
kinematic calculations is found to have two branches. The dynamical dynamo
threshold at low Reynolds numbers lies within the low branch, while at high
Reynolds numbers it gets closer to the high branch. Based on these results, the
effect of the mean flow and of the turbulent fluctuations in TG dynamos are
discussed.
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1. Introduction

The magnetic field of planets and stars is believed to be the result of a dynamo instability
originating in the motions inside their electrically conducting fluid core. A dynamo occurs when
induction due to motion overcomes diffusion [1], corresponding to a threshold in the magnetic
Reynolds number (RM = UL/η, with U and L characteristic velocity and length scales of the
flow, and η the magnetic diffusivity). For liquid metals (such as molten iron in the Earth core, or
liquid sodium in laboratory experiments [2]), the kinematic viscosity ν � η, and the magnetic
Prandtl number PM = ν/η is ∼10−5 or lower. Thus, the Reynolds number RV = UL/ν = RM/PM

of dynamo generating flows tends to be very high: critical values Rc
M of the order of a few tens

are associated with Reynolds numbers in excess of one million.
Here, following the practice in laboratory experiments (and also in several astrophysical and

geophysical flows), we focus on flows generated by a deterministic forcing at large-scales. For
these, a mean flow develops in addition to turbulent fluctuations which (as observations show) are
present in all spatial and temporal scales with correlation length and times extending to the integral
scale. In a previous work [3] we considered the flow generated by Taylor–Green (TG) forcing
at large-scales. Lowering PM to 10−2, we established that the value of the threshold for dynamo
action Rc

M, of the order of 20 for the laminar flow at low RV, undergoes an eightfold increase as
unsteadiness and small-scale motions develop. It was also observed that once turbulence is fully
established, Rc

M saturates to a constant value. For planetary bodies or laboratory experiments,
the numerical prediction of the dynamo threshold in realistic conditions is still out of reach.
Nonetheless, the experiments [4] in Riga and Karlsruhe found the onset to be remarkably close
to the values predicted from kinematic dynamo simulations based on the mean flow structure
[5]. However, the flows in these experiments were heavily constrained to reproduce the main
characteristics of the Ponomarenko and G O Roberts flows respectively.

These results have led several experimental groups seeking dynamo action in less
constrained geometry (eventually leading to richer dynamical regimes) to optimize the
mechanical forcing using kinematic simulations based on mean flow measurements [6, 7]—with
the advantage that mean flow profiles can be measured in the laboratory. It is thus of interest
to test the validity of this procedure, and possibly to clarify the role played in magnetic field
amplification by the mean flow as well as by the turbulent fluctuations.

We compare here numerically the dynamo behaviour as simulated from the magneto-
hydrodynamics (MHD) equations (1) and (2), to the result of kinematic calculations in which
the velocity is fixed to its time-averaged profile. In the fully dynamical problem, we integrate
pseudospectrally the following equations in a 2π-periodic box:

∂v
∂t

+ v · ∇v = −∇P + j × B + ν∇2v + F, (1)

∂B
∂t

+ v · ∇B = B · ∇v + η∇2B, (2)

together with ∇ · v = ∇ · B = 0; a constant mass density ρ = 1 is assumed. Here, v stands for
the velocity field, B is the magnetic field (or the Alfvén velocity), j = (∇ × B)/µ0 is the current
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density, and P is the pressure. The forcing term F is given by the TG vortex [8]

FTG(k0) = 2F


 sin(k0x) cos(k0y) cos(k0z)

− cos(k0x) sin(k0y) cos(k0z)

0


, (3)

with k0 = 1. In [3] k0 = 2 was used and thus, at the same resolution, the Reynolds
numbers, based on the energy containing scale, are here approximately twice that of the
previous study.

For a given viscosity, we first let the flow settle into a statistically hydrodynamic (non-
magnetic) steady state (only equation (1) is solved with B = 0). We either use direct numerical
simulations (DNS) for flows with RV up to ∼1000 and PM down to ∼0.2, or large eddy simulation
(LES) schemes with an effective viscosity νeff [9] for PM lower than about 0.01. Details of
the dynamical runs are given in section 2. In the kinematic runs, equation (2) alone is solved
with a prescribed (average) flow, details are given in section 3. Section 4 presents the results
of both sets of simulations, and compares the values of Rc

M for each set. Finally, section 5
contains some conclusions and discusses the implications of these results for our understanding
of large- and small-scale dynamo action when PM < 1 and a large-scales flow is present in
the system.

2. Dynamical runs

We first describe our dynamical runs. The mechanical Reynolds number is increased by lowering
ν and keeping F = 1.5 fixed; numerical grid sizes go from 643 to 2563. For all runs, the ratio of the
largest resolved wavenumber kmax to the viscous dissipation one kν is larger than one, ensuring
a correct hydrodynamic resolution [10]. Moreover, we computed structure functions in DNS
Sp(l) = 〈[v(x) − v(x + l)]p〉 up to order p = 4. As is conventional in numerical simulations of
turbulence we have verified that at small-scales the velocity increments obey the trivial scaling
Sp(l) ∼ lp for �min < |l| < 3�min where �min = 2π/kmax is the smallest increment in physical
space [31]. Thus the small-scales field is smooth and the dissipation is well captured in the DNS.

Once the hydrodynamic steady state is reached, a seed magnetic field with energy 10−20

evenly distributed among Fourier modes is introduced, and the MHD equations are integrated for
several magnetic diffusion times. For each run, we compute the growth rate σB = d(ln EM)/dt,
where EM is the magnetic energy. The critical magnetic Reynolds number in the dynamical runs,
denoted as Rc

M,dyn, is defined as the value of RM for which σB changes sign at fixed RV. In these
runs, RM,dyn is defined as RM,dyn = UdynLdyn/η where Udyn and Ldyn are respectively the r.m.s.
velocity and integral scale in the dynamical flow before the magnetic seed is introduced—a
precise definition of the integral scale is given below in equation (5). In the DNS, equations (1)
and (2) are numerically integrated, whereas in the LES the large-scales dynamic is accounted
for but the velocity fluctuations at scales smaller than the Ohmic dissipation scale are modelled
(as a result, the magnetic field is directly resolved at all scales) [3, 9, 11]. The LES was validated
against experiments in [9], and the value of Rc

M from the LES was validated against DNS and
another subgrid model of MHD turbulence in [3].
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Table 1. Run parameters for cases where the mean flow is computed: grid
resolution, viscosity (effective value for the last run with LES), integral length
and velocity scales, Reynolds number RV,dyn = LdynUdyn/ν, critical magnetic
Reynolds number Rc

M,dyn for the dynamical problem and for the kinematic ones
(Rc1

M,kin at onset of the first dynamo mode, Rc2
M,kin when it no longer grows, and

Rc3
M,kin, the onset of the second dynamo mode). The RM,kin values are computed

using the kinematic integral velocity and length scales, and the critical magnetic
diffusivity: Rci

M,kin = LkinUkin/η
ci, where i = 1, 2 or 3. The asterisk indicates the

run is an LES.

N ν Ldyn Udyn RV,dyn Rc
M,dyn Rc1

M,kin Rc2
M,kin Rc3

M,kin

64 0.3 3.1 1.4 15 34 22.0 53.2 142
64 0.1 3.3 2.2 77 48 23.9 48.7 150
64 0.08 3.5 2.3 98 59 23.7 50.6 155

128 0.04 3.4 2.5 190 110 23.3 51.6 152
128 0.015 2.6 2.6 460 170 24.6 50.8 149
256 0.007 2.4 2.8 930 180 22.3 52.6 145
128∗ 8.6 × 10−4 2.3 2.8 7950 150 23.5 51.2 167

3. Kinematic runs

Kinematic runs (cf table 1) are later computed for a subset of the dynamical runs, for which we
define the mean flow U as a time average of the dynamical velocity v:

U(r) = 1

T

∫
dt v(r, t), (4)

where T is a time much larger than an eddy turnover time TNL at the integral scale Ldyn, i.e.
T � TNL = Udyn/Ldyn. Note that T should exceed the magnetic diffusion time TM = RMTNL.
In practice, an instantaneous velocity field is extracted from the dynamical simulations every
time interval �T to increment the running average of U(r). We used �T ∼ TNL/100, and
T > 200TNL. To save computer time, the averaging is done during the linear growth (or decay)
phase in the dynamical runs—hence in the absence of a Lorentz feedback in the Navier–
Stokes equation. Equation (2) is then solved with v(r, t) ≡ U(r), in search of growing solutions
EM(t) = E0

M exp(σkin
B t) with positive σkin

B . Note that the mean flow (see equation (4)) is no longer
a solution of the hydrodynamic equations. For instance, it does not have a well-defined viscosity
in the sense that there is no known relationship from which one could compute a viscosity
from the U(r) as opposed to the dynamical flow for which the velocity skewness is related
to the dissipation and, hence, the viscosity. We therefore chose to attribute to the mean flow
the viscosity of its generating dynamical run. Then one can also define an associated kinematic
Reynolds number RV,kin = UkinLkin/ν, but instead we chose to represent all mechanical Reynolds
number variations as a function of RV ≡ RV,dyn (see e.g. figures 1 and 3).

As for the magnetic Reynolds numbers, two definitions can be introduced. The critical
magnetic Reynolds number can be given in terms of RM,dyn or RM,kin, computed from each
field’s characteristic lengths and r.m.s. velocities. Instead of giving two critical values for all
kinematic runs, figure 2 shows the thresholds Rc

M for the kinematic runs in units of RM,kin (see also
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Figure 1. (a) Kinetic energy spectra for TG1 (ν = 0.007); dynamical spectrum
EV,dyn(k, t = T) (solid line), and average flow spectrum EV,kin(k) (dotted line);
(b) integral length scales Ldyn and Lkin, normalized by the size of the unit TG cell,
versus the flow Reynolds numbers RV ≡ RV,dyn.

table 1), and two curves corresponding to the thresholds for the dynamical runs in units of RM,dyn

and RM,kin.

4. Results

Before analysing the dynamo behaviour, we first compare characteristics of the dynamic and
time-averaged velocity fields. Their spectra are shown in figure 1(a), for the DNS calculation at
RV,dyn ≈ 930. While the dynamical flow has a typical turbulence spectrum, the time-averaged
field is sharply peaked at the size of the TG cell. As the mechanical Reynolds number varies
the properties of the average flow are the same, while they do vary for the dynamical field. For
instance, the flow integral scale computed from the kinetic energy spectrum as

L

2π
=

〈∫
dkEV (k, t)/k∫

dkEV (k, t)

〉
T

(5)

is shown in figure 1(b); we define 〈·〉T as a time average and we recall that the TG flow is forced at
k0 = 1. For mechanical Reynolds numbers smaller than about 100, Ldyn tends to be larger than the
size of one TG vortex (≈ π). At higher RVs, the turbulent flow has an integral lengthscale clearly
confined within the TG cell. The mean flow, however, has Lkin ≈ π and Ukin ≈ 3 at all RVs.

We now turn to the dynamo generation. In the dynamical problem, the Rc
M,dyn versus RV

curve—figure 2(b)—displays an initial increase, corresponding to the development of turbulence,
followed by a plateau [3] where the threshold is independent of viscosity. This behaviour has
been observed now for several coherent forcing functions (helical and non-helical) [3, 12, 13],
while for isotropic and homogeneous random forcing no saturation of Rc

M as a function of RV
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Figure 2. (a) Growth rates for the kinematic dynamo generated by mean flows
computed for decreasing viscosity. Crossing the σB = 0 axis defines the R

c1,2,3
M,kin

values reported in table 1. (b) Evolution of the critical magnetic Reynolds numbers
Rc

M,kin and Rc
M,dyn with RV. Symbols: the green, blue and white parallelograms

mark the dynamo windows for the kinematic low and high modes; the smaller
symbols follow the dynamical curves (black: DNS, red: LES) plotted either in
units of RM,dyn (solid line) or in units of RM,kin (dashed line)—see text for further
details. The shaded areas indicate regions of dynamo action as obtained from the
time-average runs, in units of RM,kin. The dynamical run at RV = 928 is a 2563

DNS computation, higher Reynolds number are reached using LES). Note that
the lowest PM for a dynamo is 10−2.

has been found so far (see e.g. [14, 30] and references therein). In the case of coherent forcing,
both excitation of magnetic field lines at scales smaller than the forcing scale (with all Fourier
modes growing with the same growth rate), and excitations of large-scales magnetic fields (which
keep growing after the small-scales saturate) are observed [12]. This suggests that the mean flow
associated with the coherent forcing plays an important role to obtain an asymptotic behaviour of
Rc

M for PM < 1. However, the effect of the turbulent fluctuations on the value of Rc
M and dynamo

action is harder to elucidate and to separate from the effect of the mean flow.
For kinematic simulations using the time-averaged flow, we found the existence of two

distinct dynamo branches—a behaviour already revealed in the ABC flow [15]. As shown in
figure 2(a), the kinematic growth rate is positive in the interval [Rc1

M,kin, R
c2
M,kin] ≈ 22, 50, and

then again for RM,kin > Rc3
M,kin ≈ 160. Beyond Rc3

M,kin the growth rate seems to be monotonously
increasing with RM. We call the interval [Rc1

M,kin, R
c2
M,kin] the ‘first dynamo window’ (the

corresponding interval is shaded in figure 2(b)). We observe this window is essentially
independent of the mechanical Reynolds number RV,dyn from which the time-averaged flow is
generated. The threshold for the upper dynamo branch—Rc3

M,kin—also appears to be independent
of the kinetic Reynolds number; we have observed that it remains within 15% of the value
〈Rc3

M,kin〉 ≈ 160 when RV is varied across our explored range [10, 104].
Essential findings in this paper come from the comparison of the above kinematic behaviour

with the results obtained for the dynamo thresholds computed for the dynamical fields. The data
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Figure 3. (a) Magnetic energy spectra for ν = 0.007; (solid line) dynamical run,
(thick blue solid line) low and (short dashed lines) high RM kinematic dynamo
modes in the average flow—in this regime the spectra are computed as averages
during the growth phase, normalized by the mean energy. (b) Evolution of the
integral scales for the magnetic field, computed from the spectra.

are shown in figure 2(b) in which all critical magnetic Reynolds numbers Rc
M are plotted against

the kinetic Reynolds number RV. At low RV, the dynamo threshold for the dynamical runs Rc
M,dyn

lies within first dynamo window of the time-averaged flow. But as RV exceeds about 200, Rc
M,dyn

is found in the immediate vicinity of the upper dynamo branch of the time-averaged flow.
A quite noteworthy feature is revealed when the dynamo thresholds obtained for the

dynamical fields are plotted in terms of Rc
M,kin, i.e. using Lkin and Ukin as length and velocity scales

[16]. Then one observes that dynamo action takes place outside the windows for which kinematic
dynamos are found. Actually, the threshold computed in this way is below the kinematic upper
branch. We attribute this difference as evidence of the role of turbulent fluctuations. At this point
it may be unclear from figure 2(b) whether the effect of the fluctuations in the dynamical runs is
to increase the threshold from the first kinematic window, or to decrease the threshold from the
second kinematic branch. We shall return to this issue in the discussion section.

A comparison of the structure of the resulting dynamo fields, the magnetic energies, and
the corresponding integral length scales is shown in figure 3. For the dynamical dynamo runs,
energy is distributed in a broad range of scales. For the kinematic dynamos evolved from the
time-averaged flow, we observe that for the low RM mode the energy is strongly peaked at large-
scales, while it is more evenly distributed in the case of the high RM mode. However, the magnetic
energy spectrum is not as broad as in the dynamical runs using the instantaneous flow. Note also
the dynamical runs have a range of wavenumbers (at the large-scales) where the slope of the
magnetic energy spectrum is positive, while the spectrum in the kinematic runs monotonically
decreases with increasing wavenumber. This difference can be the result of the lack of dynamo
action from the large- and small-scale fluctuations in the runs done using the average flow.
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Figure 4. Isosurfaces of the magnetic energy. (a) TG1 kinematic low eigenmode;
(b) corresponding dynamical run at RV = 76.74; (c) high kinematic eigenmode;
(d) corresponding dynamical run at RV = 465. Isovalues at 50 and 75% of the
maximum of EM for (a) and (b) and 25 and 50% for (b) and (d).

Changes in dynamo behaviour are also reflected in the evolution of the magnetic integral
scale LB, shown in figure 3(b). The kinematic ‘low mode’ grows a dynamo essentially at scales
larger than the TG cell (LB ≈ 1.6π) at all RV. For the ‘high mode’ on the other hand, magnetic
fields grow within a TG vortex. The dynamo mode selected by the dynamical flow seems to
switch between these two behaviours. At low RV it grows with an integral scale larger than the
TG cell, and we observe that LB,dyn ∼ LB,kin. At high RV the magnetic integral scale is about half
the size of the TG cell. The peak in the magnetic energy spectrum at smaller scales in the dynamic
runs, as well as the smaller integral scale, together with the differences in the two dynamical
curves in figure 2(a), suggest that turbulent fluctuations may play a role enhancing the dynamo—
in agreement with [12] where both large- and small-scales were observed to cooperate. The
growth of small magnetic scales allows the quenching of velocity fluctuations later in the
nonlinear regime, and hence helps the growth of the magnetic field at large-scales.

The structure of the dynamos can be explored further with visualizations of isosurfaces of
magnetic energy in real space. Figures 4(a) and (c) correspond respectively to the low and high
kinematic dynamo modes, while figures 4 (b) and (d) show the dynamical fields, with the magnetic
energy rescaled and averaged in time during the linear growth phase (i.e. 〈EM(x, t)/EM(t)〉T) for
RV ≈ 77 and RV ≈ 460. One observes a good correspondence between the low RV dynamical
mode and the kinematic low eigenfunction; indeed, at low Reynolds number the flow is laminar
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with small fluctuations about its mean; in this regime the dynamo is mainly generated in the
shearing regions between the TG cells [12, 17]. At high RV, comparing the dynamical growing
dynamo to the structure of the high RM eigenfunction, we recognize in figure 4(c) the ‘twisted
banana’ structure of the neutral mode that underlies the α − 
 dynamo in von Kármán flows
(note that at high RV the TG flow in each cell is similar to the von Kármán swirling flow)
[7, 17]. For the dynamical flow at high RV the TG cells are no longer as coupled as they are at
low RV, and in figure 4(d) one does not observe the clear pattern of the kinematic eigenmode. As
seen in the spectrum—figure 3(a)—the magnetic energy in the dynamical runs at high RV grows
at all scales; it is only in the nonlinear phase that the magnetic energy is eventually dominated
by the large-scales. However, at all RVs the dynamo grows predominantly in the planes π/2 and
3π/2 which cut through the centre of the TG cells. We observed a similar behaviour for TG flows
forced at k0 = 2 (two branches in the kinematic dynamo problem, and a transition of the value
of Rc

M in the dynamical runs from the lower kinematic runs to a value close to the higher branch
as turbulence develops). Results may differ for other types of forcings [13].

5. Discussion

The observations made, particularly at large RV, may have some relevance for laboratory
experiments. For instance, we find that once turbulence is fully developed, the dynamo threshold
in the dynamical runs (in units of Rc

M,dyn) is well approximated by the (high branch) kinematic
value Rc3

M,kin computed using the time-averaged flow. Differences between the threshold in the
dynamical runs in units of Rc

M,kin and Rc
M,dyn can be attributed to the effect of turbulent fluctuations,

as is discussed below. These findings are in agreement with the observations in the Riga and
Karlsruhe experiments, where the mean flow structure was optimized to favour dynamo action
with a moderate value of Rc

M; it agrees as well with analytical predictions for small amplitude
fluctuations around the mean flow structure [18].

We also observe that the threshold reaches an asymptotic value when RV grows, in agreement
with kinematic simulations using von Kármán mean flows measured in the laboratory [7]: the
threshold was observed to be RV independent for RV in excess of ∼105. Hence one may expect
that kinematic predictions based on hydrodynamic measurements in laboratory prototypes can be
useful for experiments. This is also of interest for numerical studies of natural dynamos, where a
fully resolved description of the fluid motions in the correct range of parameters is currently out
of reach [19]. There are however reasons to be cautious. The main concern lies in the observation
that fully turbulent flows in confined volumes are not stationary: long-time dependence (i.e.
slow changes) in the large-scales velocity fluctuations has been observed [20, 21]. Also, the
effect of turbulent fluctuations on the threshold may need further study. While recent works have
shown that a large-scales incoherent noise may increase significantly the dynamo threshold [22],
small-scale fluctuations can also be a source of dynamo action [1, 23, 24].

This leads us to our last question. The central role played by the average flow is clear from
the kinematic simulations. But can the results obtained so far be used to elucidate the role played
by the velocity fluctuations in the dynamo process when PM < 1 and a mean flow is present?
Two scenarios can be foreseen. The net effect of velocity fluctuations can be to enhance the
magnetic effective diffusivity (thus giving a larger value of Rc

M in the dynamical runs than in
the kinematic runs), or to be a source of dynamo action (thus giving a smaller value of Rc

M).
Analysis of kinematic runs perturbing the average flow with synthetic noise seem to suggest
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the first scenario [22], but it should be remarked that the properties of the turbulent fluctuations
are not independent of the properties of the flow in the large-scales [25]. On the other hand,
the results presented here and results from spectral transfer analysis [26] seem to favour the
second scenario.

Let us review the evidence so far. The analysis presented here separates mean flow from
fluctuations based on timescales. This is a common practice in studies of turbulent flows, that
can be complemented by a separation based on lengthscales. From the timescale analysis, we
observe that the value of Rc

M in the dynamical runs is smaller than the corresponding value of
the ‘high branch’ in the kinematic runs when both quantities are plotted in units of Rc

M,kin (see
figure 2). However, the dynamical dynamo mode shares some properties with the ‘high branch’
kinematic mode. We also observe a positive slope in the magnetic energy spectrum (∼k3/2 [3]) of
the dynamical runs that is not observed in the kinematic average-flow simulations. This positive
slope is consistent with (non-local) dynamo contributions [23, 24], [27]–[29] due to the turbulent
fluctuations (possible in the large-scales) and certainly not with a direct magnetic energy transfer.

A spectral analysis based on lengthscales [26] also showed that turbulent fluctuations at all
scales give nonlocal stretching of magnetic field lines. For TG forcing (at k0 = 2), RM ≈ 680
and PM < 1 it was found that the fluctuations at all wavenumbers up to k ≈ 12 are also a source
of dynamo action that overcomes Ohmic diffusion as well as the removal of magnetic energy
due to the direct transfer to smaller scales (a turbulent enhanced diffusion), thus contributing to
the positive growth rate in all these wavenumbers. The observations presented, both in the time
and space domain, indicate fluctuations at all scales (even at the forced scales) play a role in
magnetic field amplification, and that under the proper conditions (e.g. if the mechanical and
magnetic Reynolds numbers are large enough) the dynamo action due to these fluctuations can
overcome the enhanced turbulent dissipation and cooperate with the stretching of magnetic field
lines due to the average flow.
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Ravelet F et al 2005 Phys. Fluids 17 117104

[8] Brachet M 1990 C. R. Acad. Sci. Paris 311 775
Brachet M 1991 Fluid Dyn. Res. 8 1

[9] Ponty Y, Politano H and Pinton J-F 2004 Phys. Rev. Lett. 92 144503
[10] Kaneda Y et al 2003 Phys. Fluids 15 L21

Yoshida K, Ishihara T and Kaneda Y 2003 Phys. Fluids 15 2385
[11] Knaepen B and Moin P 2004 Phys. Fluids 16 1255
[12] Mininni P D, Ponty Y, Montgomery D C, Pinton J-F, Politano H and Pouquet A 2005 Astrophys. J. 626 853
[13] Mininni P D and Montgomery D C 2005 Phys. Rev. E 72 056320
[14] SchekochihinAA, Haugen N E L, BrandenburgA, Cowley S C, Maron J L and McWilliams J C 2005 Astrophys.

J. 625 L115
[15] Galloway D J and Frisch U 1986 Geophys. Astrophys. Fluid Dyn. 36 53
[16] Ponty Y, Mininni P D, Pinton J-F, Politano H and Pouquet A 2006 Preprint physics/0601105
[17] Nore C, Brachet M, Politano H and Pouquet A 1997 Phys. Plasmas 4 1
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