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Anisotropic magnetohydrodynamics equations, which also capture the dynamics of quasi-transverse
small scales obeying the gyrokinetic ordering, are derived using fourth-rank moment closures, based
on a refined description of linear Landau damping and finite Larmor radius �FLR� corrections. This
“FLR-Landau fluid model” reproduces the dispersion relation of low-frequency waves, up to scales
that, in the case of quasi-transverse kinetic Alfvén waves, can be much smaller than the ion
gyroradius. The mirror instability, which requires temperature anisotropy, is also captured, together
with its quenching at small scales. This model that accurately reproduces the collisionless
dissipation of low-frequency modes, should provide an efficient tool to simulate mesoscale
turbulence in a magnetized collisionless plasma. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2751601�

I. INTRODUCTION

The solar wind and the terrestrial magnetosheath provide
a natural laboratory for the study of magnetic turbulence in
collisionless plasmas, owing to the high quality of in situ
measurements performed on spacecraft exploration of the
earth environment. Several basic questions arise from the
analysis of these data. An example concerns the spectrum of
the magnetic fluctuations, which displays a power-law be-
havior on a broad range of wavenumbers, with a conspicuous
change of the spectral exponent near the inverse ion
gyroradius.1–3 This property is often associated with the in-
fluence of wave dispersion, such as that due to the Hall term
in the generalized Ohm’s law.4–6 At these scales, however,
kinetic effects cannot usually be neglected. It was also sug-
gested that the steep magnetic spectral range, often referred
to as a “dissipation range,” could result from a superposition
of cascades of kinetic Alfvén waves and of ion entropy
fluctuations.7 Alfvenic turbulence is also believed to play an
important role in the extended solar corona where kinetic
dissipation can efficiently contribute to an anisotropic heat-
ing of the various particle species.8

In addition to turbulence properties, an open question
concerns the formation and the role of various coherent
structures involving typical scales of a few ion gyroradii rL,
observed in the magnetosheath and identified as mirror
modes, magnetic solitons, shocklets, or Alfvenic filaments.
These latter structures, most often observed behind quasi-
perpendicular shocks, have in particular been associated with
the “bump” visible on the magnetic energy spectrum at
scales slightly larger than the ion Larmor radius.3

Another important question concerns collisionless recon-
nection that takes place in the magnetopause and the
magnetotail,12,13 where wave-particle resonances and finite
Larmor radius �FLR� effects could have a non-negligible in-
fluence on the breaking of the ideal character of the
plasma.14,15

A fully kinetic approach could appear necessary to ad-
dress the above issues. In the context of space and astro-
physical turbulence, important efforts are indeed presently

made7,9 to use the gyrokinetic theory previously developed
for fusion plasmas. By averaging over the gyromotion of the
particles, this approach filters out the shortest time scales and
isolates low-frequency phenomena. It also assumes a strong
scale anisotropy resulting from the quasi-transverse dynam-
ics that should develop at small scales in a strongly magne-
tized magnetohydrodynamic �MHD� turbulence.10 Neverthe-
less, it is not entirely clear that the turbulent cascade does not
also involve energy transfer to small parallel scales and that
the role of longitudinally propagating modes of whistler type
can be totally ruled out.11 Discriminating between the differ-
ent processes at the origin of the observed magnetic spectra
remains, in fact, a challenging question.

The gyrokinetic theory appears as a powerful tool that
has the great advantage of being asymptotically exact. Nev-
ertheless, turbulent regimes that involve a broad spectral
range are hardly amenable to kinetic simulations, even
within the gyrokinetic asymptotics. Furthermore, this ap-
proach concentrates on scales comparable to, or smaller than,
the ion gyroradius and does not capture the dynamics of
larger MHD scales.

In order to study the range of scales associated with the
transition between the magnetohydrodynamic and the kinetic
scales, one is led to look for a fluid description that extends
the usual MHD by retaining relevant kinetic effects. This
approach cannot be fully systematic but, in many instances
where kinetic effects are present although not dominant over
hydrodynamic processes, it may provide a reasonable de-
scription of the dynamics. This approach was initiated in
Ref. 16 for MHD scales asymptotically large compared with
the ion gyroradius, by closing the fluid hierarchy derived
from the drift kinetic equation in a way consistent with the
linear kinetic theory. More recently, leading-order correc-
tions resulting from finite Larmor radius �FLR� effects were
evaluated perturbatively within a fluid description �see Ref.
17 and references therein�, in order to reproduce the disper-
sive character of MHD waves whose typical length scale is
not asymptotically large relative to rL. Nevertheless, in many
instances, much smaller transverse scales have to be retained.
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For this purpose, we discuss in this paper a new Landau
fluid model that retains transverse scales comparable to, or
even significantly smaller than, the ion gyroradius. In con-
trast with the gyrofluids obtained by taking the moments of
the gyrokinetic equation, this “FLR-Landau fluid” model
preserves the global structure of the usual MHD equations
with anisotropic pressures, and it does not assume a quasi-
transverse dynamics at all the scales. Nevertheless, the model
only retains a linear �or quasi-linear� description of FLR ef-
fects. The nongyrotropic contributions are indeed expressed
in terms of low-order fluid moments and of the magnetic
field fluctuations, in a way consistent with the low-frequency
linear kinetic theory, both for scales obeying the gyrokinetic
ordering �� /��k� /k��1, with k�rL�1� and for isotropic
large scales �k�rL�k�rL�1�, for which the usual FLR
corrections17 are recovered as the leading order in a long-
wavelength expansion. Similar to gyrofluids, our model faces
the closure problem of the hierarchy of the moment equa-
tions, that both approaches address by neglecting particle
trapping and treating Landau damping at a linear level only.
Nevertheless, in spite of the linear description of the kinetic
effects, the accurate damping of the small-scale modes pro-
vides a realistic sink for the energy cascade. Numerical inte-
gration of the FLR-Landau fluid does not in particular re-
quire artificial dissipation that could also affect the smallest
scales of the cascade and the transition to the dissipation
range, possibly enhancing the bottleneck effect, as observed
in the different but nevertheless related context of strongly
compressible turbulence.18

The paper is organized as follows. Section II briefly re-
views the equations for the fluid moments, as derived from
Vlasov-Maxwell equations. The closure problems associated
with the determination of the fourth-rank cumulants and of
the nongyrotropic contributions of the various fields are ad-
dressed in Secs. III and IV, on the basis of the linear kinetic
theory for low-frequency perturbations. Section V deals with
the validation of the model whose predictions are compared
with the results of the full linear kinetic theory, for the dis-
persion and the noncollisional damping of Alfvén and mag-
netosonic waves propagating in various directions. It also
addresses the mirror instability that can develop in a plasma
where the ion perpendicular temperature is higher than the
parallel one. Section VI provides a brief conclusion.

II. THE FLUID HIERARCHY

Consider a spatially homogeneous uniformly magnetized
plasma with a bi-Maxwellian equilibrium distribution func-
tion for particles of species r with charge qr, mass mr, and
the same averaged number density n�0�, in the absence of net
charges or currents.

In a regime where the Alfvén wave velocity is small
relative to the light speed, the plasma is electrically neutral
and the displacement current can also be neglected �Appen-
dix A�. One then defines the proton density �p=mpn, and
neglects terms proportional to the mass ratio me /mp. The
proton and electron velocities are related by u�e=u�p− j� / �en�,
where the current is given by j�= �c /4��� �B� . One has the
usual equations

�t�p + � · ��pu�p� = 0, �1�

�tu�p + u�p · �u�p +
1

�p
� · pp −

e

mp
�E� +

1

c
u�p � B�� = 0, �2�

E� = −
1

c
�u�p −

j�

ne
� � B� −

1

ne
� · pe, �3�

together with the Faraday-Maxwell equation �tB� =−c� �E� .
Here and in the following, tensors of rank 2 or more are
bolded.

The ion pressure tensor is rewritten as the sum of gyro-
tropic and gyroviscous contributions pp= p�pn+ p�p�+�,

with n=I− b̂ � b̂ and �= b̂ � b̂, where b̂=B� / 	B� 	 is the unit
vector along the local magnetic field. The electron pressure
tensor is taken gyrotropic and characterized by the parallel
and transverse pressures p�e and p�e.

To simplify the writing, we drop the species index and
write the equations governing the perpendicular and parallel
pressures of the ions in the form

�tp� + � · �u�p�� + p� � · u� − p�b̂ · �u� · b̂

+
1

2
�tr � · q − b̂ · �� · q� · b̂�

+
1

2
�tr�� · �u��S − �� · �u��S:� + �:

d�

dt
� = 0, �4�

�tp� + � · �u�p�� + 2p�b̂ · �u� · b̂ + b̂ · �� · q� · b̂

+ �� · �u��S:� − �:
d�

dt
= 0, �5�

where q is the heat flux tensor. A main point of the present
model is that corrections to the usual anisotropic MHD equa-
tions are retained at a linear level only, thus suggesting to
neglect the contributions of the gyroviscous stress tensor
arising in Eqs. �4� and �5�. It is nevertheless of interest to
note that retaining the coupling to the gyroviscous stress is
needed to ensure exact energy conservation, whatever the
form of the forthcoming closure of the fluid hierarchy.19

It is convenient to decompose the proton heat flux tensor
by writing q=S+� with the conditions �ijknjk=0 and
�ijk� jk=0. One has

Sijk = 1
2 �Si

�njk + Sj
�nik + Sk

�nij + Sl
��linjk + Sl

��ljnik

+ Sl
��lknij� + Si

�
� jk + Sj

�
�ik + Sk

�
�ij − 2

3 �Sl
�
�li� jk

+ Sl
�
�lj�ik + Sl

�
�lk�ij� , �6�

where Si
� =qijk� jk and Si

�=qijknjk /2 are the �vector� compo-

nents of the fluxes of parallel and transverse heat S� � and S��,
respectively. The parallel fluxes of perpendicular and parallel
heat that are the only contributions to the gyrotropic heat flux

tensor, are given by q�=S�� · b̂ and q� =S� � · b̂, respectively. We

thus write S��=q�b̂+S��
� and S� � =q�b̂+S��

� , where the perpen-

dicular fluxes of perpendicular and parallel heat S��
� and S��

� ,
respectively, are computed in a linearized approximation and
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are thus viewed as perpendicular to the ambient field B0ẑ.
One easily checks that since at the level of the linear

approximation, b̂ · �� ·�� · b̂
�i��ijk�ij�=0 and �tr�� ·��
− b̂ · �� ·�� · b̂�
�i��ijknij�=0, it is sufficient to only retain
the Sijk contribution to qijk, and write

b̂ · �� · q� · b̂ 
 � · �q�b̂ + S��
� � − 2q� � · b̂ , �7�

1
2 �tr�� · q� − b̂ · �� · q� · b̂� 
 � · �q�b̂ + S��

�� + q� � · b̂ .

�8�

The equation governing the evolution of the heat flux
tensor involves the fourth-rank moment r. Instead of dealing
with this quantity, it may be convenient to isolate the cumu-
lant r̃ by writing

�rijkl = PijPlk + PikPjl + PilPjk + Pij	lk + Pik	 jl + Pil	 jk

+ 	ijPlk + 	ikPjl + 	ilPjk + �r̃ijkl. �9�

Since FLR corrections are retained at the linear level
only, the contribution 	ij	lk+	ik	 jl+	il	 jk has been ne-
glected in Eq. �9�. The gyrotropic part of r̃ is characterized
by three parameters: r̃�� = r̃ijlk�ij�kl, r̃�� =

1
2 r̃ijlknij�kl, and

r̃��= 1
4 r̃ijlknijnkl, which are related to r�� =rijlk�ij�kl,

r�� =
1
2rijlknij�kl, and r��= 1

4rijlknijnkl by

r̃�� = r�� − 3
p�

2

�
, �10�

r̃�� = r�� −
p�p�

�
, �11�

r̃�� = r�� − 2
p�

2

�
. �12�

One has

r̃ijkl =
r̃��

3
��ij�kl + �ik� jl + �il� jk�

+ r̃���nij�kl + nik� jl + nil� jk+ �ijnkl + �iknjl + �ilnjk�

+
r̃��

2
�nijnkl + niknjl + nilnjk� + r̃ijkl

NG, �13�

where r̃ijkl
NG refers to the nongyrotropic contribution of r̃ijkl.

The equations for the gyrotropic heat fluxes read �see
Refs. 17 and 19�

�tq� + � · �q�u�� + 3q�b̂ · �u� · b̂ + 3p��b̂ · ��� p�

�
�

+ � · �r̃��b̂� − 3r̃�� � · b̂ + �zR�
NG = 0, �14�

�tq� + � · �u�q�� + q� � · u� + p��b̂ · ��� p�

�
� +

p�

�
��x	xz

+ �y	yz� + � · �r̃��b̂� + ��p� − p��
p�

�
− r̃�� + r̃���

��� · b̂� + �zR�
NG = 0, �15�

where R�
NG and R�

NG stand for the contributions originating
from the nongyrotropic parts of the fourth-order moments.

To close the fluid hierarchy, it is necessary to express
both the gyrotropic fourth-rank cumulants and the nongyro-
tropic contributions to the various moments in terms of
known quantities.

III. FOURTH-RANK CUMULANT CLOSURE

The closure procedure consists in expressing the fourth-
rank cumulants in terms of lower order moments and possi-
bly of the magnetic fluctuations, within the framework of the
low-frequency linear kinetic theory. It also involves the re-
placement of the plasma response function arising in the re-
sulting expressions, by a suitable Padé approximant whose
number of poles is a compromise between accuracy and ex-
cessive complexity. For a prescribed pole number, the ap-
proximant is however not unique, depending on the allot-
ment of the fitting conditions at zero and infinity and
resulting in a different accuracy for the global fit of the
function.20

A. Modeling of r̃¸¸

To model r̃��, one proceeds as in Ref. 16 �see also Ref.
17�. Comparing the expression of r̃��

�1�, with those of Sz
� or T�

�1�

provided by the kinetic theory �see Appendix B�, one gets

r̃�� =�2T�
�0�

m

2
2�1 + 2
2R�
�� + 3�R�
� − 1� − 12
2R�
�
2
 sgn�kz��1 − 3R�
� + 2
2R�
��

Sz
�

��2T�
�0�

m
FSSz

� �16�

and

r̃�� =
p�

�0�T�
�0�

m

2
2�1 + 2
2R�
�� + 3�R�
� − 1� − 12
2R�
�
1 − R�
� + 2
2R�
�

T�
�1�

T�
�0�

�
p�

�0�T�
�0�

m
FT

T�
�1�

T�
�0� . �17�

Here, R is the plasma response function related to the usual
plasma dispersion function Z�
� by R�
�=1+
Z�
�, with

= �� / 	kz	��m /2T�

�0�. The superscripts �0� and �1� refer to the
equilibrium state and the perturbation, respectively.

One then notices that when replacing the plasma re-
sponse function R by the four-pole Padé approximant

R4�
� =
4 − 2i��
 + �8 − 3��
2

4 − 6i��
 + �16 − 9��
2 + 4i��
3 + �6� − 16�
4
,

one has the identity

�
FS

FT
+ i�

kz

	kz	
= FS �18�

with �= �32−9�� / �3�−8� and �=−2�� / �3�−8�. This
leads to the closure relation
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r̃�� = �p�
�0�T�

�0�

m

T�
�1�

T�
�0� + ��2T�

�0�

m

ikz

	kz	
Sz

� . �19�

It is noticeable that the above choice for the four-pole Padé
approximant seems to be the only one leading to a closure
relation of the form �19�.

B. Modeling of r̃¸�

The cumulant r̃�� can be expressed in terms of q� and
the parallel current jz. One has

r̃�� =�2T�
�0�

m

1 − R�
� + 2
2R�
�
2
R�
� q� + �0�b� − 1�b��

�
p�

�0�p�
�0�

��0�vA
2 �T�

�0�

T�
�0� − 1� jz

en�0�� , �20�

where vA=B0 /�4���0� is the Alfvén velocity and ��0� the
plasma density at equilibrium. Furthermore, ��b�=e−bI��b�,
where I� is the modified Bessel function of order �, and
b=T

�

�0�k�
2 /m�2=k�

2 rL
2 /2. Here, rL denotes the particle Lar-

mor radius.
It is convenient at this step to use a three-pole Padé

approximant of the function R. As discussed below, several
choices are possible for the coefficients a0 �which is purely
imaginary and thus conveniently written 	a0	i�, a1, and a2

arising in the three-pole Padé approximant

R3�
� =
− 1

2
 − a0


3 − a2
2 − a1
 − a0
. �21�

Whatever this choice, one has

1 − R3�
� + 2
2R3�
�
2
R3�
�

=
a1 − 1/2


 + 2a0
=

a1 − 1/2

�

kz
� m

2T�
�0� + 2	a0	i

.

�22�

Noting that when coming back to physical variables �both in
time and space�, � transforms into i�t, kz into −i�z and
i sgn kz into the Hilbert transform Hz relative to the z coor-
dinate, it follows that substituting �23� into Eq. �21� leads to
the evolution equation

� d

dt
− 2	a0	�2T�

�0�

m
Hz�z�r̃�� +

2T�
�0�

m
�a1 −

1

2
�

��zq� + �0�b� − 1�b��
p�

�0�

vA
2 �T�

�0� − T�
�0�

mp
� jz

en�0�� = 0.

�23�

The notation mp is used in the term where the proton mass is
to remain unchanged when turning to the corresponding
equation for the electron �where e is to be changed into −e�.
The convective derivative has been reintroduced to ensure
Galilean invariance.

The values of the coefficients entering the Padé approx-
imant of R3 used in Refs. 16 and 17 and referred to as R3,2 in
Ref. 20 are a0= i /��, a1=3/2, and a2=−2i /��, while an-
other choice, corresponding to the approximant R3,1, is given

by a0=1.032 41i, a1=2.239 90, and a2=−2.064 82i. Figure 1
displays a comparison between the imaginary part of the
function R�
� �thin solid line� with the Padé approximants
R3,2 �thick dashed line� and R3,1 �crosses�. The inset displays
the same quantities in a smaller range of 
, close to the
origin. It is conspicuous that R3,2 provides a fit that is slightly
better for small 
, but turns out to be globally less accurate
than R3,1.

C. Modeling of r̃��

To evaluate r̃��, one starts from the kinetic expression
given in �B19� and eliminates the terms involving the plasma
response function or the potential �. Since r̃�� is negligible
at large scales, we can restrict the estimate to the quasi-
transverse spectral cone and write �see Eq. �42� of Ref. 21�

�T�
�0�

T�
�0�R�
� − 1� bz

B0
=

1

0�b�� k�
2

�
�s −

T�
�1�

T�
�0�� . �24�

Here, we have written the proton velocity in the form
u�p=u��p+u�pẑ �neglecting, in this linear estimate, the distor-
tion of the magnetic field lines�, with a transverse velocity
u��p=−��c+�� ��sẑ�, which gives k�

2 �c= ik�� ·u�p and
k�

2 �s= �ik���u�p� · ẑ. To simplify the writing, we shall in the
following use the simpler notation ik���u�p, thus identifying
a longitudinal vector with its unique component.

Furthermore, from Eqs. �B1� and �B3�, one also has in
the quasi-transverse cone

R�
�
e�

T�
�0� = −

n�1�

n�0� + � 2

0�b�
− 1 −

1�b�
0�b�

�T�
�1�

T�
�0�

+ � 1 − 0�b�
b�0�b� − 1�b��

−
2

0�b�
+ 1

+
1�b�
0�b�� k�

2

�
�s �25�

and

FIG. 1. Comparison between the imaginary part of the function R�
� �thin
solid line� with the corresponding Padé approximants R3,1 �crosses� and R3,2

�thick dashed line�. The inset displays the same quantities in a smaller range
of 
, close to the origin.
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e

T�
�0��� +

kz
2

k�
2 �� − ���

= −
n�1�

n�0� − �1 +
1�b�
0�b�

�T�
�1�

T�
�0�

+ �1 −
0�b�

b�0�b� − 1�b��
+

1�b�
0�b�� k�

2

�
�s. �26�

The expression for r̃�� follows immediately.

IV. MODELING NONGYROTROPIC CONTRIBUTIONS

A. Nongyrotropic contributions from the
fourth-rank cumulants

Like the other nongyrotropic contributions, the quanti-
ties R�

NG and R�
NG entering Eqs. �14� and �15� are evaluated in

a linear setting. For this purpose, we replace the other terms
arising in these equations by their kinetic expressions given
in Appendix B. We get R�

NG=0 and

p�
�0�

��0� ��� · 	z� + �zR�
NG

= − �1 − 0�b� + 2b0�b� − 2b1�b��
p�

�0�

��0�

��p�
�0� − p�

�0���z
bz

B0
−

p�
�0�

��0� �p�
�0� − p�

�0��b

��0�b� − 1�b���z
e�

T�
�0� +

p�
�0�

��0� �p�
�0� − 2p�

�0��

��0�b� − 1�b��
c

�B0
�kz�k� · E� � − �k�

2 + kz
2�Ez� .

�27�

Note that this contribution is also relevant for the electrons
�with the corresponding definitions of b and �, the latter
including a negative sign�, since the reference to the particle
mass drops out in the large-scale limit.

B. Nongyrotropic heat fluxes

It is convenient to write

S��
� = − ��E + �� � �Fẑ� , �28�

S��
� = − ��G + �� � �Hẑ� . �29�

Since only � ·S��
� and � ·S��

� are needed in the equations for
the parallel and perpendicular pressures, it is enough to
evaluate E and G.

The quantity E identifies with the coefficient of cos � in
the right-hand side �RHS� of Eq. �B10� for Sx

�. It is conve-
niently rewritten in the form

E = − i
p�

�0��

k�
2 �2b0�b� − 2b1�b� − 1�b��

bz

B0

+ p�
�0� kz

2

k��
�− 1 + 0�b� + b0�b�

− b1�b��
e

T�
�0�T�

�0� − T�
�0�

m
�1 +

kz
2

k�
2 ��� − ��

−
�2

kz
2 �� +

kz
2

k�
2 � − ��� . �30�

Using Eq. �B4� to express the quantity inside the square pa-
rentheses, one gets

E
p�

�0� =
− i�

k�
2 �2b0�b� − 2b1�b� − 1�b��

+
�1 − 0�b� − b0�b� + b1�b���0�b� − 1�b��

1 − 0�b� � bz

B0

+
rL

2

2
�− 1 + 0�b� + b0�b� − b1�b�

b�1 − 0�b�� ��ik�� · u��� ,

�31�

where, as already mentioned, �bz=ck���E� �.
Similarly, G identifies with the coefficient of cos � in the

RHS of Eq. �B11� for Sx
� , multiplied by the factor i /k�. It is

conveniently rewritten

G =
2ip�

�0�

k�

kz

�

T�
�0� − T�

�0�

m

1 − 0�b�
b

4�jz

ck�B0

= −
2

�

T�
�0�

m
�p�

�0� − p�
�0���1 − 0�b�

b
�

�
1

k�
2 B0

ik�� · �ikzẑ � b��� . �32�

Note that G contributes also for the electrons �with a negative
sign originating from the gyrofrequency�.

C. Gyroviscous tensor

It is convenient to express the gyroviscous force �� ·��

in the form

1

p�p
�0� �� · �� = − ��A + �� � �Bẑ� . �33�

where −A identifies with the coefficient of cos 2� and B
with that of sin 2� in the expression �B8� of 	xx / p

�

�0�.
In order to get rid of the plasma response function that

enters this expression for 	xx, we use the transverse velocity
and the transverse temperature of the ions, as given in
Appendix B, and write21

A = 1 −
1�b�

b�0�b� − 1�b��
+

1�b�
0�b�� k�

2

�
�sp −

1�b�
0�b�

T�p
�1�

T�p
�0� ,

�34�

where
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1�b�
0�b�

T�p
�1�

T�p
�0� =

1

p�
�0�

1�b�
b0�b�

n�0�rL
2

2
k�

2 T�. �35�

Here, T� is the local ion perpendicular temperature. One
finally gets

A =
1

�
1 −

1�b�
b�0�b� − 1�b��

+
1�b�
0�b���ẑ � ik��� · u��

−
1

p�
�0�

1�b�
b0�b�

n�0�rL
2

2
k�

2 T�. �36�

Similarly,

B = −
i

�
0�b� − 1 − 1�b�

b
+ 2�0�b� − 1�b��

+
0�b� − 1�b�

1 − 0�b�
�0�b� − 1�b� −

1 − 0�b�
b

�� c

B0

��k�� � E� �� +
1

1 − 0�b�0�b� − 1�b�

−
1 − 0�b�

b
� i

�
k�� · u��. �37�

Let us now turn to 	� z= �	xz ,	yz ,	zz�, where 	zz=0 in
the linear description. We write

	� z = − ��C + �� � �Dẑ� , �38�

where −C identifies with the coefficients of cos � and D with
that of sin � in Eq. �B9� for 	xz, both divided by ik�. Using
Eq. �A5�, one has

C
p�p

�0� =
i

k�
� kz

k�

�T�p
�0�

T�p
�0� − 1��0�b� − 1�b� − 1�

bz

B0

− �1 − 0�b��
e�

T�p
�0� � −

�

�
�T�p

�0�

T�p
�0� − 2�1 − 0�b�

b

4�jz

ck�B0
�
�39�

that, because of

�jz =
ic2

4�
�kz�k� · E� � − �kz

2 + k�
2 �Ez� , �40�

rewrites

C
p�p

�0� = − �T�p
�0�

T�p
�0� − 1�0�b� − 1�b� − 1

b

rL
2

2
�ik�� ·

b��

B0
�

+
1 − 0�b�

b

c

�

Ez

B0

+
1

�
�T�p

�0�

T�p
�0� − 2�1 − 0�b�

b

c

B0

kz

k�
2 �k�� · E� �� . �41�

A more delicate estimate concerns D. Using Eq. �A5�,
we have

D =
p�p

�0�

�
�2T�

�0�

m
�0�b� − 1�b��
R�
��2

T�
�0�

T�
�0�

bz

B0
+

e�

T�
�0��

− �p�
�0� − p�

�0���0�b� − 1�b� − 1�
4�jz

ck�
2 B0

+ �p�
�0� − 2p�

�0��
kz

k�

�

�

bz

B0
. �42�

To estimate the first term, we consider q� and uz, as given by
the kinetic theory. We write

q�

p�
�0� + uz +

T�
�0� − T�

�0�

m
�0�b� − 1�b�

−
1 − 0�b�

b
� k�

�

4�jz

ck�B0

=�2T�
�0�

m
�b0�b� − b1�b� − 0�b�

+
1

2
1�b��
R�
��2T�

�0�

T�
�0�

bz

B0
+

e�

T�
�0��

−
1

2
1�b�
R�
�

e�

T�
�0�� , �43�

where the last term is only relevant inside the spectral cone.
Defining

��b� =
0�b� − 1�b�

b0�b� − b1�b� − 0�b� + 1
21�b�

, �44�

it follows that

D =
��b�
�

�q� + p�
�0�uz +

1

2
p�

�0��2T�
�0�

m
1�b�
R�
�

e�

T�
�0��

+ �p�
�0� − p�

�0�����b��b0�b� − b1�b� − 0�b� + 1�

− 0�b� + 1�b� + 1�
4�jz

k�
2 cB0

− �p�
�0� − 2p�

�0��
ikzc

�k�
2 B0

�ik�� � E� �� , �45�

where it is convenient to isolate the heat flux contribution by
writing

D =
��b�
�

q� + D1. �46�

Two comments are then in order. No simple expression in
terms of hydrodynamic quantities is available for the contri-
bution 
R�
�� arising in D1, a point we shall address later
on. Furthermore, a special problem concerns the determina-
tion of the heat flux q� in a way suitable for the slow dy-
namics regime, where FLR corrections play a central role. In
this regime, the heat flux q� is not prescribed by its dynami-
cal equation but rather by a quasi-equilibrium condition in
the transverse pressure22 or temperature equation that, when
linearized, reads
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�t
T�

T�
�0� = − �� · u�� −

1

p�
�0� ��zq� + �� · S��

�� . �47�

It is convenient to rewrite this equation in the form

�zq� = Q1 − p�
�0��t

T�
�1�

T�
�0� , �48�

with Q1=−�p
�

�0��� ·u��+�� ·S��
��. The last term in the RHS of

Eq. �48� is estimated from the kinetic theory that gives

T�
�1�

T�
�0� =

1

�
�ik�� � u��� + 0�b�

bz

B0
− 0�b�

T�
�0�

T�
�0�R�
�

bz

B0
. �49�

We then approximate the plasma response function R by the
one-pole approximant R1=1/ �1− i��
� �using a two-pole ap-
proximant would also be possible, although more cumber-
some�. Coming back to the physical space relative to the
time variable �without changing the notations�, Eq. �49�
becomes

0�b�
T�

�0�

T�
�0�

bz

B0
= �1 + ��	kz	−1� m

2T�
�0��t�

� 1

�
�ik�� � u��� + 0�b�

bz

B0
−

T�
�1�

T�
�0��

=  1

�
�ik�� � u��� + 0�b�

bz

B0
−

T�
�1�

T�
�0��

+ ��	kz	−1� m

2T�
�0� 1

�
�t�ik�� � u���

− c0�b��ik�� �
E� �

B0
� − �t

T�
�1�

T�
�0�� . �50�

It follows that

�t

T�
�1�

T�
�0� =

1

�
�t�ik�� � u��� + F1, �51�

with

F1 = − c0�b��ik�� �
E� �

B0
� +

1
��
�2T�

�0�

m
	kz	−

T�
�1�

T�
�0�

+
1

�
�ik�� � u��� − 0�b��T�

�0�

T�
�0� − 1� bz

B0
� . �52�

This leads to

D = −
��b�
ikz

p�
�0�

�2 �t�ik�� � u��� + D2, �53�

with

D2 = D1 +
1

�

��b�
ikz

�Q1 − p�
�0�F1� . �54�

Furthermore, from the linearized equation for transverse ve-
locity, we get

�t�ik�� � u��� = − k�
2 1

��0� ikzD + U1, �55�

with

U1 = �cA
2 +

p�T
�0� − p�T

�0�

��0� ��ikz��ikx
by

B0
− iky

bx

B0
� − k�

2 p�
�0�

��0�B ,

�56�

where p
�T
�0� and p�T

�0� denote the total �ion+electron� perpen-
dicular and parallel pressures. Substituting Eq. �55� into Eq
�53�, we get

�1 − b��b��D = D3, �57�

where

D3 = D2 −
��b�
ikz

p�
�0�

�2 U1. �58�

One easily checks that the coefficient of D in the LHS of Eq.
�57� does not vanish.

We now have to estimate 
R�
�e� /T�
�0� that enters D1.

When, consistent with the previous approximation, R is re-
placed by R1, one simply has 
R1�
�= �i /����1−R1�
��. We
then use Eq. �25� that expresses R�
�e� /T�

�0� in terms of
hydrodynamic quantities. Note that the approximation of the
plasma response function by its one-pole approximant R1

�whose large-
 behavior is inaccurate� is acceptable in terms
that are mostly relevant for the slow dynamics. Indeed,

�1 for mirror waves and is of order unity for kinetic
Alfvén waves �KAWs�.

We conclude this section by stressing the importance of
the above modeling of the heat flux q� in the estimate of a
gyroviscous stress tensor that, as already mentioned, is
mostly relevant for the slow dynamics: using q� as given by
the heat flux dynamical equation �a typically fast dynamics
estimate� indeed leads to a spurious instability for a non
propagating normal mode, at the scale of the ion gyroradius.

V. DISPERSION AND DAMPING OF MHD WAVES

In order to evaluate the accuracy of the above model, we
compare in this section the frequency and collisionless
damping rate of various MHD waves, as obtained by solving
the dispersion relation of the resulting linearized system,
with the predictions of the full linear kinetic theory, as given
by the WHAMP program.23,28 Plasma parameters of different
magnitudes and various directions of propagation are
considered.

A. Kinetic Alvén waves

Figure 2 displays the frequency and damping rate, both
normalized by k�vA, as a function of k�rL for kinetic Alfvén
waves propagating in a quasi-transverse direction character-
ized by an angle �� tan−1�k� /k��=tan−1�1000�, in a plasma
with isotropic temperatures such that ��Te

�0� /Ti
�0�=10−2.

Three values, i.e., �=0.1, 1, and 10, are considered. The
solid line is the full kinetic theory, and the crosses refer to
predictions of the Landau fluid model, using the three-pole
Padé approximant R3,2�
�. The crosses in the top panels cor-
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respond to the Padé approximant R3,1�
� �see the discussion
in Sec. III�. Similar to what was observed in the comparison
of the imaginary part of the plasma response function in Fig.
1, we observe that the former choice provides a fit that turns
out to be globally more accurate, while the latter is slightly
better at large scales. In the forthcoming comparisons, we
thus retain the former choice. Inspection of the graphs shows
that when increasing �, the validity range of the model ex-
tends to a smaller fraction of the ion Larmor radius, but
remains essentially unchanged when the spatial scale is ex-
pressed in terms of the ion inertial length vA/�p.

Figure 3 is still concerned with quasi-transverse propa-
gating KAWs with �=tan−1�1000�, for �=0.1, 1, and 10, but
in the case of equal ion and electron temperatures ��=1�. In
spite of a much larger damping rate, the agreement with the
kinetic theory remains very satisfactory. The values of the
parameters used in Figs. 2 and 3 �and also the normalization
of the frequency and of the decay rate� were chosen to make
easy comparisons with computations based on the gyroki-
netic theory9 whose accuracy for this extreme propagation
angle is almost perfect. Although less accurate, the FLR-
Landau fluid appears to be able to address a similar regime.

The main source of error could be linked to the replacement
of the plasma response function by a Padé approximant that
introduces a sizable discrepancy for modes with parallel
phase velocity comparable to the ion thermal velocity.

As in gyrokinetic theory, the present model can capture
the small-scale dynamics in quasi-transverse directions only,
and in particular misses the ion cyclotron resonance. In order
to estimate the spectral range of accuracy of the model when
the angle with the ambient field is reduced, we fix �=1 and
�=0.01 and display in Fig. 4 the cases �=tan−1�10�
84.3°
and �=60°. For the former angle, the kinetic theory suggests
the existence of a resonance for k�rL
3 that is not repro-
duced by the model, leading to a large error on the decay rate
at smaller scales. At larger scales, the agreement is in con-
trast excellent. For �=60°, we note a difference by a factor
of 2 on the decay rate, even for k�rL�1. Furthermore, as
expected, the strong ion cyclotron damping that takes place
at small scale is not reproduced.

In order to estimate the validity range in the case of
quasi-parallel Alfvén waves, we consider in Fig. 5 a propa-
gation angle �=tan−1�0.1� in a plasma with equal ion and
electrons temperatures ��=1� and �=0.1 or �=1. In such a
regime, frequency and decay rate are plotted versus krL. In
both cases, the frequency is satisfactorily reproduced up to

FIG. 2. Normalized frequency �r / �k�vA� �left� and damping rate −�i / �k�vA�
�right� vs k�rL, for KAWs with �=tan−1�1000�, �=10−2, and �=1 �top�, �
=0.1 �middle�, and �=10 �bottom�. Here and in the following figures, the
solid line refer to the full kinetic theory and the crosses to the prediction of
the model when using the R2,3 Padé approximant; The crosses in the top
panels are obtained with the R3,1 Padé approximant.

FIG. 3. Normalized frequency �r / �k�vA� �left� and damping rate −�i / �k�vA�
�right� vs k�rL, for KAWs with �=tan−1�1000�, �=1, and for �=0.1 �top�,
�=1 �middle�, and �=10 �bottom�.

082502-8 T. Passot and P. L. Sulem Phys. Plasmas 14, 082502 �2007�

Downloaded 17 Aug 2007 to 192.54.175.116. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



scales comparable to a fraction of ion Larmor radius. In con-
trast, the model does not reproduce the sharp increase of
dissipation rate that takes place near krL=0.1, again under
the effect of the ion cyclotron resonance.

B. Slow magnetosonic waves

Restricting the comparison to a quasi-transverse propa-
gation ��=tan−1�1000��, we consider in Fig. 6 a situation
close to the fluid regime characterized by electrons much

hotter than ions ��=100�, with �=0.01 and �=0.1. In
this case, the frequency unit is taken as k�cs, where
cs= �Te /mp�1/2. We note for the latter value of �, a satisfac-
tory agreement up to k�rL of a few units, but this extension
is more limited when � is smaller. In order to address the
effect of varying the ion to electron temperature ratio, we
consider in Fig. 7 quasi-transverse waves with �=10−2, for
�=10 and �=1. In the former case, a qualitative agreement is
obtained, in spite of a conspicuous discrepancy of the decay

FIG. 4. Normalized frequency �r / �k�vA� �left� and damping rate −�i / �k�vA�
�right� vs k�rL, for KAWs with �=0.01, �=1 for �=tan−1�10� �top� and
�=60° �bottom�.

FIG. 5. Normalized frequency �r / �k�vA� �left� and damping rate −�i / �k�vA�
�right� vs krL, for AWs with �=1, �=tan−1�0.1�, and �=1 �top� and �=0.1
�bottom�.

FIG. 6. Normalized frequency �r / �k�cs� �left� and damping rate −�i / �k�cs�
�right�, where cs is the sound velocity, vs k�rL, for quasi-transverse slow
waves ��=tan−1�1000�� with �=100, and �=0.01 �top� and �=0.1 �bottom�.

FIG. 7. Normalized frequency �r / �k�cs� �left� and damping rate −�i / �k�cs�
�right� vs k�rL for quasi-transverse slow waves ��=tan−1�1000�� with
�=0.01, and �=10 �top� and �=1 �bottom�.
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rate even at large scales. For equal ion and electron tempera-
tures, the damping rate is strongly underestimated at all
scales. Indeed, decreasing the parameter � strongly enhances
the collisionless decay rate, making its value inconsistent
with the low-frequency asymptotics.

C. Fast magnetosonic waves

It is also of interest to consider the fast magnetosonic
waves that are scaled out in the gyrokinetic approach. In the
quasi-transverse case �=tan−1�1000�, with �=0.01 and
�=10 �not shown�, Landau damping is, as expected, essen-
tially zero. The negative sign of the dispersion contribution
to the frequency, seen in the linear kinetic theory for scales
smaller than k�rL=1, is not reproduced. Capturing this ef-
fect, would indeed require an estimate of the FLR correc-
tions with a �� /��2 accuracy.17 For oblique propagation
��=60°� with the same values of � and � as above, a high
accuracy is obtained up to about k�rL=2 �Fig. 8�. Quasi-
parallel propagation ��=tan−1�0.1�� is considered with �=1
in Fig. 9 for �=0.1, 1, and 10. For the lowest value of �, an
excellent agreement is obtained up to k�rL=10, due to the
least importance of FLR terms and the absence of ion cyclo-
tron resonance up to these scales. For the intermediate value,
a deviation between the model and the kinetic theory be-
comes visible near krL
1, but a qualitative agreement is
preserved up to krL
10. For �=10, WHAMP predictions dis-
play a resonance near krL=0.3, beyond which one observes a
strong discrepancy with the model. Although the growth of
the dissipation rate is preserved, it is significantly weaker
than predicted by the kinetic theory.

D. Mirror instability

The mirror instability provides a framework to validate
the model in a regime where the temperature anisotropies
play an important role. The instability growth rate �normal-
ized by the ion gyrofrequency �p� that we compare with the
linear kinetic theory, results from a short-time evolution of
the �nonlinear� FLR-Landau fluid equations, starting with a
weak perturbation of the trivial equilibrium. Figure 10 �top,
left� corresponds to a simulation very close to the instability
threshold, in the case of a propagation angle �=cos−1�0.1�,
with T�e /T�p=0.1, Tp� /Tp�=1.2 and isotropic electron tem-
perature �Te� /Te�=1�. An excellent agreement is observed,
including the quenching of the instability at small scale. A

simulation at larger distance from threshold is shown in the
top-right panel, where �p�=2 and Tp� /Tp�=2. The agreement
remains very good at large and small scales but a sizable
inaccuracy is observed for the most unstable scales. A
smaller angle of propagation ��=cos−1�0.2�� is displayed in
the case �p�=5, assuming Tp� /Tp�=1.4 and isotropic elec-
tron temperature �bottom, left�. Finally, an anisotropic elec-
tron temperature �Te� /Te�=1.18� is considered for Tp� /Tp�
=1.1 �bottom right�. Increasing slightly further the electron
anisotropy to 1.19 shifts dramatically the most unstable scale
to k�rL close to 8 �not shown�.

VI. CONCLUSION

We have presented a FLR-Landau fluid model that ex-
tends anisotropic MHD equations by including a description
of Landau damping and FLR corrections based on the linear-
ized Vlasov-Maxwell equations evaluated in the gyrokinetic
limit. This model is thus able to reproduce the proper low-
frequency linear physics not only at large scales where it
reduces to the Snyder et al. Landau fluid,16 supplemented
with the large-scale FLR contributions,17 but also for quasi-
transverse scales that can be significantly smaller than the
ion gyroradius. Being based on the classical MHD equations,
it can capture both the slow and fast dynamics.

FIG. 8. Normalized frequency �r / �kvA� �left� and damping rate −�i / �kvA�
�right� vs k�rL for fast waves with �=60, �=10, and �=0.01.

FIG. 9. Normalized frequency �r / �kvA� �left� and damping rate −�i / �kvA�
�right� vs krL, for fast waves with �=tan−1�0.1�, �=1, and �=0.1 �top�,
�=1 �middle�, and �=10 �bottom�.
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Dispersion and collisionless damping of kinetic Alfvén
waves are in particular reproduced for a broad range of pa-
rameters values. The spectral range that is accurately de-
scribed becomes more limited as the propagation angle is
decreased, but the large-scale dynamics in the oblique and
quasi-parallel directions is correctly captured. Fast magneto-
sonic waves are also retained and correctly described up to
scales of the order of the ion Larmor radius, or even smaller
for quasi-parallel propagation where FLR corrections are not
essential.

By fitting with the nonlinear expressions of the large-
scale FLR corrections, as derived in the hydrodynamic
context,24 it is possible to introduce some degree of nonlin-
earity in the evaluation of the gyroviscous tensor, that takes
into account the local variation of the plasma equilibrium
quantities, such as the pressures.25 On the other hand, the
change of reference frame that would be needed to take into
account the variation in direction of the local magnetic field,
would introduce a prohibitively high level of complexity.

Taking into account possible temperature anisotropies of
the equilibrium state, the present model also reproduces the
mirror instability growth rate, including its quenching at
small scales. However, lacking nonlinear kinetic effects, the
model may only provide a qualitative description of phenom-
ena arising at the scale of the ion gyroradius such as the
formation of magnetic holes and humps resulting from the
mirror mode instability, that was shown to be sensitive to
these effects and in particular to the local variation of the ion
gyroradius.26 Implementing such variations in the present
formalism, possibly at a phenomenological level, is under
way.

In conclusion, the FLR-Landau fluid model discussed in
this paper should be particularly useful for the simulation of

turbulence in a strongly magnetized collisionless plasma in a
range of scales extending from the hydrodynamic ones to a
fraction of the ion Larmor radius. It indeed correctly de-
scribes the full dynamics at relatively large scales and also
the transfer to the kinetic scales where the noncollisional
dissipation of the various MHD modes is accurately repro-
duced �except its possible arrest under the effect of particle
trapping that, as in the gyrofluids, is overlooked by the
present description�. As already checked in one-dimensional
preliminary simulations,25 no artificial dissipation is needed,
provided the wave amplitudes are not too large. This model
should thus provide an efficient tool for a direct evaluation of
the cascade directions and of the heating rates in collisionless
magnetized plasmas, with a relatively modest cost in com-
parison with fully kinetic simulations. Preliminary numerical
investigations in one space dimension have reproduced the
existence of inverse cascades resulting from the decay of
large-scale KAWs, as predicted by the kinetic theory.27
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APPENDIX A: THE ELECTROMAGNETIC FIELD

The Vlasov equation is supplemented by the Maxwell

equations that express the electric and magnetic fields E� and

B� in terms of the current j�=�rqrnr�v� frd
3v and the total

charge �=�rqrnr� frd
3v, in the usual form �tB� =−c� �E� ,

c� �B� =4�j�+�tE� and � ·E� =4��.
It is usual to introduce the scalar potentials � and �

together with the vector potential A� in the form E� �=−���

− �1/c��tA� �, Ez=−�z�, and B� =B0ẑ+��A� , with � ·A� =0. It
follows that Az= �ckz /����−��, where, since there is no am-
biguity, we use the same notation for a field and its Fourier
transform.

Assuming a plasma made of protons �subscript p� and
electrons �subscript e� with charge qp=−qe=e, one rewrites
the Maxwell-Gauss equation in the nondimensional form:

cA
2

c2 b�1 +
kz

2

k�
2 � e�

T�p
�0� =

np

n�0� −
ne

n�0� . �A1�

Here we introduce the standard notation �to be distinguished
from the magnetic field components that involve subscripts�
b=T

�p
�0� k�

2 / �mp�2� as a dimensionless measure of the square
transverse wavenumber, where �=eB0 / �mpc� denotes the

proton gyrofrequency, and cA=B0 /�4�mpn�0� is the Alfvén
speed. Assuming cA�c implies local electric neutrality
np=ne. Under this assumption, one can also neglect the dis-
placement current and get

k2�� − �� = −
4�

c2

�

kz
jz. �A2�

The transverse magnetic field components are given by

FIG. 10. Normalized growth rate �i /�p vs k�rL for mirror modes with
�=5, �=0.1, �=cos−1�0.1�, T�p /T�p=1.2, and T�e /T�e=1 �top, left� and
�=2, �=1, �=cos−1�0.1�, T�p /T�p=2 and T�e /T�e=1 �top, right� as a func-
tion of k�rL. Same for �=5, �=1, �=cos−1�0.2�, T�p /T�p=1.4, and
T�e /T�e=1 �bottom, left�. T�p /T�p=1.1 and T�e /T�e=1.18 �bottom, right�.
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bx = −
kxkz

k�
2 bz + i

c

�
kykz�1 +

kz
2

k�
2 ��� − �� , �A3�

by = −
kykz

k�
2 bz − i

c

�
kxkz�1 +

kz
2

k�
2 ��� − �� . �A4�

It follows that in terms of jz= �c / �4�����xby −�ybx�,

kz

�
�1 +

kz
2

k�
2 � e

T�
�0� �� − �� =

1

b

k�

�

4�jz

ck�B0
. �A5�

APPENDIX B: KINETIC EXPRESSION OF THE FLUID
MOMENTS

We consider the case of linear perturbations in the
form of plane waves with a wavevector given by
�kx=k� cos � ,ky =k� sin � ,kz�. The perturbations of the hy-
drodynamic moments are easily computed in a low-
frequency expansion, retaining only contributions up to order
� /���kz /���2T�

�0� /m�1, with no condition on the trans-

verse scales as measured by �k� /���2T
�

�0� /m. Let us also
introduce b=T

�

�0�k�
2 /m�2=k�

2 rL
2 /2, where rL is the gyro-

radius, 
= �� / 	kz	��m /2T�
�0�, and define the functions

��b�=e−bI��b� in terms of the modified Bessel function
I��b�. A standard calculation leads to the following results in
terms of the plasma response function R�
�=1+
Z�
�, where
Z�
� is the plasma dispersion function. We consider explic-
itly the case of the ions. The corresponding formulas for the
electrons are easily obtained, neglecting corrections of the
order of the electron-to-proton mass ratio.

1. Particle density

Fluctuations of the number density are given by

n�1�

n�0� = − �0�b� − 1�b���T�
�0�

T�
�0�R�
� − 1� bz

B0

− 0�b�R�
�
e�

T�
�0� −

e

T�
�0� �1 − 0�b��

��� +
kz

2

k�
2 �� − ��� . �B1�

2. Proton velocity

The transverse ion velocity reads �see Eqs. �12� and �13�
of Ref. 21�

u��p = − ���cp + �� � ��spẑ� , �B2�

with

�sp =
1

�

T�p
�0�

mp
�0�b� − 1�b��2�T�p

�0�

T�p
�0� R�
p� − 1� bz

B0

+ R�
p�
e�

T�p
�0� −

e

T�p
�0� �� +

kz
2

k�
2 �� − ����

− 4
T�p

�0� − T�p
�0�

mp

kz
2

k�
2 �

C1
3�b�

bz

B0
, �B3�

where C1
3�b�, evaluated in Ref. 21 is a function of b only,

which has a limit of 1 /4 as b→0. Furthermore,

�cp =
i�

k�
2 �0�b� − 1�b��

bz

B0
+ �1 − 0�b��

i

�

kz
2

k�
2

e

T�p
�0�

�T�p
�0� − T�p

�0�

mp
�1 +

kz
2

k�
2 ��� − ��

−
�2

kz
2 �� +

kz
2

k�
2 �� − ���� . �B4�

On the other hand,

uz =�2T�
�0�

m
�1�b� − 0�b��

T�
�0�

T�
�0�
R�
�

bz

B0

−�2T�
�0�

m
0�b�
R�
�

e�

T�
�0� −

kz

�

T�
�0� − T�

�0�

m

��1 − 0�b��
e

T�
�0��1 +

kz
2

k�
2 ��� − �� . �B5�

3. Temperatures

One has

T�p
�1�

T�p
�0� = �− 2b1�b� + 2b0�b� − 0�b���T�p

�0�

T�p
�0� R�
p� − 1� bz

B0

− �b1�b� − b0�b��R�
p�
e�

T�p
�0�

+ �b1�b� − b0�b��
e

T�p
�0� �� +

kz
2

k�
2 �� − ��� �B6�

and

T�p
�1�

T�p
�0� = �1 − R�
� + 2
2R�
��

T�p�0�

T�p
�0�

��1�b� − 0�b��
bz

B0
− 0�b�

e�

T�p
�0� � . �B7�

4. Gyroviscous stress tensor

One can show that
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	xx

p�p
�0� = − cos 2��b0�b� − 1�b� − b1�b��2�T�p

�0�

T�p
�0� R�
p� − 1� bz

B0
+ R�
p�

e�

T�p
�0� −

e

T�p
�0� �� +

kz
2

k�
2 �� − ���� − cos 2�1�b�

��T�p
�0�

T�p
�0� R�
p� − 1� bz

B0
+ i sin 2�

kz

�

kz

�
�

e

T�p
�0� �0�b� − 1�b�� −

1

b
�1 − 0�b���T�p

�0� − T�p
�0�

mp
�1 +

kz
2

k�
2 ��� − ��

−
�2

kz
2 �� +

kz
2

k�
2 �� − ���� − i sin 2�

�

�
1

b
�0�b� − 1 − 1�b�� + 2�0�b� − 1�b��� bz

B0
, �B8�

together with

	xz

p�p
�0� = i sin �

T�
�0�

T�
�0�

k�

�

�

kz
�0�b� − 1�b��R�
��2

T�
�0�

T�
�0�

bz

B0
+

e�

T�
�0�� + cos �

kz

k�

�T�
�0�

T�
�0� − 1��0�b� − 1�b� − 1�

bz

B0

− �1 − 0�b��
e�

T�
�0�� − cos ��T�

�0�

T�
�0� − 2� kz

k�

�1 − 0�b�� + i sin �
T�

�0� − T�
�0�

m

T�
�0�

T�
�0�

kzk�

��
�0�b� − 1�b� − 1��

��1 +
kz

2

k�
2 � e

T�
�0� �� − �� + 4iC1

3�b�sin ��T�
�0�

T�
�0� − 2� kz�

k��

bz

B0
, �B9�

where, since the last term is negligible in the spectral cone k� /k��1, the coefficient C1
3�b�, can be replaced by its limit value

1/4 as b→0.
The elements 	xy and 	yz are deduced from 	xx and 	xz, respectively, by replacing sin 2� by −cos 2� and cos 2� by

sin 2�.

5. Heat fluxes

One has

Sx
� = p�

�0�k�

�

T�
�0�

m
i sin ���20�b� − 4b0�b� + 4b1�b���T�

�0�

T�
�0�R�
� − 1� bz

B0
+ �2b1�b� − 2b0�b� + 1�b��

�R�
�
e�

T�
�0� −

e

T�
�0��� +

kz
2

k�
2 �� − ����� + p�

�0� cos ��−
�

k�

�2b0�b� − 2b1�b� − 1�b��
bz

B0

+
kz

2

k��
�T�

�0� − T�
�0�

m
−

�2

kz
2 ��− 1 + 0�b� + b0�b� − b1�b��

e

T�
�0��� +

kz
2

k�
2 �� − ���

−
T�

�0� − T�
�0�

m
�− 1 + 0�b� + b0�b� − b1�b��

e�

T�
�0��� . �B10�

Similarly,

Sx
� = p�

�0�� k�

�

T�
�0�

m
i sin ��0�b� − 1�b��

T�
�0�

T�
�0� �1 − R�
�

+ 2
2R�
��� e�

T�
�0� + 2

bz

B0
�

− 2
T�

�0� − T�
�0�

m

kz
2

k��
i sin �

bz

B0
+ 2

kz
2

�k�

cos �
T�

�0� − T�
�0�

m

��1 − 0�b��
e

T�
�0��1 +

kz
2

k�
2 ��� − ��� . �B11�

Furthermore, within the linear setting, q� and q� are approxi-
mated by

q� 
 Sz
� = − p�

�0��2T�
�0�

m

T�
�0�

T�
�0�
�1 − 3R�
� + 2
2R�
���0�b�

− 1�b��
bz

B0
+ 0�b�

e�

T�
�0�� , �B12�

q� 
 Sz
� = p�

�0��T�
�0�

T�
�0�

�

kz
�2b0�b� − 0�b� − 2b1�b��R�
�

bz

B0

+
�

kz
b�0�b� − 1�b��R�
�

e�

T�
�0�

−
T�

�0� − T�
�0�

m

kz

�
�b0�b� − b1�b��

e

T�
�0��1 +

kz
2

k�
2 �

��� − ��� . �B13�
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6. Fourth-rank moments and cumulants

The gyrotropic contribution to the fourth-order moment
is characterized by

r�� = p�
�0�T�

�0�

m
��2b0�b� − 20�b� − 2b1�b� + 1�b��

�T�
�0�

T�
�0� − 1 + 2

T�
�0�

T�
�0�


2R�
�� bz

B0
+

T�
�0�

T�
�0� �b0�b�

− 0�b� − b1�b���1 + 2
2R�
��
e�

T�
�0� − �1 − 0�b�

+ b0�b� − b1�b��
e

T�
�0��� +

kz
2

k�
2 �� − ���� ,

�B14�

r�� = p�
�0�T�

�0�

m
��1�b� − 0�b��3�T�

�0�

T�
�0� − 1�

+ 2
T�

�0�

T�
�0�


2�1 + 2
2R�
��� bz

B0
− 0�b�

T�
�0�

T�
�0�

��3 + 2
2�1 + 2
2R�
���
e�

T�
�0� − 3�1 − 0�b��

e

T�
�0�

��� +
kz

2

k�
2 �� − ���� , �B15�

r�� = p�
�0�T�

�0�

m
��11b0�b� − 4b20�b� − 60�b�

− 9b1�b� + 4b21�b� + 21�b���T�
�0�

T�
�0�R�
� − 1� bz

B0

− 2b20�b� − 2b0�b� + 0�b� − b21�b�

+
3

2
b1�b��R�
�

e�

T�
�0� + 2− 1 + b20�b� − 2b0�b�

+ 0�b� − b1�b� +
3

2
b1�b�� e

T�
�0�

��� +
kz

2

k�
2 �� − ���� . �B16�

After linearizing Eqs. �10�–�12�, one gets for the cumulants

r̃�� =
p�

�0�T�
�0�

m
�2
2�1 + 2
2R�
�� + 3�R�
� − 1� − 12
2R�
��

���1�b� − 0�b��
bz

B0
− 0�b�

e�

T�
�0�� , �B17�

r̃�� =
p�

�0�2

��0� �1 − R�
� + 2
2R�
����2b0�b� − 0�b�

− 2b1�b��
bz

B0
+ b�0�b� − 1�b��

e�

T�
�0�� , �B18�

r̃�� =
p�

�0�2

��0� ��4b21�b� − 4b20�b� − b1�b� + 3b0�b��

��T�
�0�

T�
�0�R�
� − 1� bz

B0
+ �2b21�b� + b1�b�

− 2b20�b��R�
�
e�

T�
�0� + �2b20�b� + 2b21�b�

− 7b1�b��
e

T�
�0��� +

kz
2

k�
2 �� − ���� . �B19�
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