N
N

N

HAL

open science

Simulating planet migration in globally evolving disks
A. Crida, A. Morbidelli, F. Masset

» To cite this version:

A. Crida, A. Morbidelli, F. Masset. Simulating planet migration in globally evolving disks. Astronomy
and Astrophysics - A&A, 2007, 461 (3), pp.1173-1183. 10.1051,/0004-6361:20065870 . hal-00388110

HAL Id: hal-00388110
https://hal.science/hal-00388110

Submitted on 23 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://hal.science/hal-00388110
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A&A 461, 1173-1183 (2007)
DOI: 10.1051/0004-6361:20065870
© ESO 2007

A8§tronomy
Astrophysics

Simulating planet migration in globally evolving disks

A. Crida!, A. Morbidelli', and F. Masset?

' Observatoire de la Cote d’ Azur, BP 4229, 06304 Nice Cedex 4, France

e-mail: crida@obs-azur. fr

2 UMR AIM, DSM/DAPNIA/SAp, Orme des Merisiers, CE-Saclay, 91191 Gif-sur-Yvette Cedex, France
IA-UNAM, Apartado Postal 70-264, Ciudad Universitaria, Mexico City 04510, Mexico

Received 21 June 2006 / Accepted 29 August 2006

ABSTRACT

Context. Numerical simulations of planet-disk interactions are usually performed with hydro-codes that — because they consider only
an annulus of the disk, over a 2D grid — cannot take into account the global evolution of the disk. However, the global evolution
governs type II planetary migration, so that the accuracy of the planetary evolution can be questioned.

Aims. To develop an algorithm that models the local planet-disk interactions together with the global viscous evolution of the disk.
Methods. We surround the usual 2D grid with a 1D grid ranging over the real extension of the disk. The 1D and 2D grids are coupled
at their common boundaries via ghost rings, paying particular attention to the fluxes at the interface, especially the flux of angular
momentum carried by waves. The computation is done in the frame centered on the center of mass to ensure angular momentum

conservation.

Results. The global evolution of the disk and the local planet-disk interactions are both well described and the feedback of one on the
other can be studied with this algorithm, for a negligible additional computing cost with respect to the usual algorithms.

Key words. methods: numerical — solar system: formation — accretion, accretion disks

1. Introduction

Planetary formation occurs in disks of gas and dust around pro-
tostars. Giant planets — whose mass is mostly made of hydrogen
and helium — must have formed before the dissipation of the gas
disk. Consequently, they must have exerted tidal forces on the
gas and their orbits must have evolved in response to the gas.

The presence of a planet on a circular orbit leads to the
formation of a spiral density wake in the disk. Goldreich &
Tremaine (1980) and Lin & Papaloizou (1979) showed that,
through the wake, the planet transfers angular momentum to the
part of the disk exterior to its orbit, while it receives angular mo-
mentum from the inner part. For low mass planets, Ward (1997)
showed that the net result is a loss of angular momentum for the
planet, which makes its orbit decay on a short timescale. This is
usually referred to as type I migration.

As the planet transfers angular momentum to the outer part
of the disk, it repels it outward; it symmetrically pushes the in-
ner part inward. If the planet is massive enough (the threshold
mass depends on the disk’s viscosity and scale height; see Crida
et al. 2006, and references therein) a clear gap opens around the
planet’s orbit, effectively splitting the disk into an internal and an
external part. In this situation, the planet is locked in the middle
of the gap, because both the outer and the inner part of the disk
are pushing it away. Thus, the planet moves in parallel to the mi-
gration of the gap (Lin & Papaloizou 1986; Ward 2003), which
in turn has to follow the viscous evolution of the disk (charac-
terized by a radial spreading of the disk as the gas is accreted
onto the central star; see Lynden-Bell & Pringle 1974). This is
usually referred to as type Il migration.

Although analytic theories have brought a great deal of un-
derstanding of the fundamentals of planet-disk interactions, it
has become increasingly evident that numerical simulations are
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an essential tool of investigation (see Papaloizou et al. 2005,
for a review). Numerical simulations, however, are difficult and
time-consuming, and they involve simplifications, which may
produce artifacts. In this paper we are concerned with the simu-
lation of type II migration.

Proper simulation of type II migration requires not only
the correct calculation of planet-disk interactions — which are
essentially local — but also of the global evolution of the
disk. Unfortunately, planet migration is typically simulated with
hydro-dynamical codes using a 2 dimensional polar grid which,
for numerical reasons, is truncated at an inner and an outer ra-
dius. This enables to describe the local interaction of the planet
with the disk but not the global evolution of the disk.

Indeed, the boundary conditions at the extreme rings of the
polar grid cannot take into account what happens in the whole
disk, outside of the grid. For instance, the use of open bound-
ary conditions allows the gas to leave the region covered by the
grid; this makes the studied disk annulus behave as if it were
surrounded by vacuum, so that it empties very rapidly, which
is not realistic. In the opposite extreme case, boundary condi-
tions that impose that the mean density on the extreme rings re-
mains constant with time disable the accretion and spreading of
the gas. Some other prescriptions between these two extremes
may be used (for instance allowing inflow, or imposing an out-
flow given by an analytical model, or setting the flow on the last
ring equal to the viscous flow measured in the neighboring rings,
etc.). However, it is very difficult to adapt these prescriptions to
the changing behavior of the disk with time, in particular when
the disk undergoes perturbation from the planets. Also these pre-
scriptions are rather arbitrary and they may introduce artifacts in
the planetary evolution.

In this paper we present a novel idea for the correct calcula-
tion of the global evolution of the disk. It consists of surrounding
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the 2D polar grid with a 1D radial grid. The 1D grid extends
from the real inner edge of the gas disk (e.g. the X-wind trun-
cation radius at a few tenths of AU) to the real outer edge (e.g.
the photo-dissociation radius at hundreds of AU). This 1D grid
has open boundaries at the inner and outer edges, and exchanges
information with the 2D grid for the definition of realistic, time-
dependent boundary conditions of the latter. Our algorithm for
the interface between the 1D and 2D grids is driven by the re-
quirement that the angular momentum of the global system (the
disk in the 2D section, plus the disk in the 1D section plus the
planet-star system) is conserved. We will describe it in detail in
Sect. 3. First, however, we revisit the algorithm used to model
the gas evolution and planet-disk interactions on the 2D grid, to
ensure that it also conserves angular momentum, which is often
not the case in standard implementations. We discuss this issue
in Sect. 2. In Sect. 4, the results of our new algorithm are dis-
cussed, in terms of CPU time and robustness with respect to the
positioning of the interfaces between the two grids. In Sect. 5,
we describe some interesting astrophysical applications of this
new hydrodynamical code.

2. Conservation of angular momentum
in 2 dimensional hydrodynamical algorithms

Consider a simulation of the planet-disk interactions, with the
disk represented on a 2D polar grid with open boundary condi-
tions. A necessary requirement for the simulation to be correct
is that the sum of the angular momenta of the disk, of the star-
planet(s) system and of the gas outflowing through the bound-
aries remains constant over time.

We have tested if this is the case, using the code FARGO
(Masset 2000a,b).

Our simulation accounts for a Jupiter mass planet on an ini-
tially circular orbit. Here and in the rest of the paper we adopt
the following units: solar mass, the initial semi-major axis of the
planet, and its orbital frequency so that the gravitational con-
stant G = 1 and an orbit lasts 27 time units at » = 1. The grid
used to represent the disk extends from r = 0.25 to r = 3 with
open boundaries. It is equally divided in N; = 165 elementary
rings, and Ny = 320 sectors. The disk aspect ratio (H/r) is set
uniformly to 5%. It is assumed to be constant in time, hence the
disk is locally isothermal. The equation of state used in FARGO
is: P = ¢2X, with ¢ = HQ as usual, where P is the pressure, X
the density, ¢ the sound speed, H the disk scale height, and € the
local angular velocity. The gas kinematic viscosity is v = 107>
in our normalized units (which corresponds to the viscosity at
the location of the planet for @ = 1.25 x 1073 in a Shakura &
Sunyaev (1973) prescription). Its mean density is & = 3 x 1074,
which is a bit less than the Hayashi Minimal Mass Solar Nebula
at Jupiter (Hayashi 1981); the initial density profile can be seen
in Fig. 5 and corresponds to a disk that evolved for some time
under the effect of its own viscosity; it can be very well approx-
imated by X(r) = 0.000306 exp (—r*/52.8).

The evolution of the total mass and angular momentum of the
whole system (including the outflow, e.g. the cumulated mass
and momentum advected outside of the region spanned by the
2D grid by the gas outflowing through the boundaries) is pre-
sented in Fig. 1. While the total mass is conserved at the level
of numerical errors (top panel), the conservation of the angular
momentum is quite poor (middle panel).

The bottom panel shows that the gain of angular momentum
of the whole system (plain line), which is the error of the simula-
tion, amounts to 10% of what the planet exchanges with the gas
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Fig. 1. Relative variation of mass (top panel) and angular momentum
(middle panel) of the system {gas + Jupiter + outflow} with time. The
absolute variation of angular momentum of the system is compared to
that of the planet on the bottom panel (in our units, in which the initial
angular momentum of the planet is 107%).

in its migration process (dashed line). Thus we can expect that
the migration of the planet measured in the simulation is correct
only at the 10% level.

This shows the need to improve the algorithm in order to
achieve a much better conservation of angular momentum. We
describe a procedure that considerably improves angular mo-
mentum conservation below.

2.1. Choice of reference frame

Need for a frame centered on the center of mass. Most, if not
all, the published numerical simulations of disk-planet interac-
tion that we are aware of use a non-inertial frame centered on
the primary (Crida et al. 2006; Kley 1999; Masset 2002; Masset
et al. 2006; Nelson et al. 2000; Nelson & Benz 2003; Varniére
et al. 2004, 2006). This is done for practical reasons, and be-
cause it is thought to be better adapted to describe the motion
of the inner part of the disk. This reference frame is not inertial,
so that indirect forces are taken into account for the simulation
to be realistic. It is well known that the presence of these forces
destroys the conservation of the angular momentum measured
in the non-inertial frame. In principle however, one can make at
any time a change of coordinates to compute position and veloc-
ities in the inertial frame (centered on the center of mass), and
the angular momentum computed from these coordinates should
remain conserved. This is for instance what happens in N-body
codes, when the simulation is done in heliocentric coordinates
(except for truncation and round-off errors). This is not the case
here. The transport algorithm for the gas — in which mass, angu-
lar momentum, linear momentum etc. advect from a cell to its
neighbors (sub-step 5 in Sect. 2.2) — imposes the conservation of
each of these quantities. This is correct for the mass, but not for
the momenta, because they are not supposed to be conserved in
the adopted frame. As a consequence of this imposed, unphysi-
cal conservation, the conservation of the momenta in the inertial
frame is corrupted. The solution to this problem is the use of the
frame centered on the center of mass throughout the algorithm.

Implementation. This is not trivial to implement. A first pos-
sibility is to suppress all indirect forces in the algorithm and,
whenever the position and the velocity of the star are needed, to
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compute them imposing that the position of the center of mass
of the whole system (star, planets and disk) is at (0, 0). This is,
for instance, what is usually done in N-body barycentric simu-
lations. In this case, however, the situation is more complicated.
While in N-body codes all interactions are treated simultane-
ously, planet-disk interaction simulators involve a purely gravi-
tational part and a hydrodynamical part, and treat the planetary
system and the disk separately (see Sect. 2.2 for the sequence
of integration sub-steps). When the disk is advected, the star is
moved to assure the position of the center of mass, but not the
planet. Thus, at the next step, the planet sees a star in a different
location in phase-space with respect to the end of the previous
step. This has a dramatic effect on the orbital stability of the
planet and the overall conservation properties. A second, more
advantageous possibility is to consider the star exactly like a
planet during all the stages of the computation. This ensures a
symmetry in the treatment of the star and of the planet(s). To
ensure that the center of mass of the whole system remains mo-
tionless at r = 0, the planetary system (now including the star) is
translated in phase-space at the end of every time-step. This cor-
rection does not perturb the relative planetary motion. In princi-
ple, it corrupts the conservation of the total angular momentum,
but the errors introduced have negligible consequences, as we
will test and discuss below.

Caveats. Because the grid is centered on the center of mass, a
good numerical accuracy can be achieved only if the motion of
the gas is approximated by a rotation around the center of mass.
This is the case as long as the central object is close to the center
of mass, namely if the total mass of the planets is negligible
with respect to the one of the star (which is the common case)
or — in the case of a large stellar companion — if one considers a
distant circumbinary disk. The choice of a frame centered on the
center of mass is not adapted to study a disk around a star with a
massive companion or a circumplanetary disk.

In the case of an axisymmetric problem (accretion disk with
no planet), the choice of such a frame may lead to numerical in-
stabilities because small deviations from axial symmetry in the
disk due to numerical errors cause a shift of the star relative to
the center of mass, which in turn can enhance the disk’s asym-
metries. Thus, if the planetary system is made of the star alone,
we recommend to keep it fixed at the origin of the frame.

In many applications, the equations of motion are imple-
mented in a rotating frame in order to keep the planet at a con-
stant position. This can still be done in a frame centered on the
center of mass.

2.2. Sub-steps sequence

As we anticipated above, the integration algorithm separately

treats the pure gravitational part and the hydrodynamical part.

To ensure a good preservation of the conserved quantities, it

is necessary to respect as much as possible the action-reaction

principle in the planet-disk interactions. This requires that the

sequence of integration sub-steps is taken in a specific order.
Here is the sequence that we adopt:

1. The gravitational potential of the planets and star is com-
puted and stored.

2. The velocities of the planets and the star are updated using
the gravitational influence of the disk.

3. The velocities of the gas are changed in each cell according
to the non advective part of the Navier-Stokes equations (the
external forces dues to the gradients of pressure and gravity
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field and the viscous stress); the gravitational potential com-
puted at sub-step 1 is used.

4. The planet-star system is advanced under its own gravita-
tional interactions using an N-body algorithm (specifically a
5th order Runge-Kutta integrator).

5. The advective part of the Navier-Stokes equations is per-
formed: using the disk velocities computed at sub-step 3, the
mass, angular and radial momentum are advected from each
cell to the neighboring cells. The new velocities of the gas
are then computed in each cell from the new momenta and
masses.

6. The conservation of the center of mass is ensured by trans-
lating in space and velocity the center of mass of the planets-
star system.

In the above algorithm, every time that an action is made on
the planetary system, the equivalent action is immediately ap-
plied on the disk. Moreover, there is no difference in treatment
between planets and star, which is essential for the reasons dis-
cussed above. However, particular care has to be paid to the im-
plementation of the algorithm to ensure the effective symmetry
of these actions; this is discussed in the next subsection.

2.3. Action-reaction symmetry

The action-reaction principle has to be perfectly fulfilled in the
computation of sub-steps 2 and 3. It is not the case, for instance,
if one computes the action of a planet on the disk from the gradi-
ent of its potential on each cell, and the action of the gas on the
planet from the sum of the elementary gravitational forces that
it feels from each cell. In principle, both calculations should be
equivalent, giving total forces of the same strength and opposite
directions. However, if the gradient is computed by finite differ-
ences (typical in grid calculations), this introduces a difference
with respect to the force exerted by the corresponding cell on the
planet.

In order to impose action-reaction symmetry, we proceed as
follows. After sub-step 1, we measure the total change of angular
momentum that the gas will have at sub-step 3 due to the poten-
tial of each planet. Then, in sub-step 2, we compute the change
of azimuthal velocity of each planet according to the change of
angular momentum that it causes to the disk. This ensures angu-
lar momentum conservation between sub-step 2 and sub-step 3.
Similarly, in sub-step 2 the planet’s radial velocity change is
computed by measuring the total change of linear momentum
in this direction caused to the gas disk by the same planet.

2.4. Results and discussion

All these precautions allow us to greatly improve the angular
momentum conservation of the whole system. The same simu-
lation as in Fig. 1 is computed with our modified algorithm. We
denote by 6H the variation of angular momentum, in the inertial
frame centered on the center of mass, of the whole system (the
sum of the momenta of the gas in the 2D grid of the planet-star
system and of the outflow which is the cumulated momentum
carried by the gas that left the grid). It should be zero if the code
were perfectly conservative. Thus 6 H is a measure of the error of
the integration scheme. It is compared with three relevant quan-
tities in Fig. 2. The bottom curve (solid line) corresponds to the
logarithm of the relative variation of angular momentum of the
system: 6H/H,, where H is the initial total angular momentum
(it corresponds to the middle panel of Fig. 1); on a long timescale
(16 000 time units, 22500 orbits at = 1), this normalized error



1176

25
-35 f _Jog(IdH/dH pl) |
-4 Hi i
log (1dH/H pl) |
4.5 H I .
r/'/
5 H ’,r i
log (IdH/H_01)
_7 | 1 1 1 1 1 Il Il
0 2000 4000 6000 8000 10000 12000 14000 16000
time

Fig. 2. Relative angular momentum variation as a function of time. The
variation of angular momentum of the system {gas + planet + star +
outflow}, 6H, is compared to its initial value H, (bottom curve, plain
line), to the angular momentum of the planet H, (middle curve, long-
dashed line), and to the variation of the latter 6H,, (top curve, short-
dashed line).

does not exceed 107 The middle curve (long dashed line) cor-
responds to the logarithm of 6H/H,, where H, is the angular
momentum of the planet: the error in total angular momentum
is about 4.5 orders of magnitude smaller than the angular mo-
mentum of the planet. Thus, it should not affect its migration.
The top curve (short dashed line) shows the logarithm of the ra-
tio between 0H and 6H),, where 6H,, is the variation of angular
momentum of the planet: this ratio is smaller than 1073.

Although highly satisfactory for our purposes, the conserva-
tion is admittedly not perfect, in particular when compared to the
mass conservation (which in the new simulation is as good as in
the example of Fig. 1). This is due to two sources of error.

The most obvious one is that the algorithm used for the ad-
vancement of the planetary system, which is in our case a Runge-
Kutta algorithm, is not symplectic. However, we checked that
in our simulation, the amount of angular momentum artificially
introduced in the system in this way is 3 orders of magnitude
smaller than the total global error.

The second source of error is in sub-step 6, due to the trans-
lation of the center of mass of the planet-star system. This trans-
lation occurs for two reasons. (i) It is required to compensate the
center of mass motion due to errors introduced by the discretiza-
tion of the grid and to the second order (in time) advection of the
disk. Thus, the amplitude of this effect decreases with increasing
disk resolution and decreasing time-step. (ii) Gas continuously
leaves the grid through its inner or outer boundary. This gas is
deleted from the simulation, while its total mass and momentum
are recorded as outflow. The problem is that the outflowing gas
is in general not axisymmetric. Therefore, its elimination from
the simulation causes a shift (in position and velocity) of the
center of mass of the whole system. The shift is artificial, in the
sense that it would not exist if the gas were modeled with an in-
finite 2D grid, and it requires, for compensation, the translation
of the planetary system. This issue is a conceptual one. Thus this
source of error cannot be reduced by tuning the grid resolution
or time-step. This seems unavoidable: it is the price to pay to
work with 2D grids that are not as extended as the physical disk.
However, as we have seen in Fig. 2, this error is so small that for
all practical purposes we can safely ignore it.
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3. Coupling of the 2D grid with a 1D grid

As we discussed in the introduction, for a correct simulation of
type II migration the conservation of angular momentum is a
necessary, but not sufficient condition. It is also necessary that
the global evolution of the disk is correctly reproduced, which is
not the case if only a portion of the disk (the annulus represented
by the 2D grid) is considered.

For this reason, we consider the whole disk, from its real in-
ner to outer radius, corresponding respectively to the “X” radius
at the inner edge (Shu 2002), and to a photo-evaporationradius at
the outer edge (see Hollenbach & Adams 2004a,b). Because the
representation of the whole disk with a 2D grid would be com-
putationally prohibitive, outside of the radial distance range cov-
ered by the usual 2D grid we study the evolution of the extended
disk in one dimension, with the aid of a 1D grid representation.
In practise, the 1D grid is made of two parts: one extending from
the real inner edge of the disk to the inner edge of the 2D grid,
and the other one extending from the outer edge of the 2D grid
to the real outer edge of the disk.

In this section, we first present the equations for the 1D disk.
Then we detail how we couple the 1D and 2D portions of the
disk in a way that conserves mass and angular momentum, and
that ensures a proper simulation of the disk’s global evolution.

3.1. 1D equations

The Navier-Stokes equation and the advection of the gas are
computed in the 1D grid exactly as in the 2D grid, but with
N = 1, so that each cell can be considered as an elementary ring.
Consequently, there are no azimuthal components for the various
gradients, nor an advective transport phase in the azimuthal di-
rection. The gravitational potential due to the planets and the star
is computed for the 1D grid as a function of r only: the whole
planetary system is considered as a single central mass, the mass
of which is the sum of all the bodies inside the considered radius.
Denoting by H the Heaviside function equal to 1 for positive ar-
guments and to O for negative ones, the gravitational potential
felt by a cell of the 1D grid located at a radius r from the center
of mass reads:

GM,
o) = ) ~—FH(r 1)

p

where the index p goes through the whole planetary system (in-
cluding the star). This means that the potential felt is equal to
—G/r multiplied by the mass of all the celestial bodies that lie
inside the ring. Thus the position of the star with respect to the
center of mass has no influence; it would be the same if the 1D
rings were centered on the star.

We assume that the gas disk in the 1D grid is axisymmetric,
so that in principle there is no torque in the interaction between
the planets and the 1D grid. For more realism, however, one can
assume that each 1D ring feels a gravitational torque due to each
planet, using the formula of Goldreich & Tremaine (1980) or Lin
& Papaloizou (1979):

M, \? Iy \4
STo(r) ~ 0.4 (MP) Q! (L) @rrzon (1)

*

where A = r — rp, Q, is the angular velocity of the planet, and
or is the width of the ring. Of course, for angular momentum
conservation, the opposite of this torque exerted on the 1D grid
has to be exerted on the planet.



A. Crida et al.: Planet migration in globally evolving disks

Ngrings Ngrings
1D grid 1D ghost rings
e I | I I T |
T T T T
S L T A T
I I

Ll
[
2D grid

R ‘interface

Fig. 3. Sketch of the coupling via ghost rings at the inner interface be-
tween the 1D grid and the 2D grid.

Because of the assumption of axial symmetry, what leaves
the 1D grid through its boundaries does not impose any
re-adjustment of the star-planet(s) center of mass. Thus, the con-
ceptual problem discussed at the end of Sect. 2.4 is not relevant
here. Consequently, the evolution on the 1D grid always shows a
perfect angular momentum conservation, at the level of numeri-
cal errors.

Despite this perfect conservation, however, for the results
to be correct it is necessary that the assumption of axial sym-
metry is a good approximation for the real disk. Moreover, be-
cause Eq. (1) is an approximation, it is necessary that the plan-
etary torque is small for the error to be small in absolute value.
Both requirements are fulfilled if the interfaces between the 1D
and 2D portions of the disk are placed sufficiently far from the
planet(s). We will discuss this issue in Sect. 4, with quantitative
tests.

3.2. Ghost rings

The 1D grid and the 2D grid communicate with each other
through a system of ghost rings. This technique is derived from
that used for the parallelization of a hydro-code on a distributed
memory architecture. We describe it here for the inner interface
between the 1D grid and the 2D grid, that is the interface at the
inner edge of the 2D grid; the 1D grid is inside, extending from
the real inner edge of the disk (the truncation radius or the sur-
face of the star) to the 2D grid; the 2D grid lies outside this in-
terface, as sketched in Fig. 3.

Outside the interface, a number Ng of 1D rings are added,
which are superimposed on the first Ng rings of the 2D grid;
they are the ghosts of the inner 1D grid (see Fig. 3). At the be-
ginning of each time-step, the density and the velocity in the 1D
ghost rings are set as follows. The density of gas (X), radial mo-
mentum (Xv,), and angular momentum (Xruvg) in the ghost ring
are set to the azimuthal average of the respective quantities in the
corresponding ring of the 2D grid. Denoting with the superscript
“1D” the quantities in 1D rings and by & the specific angular
momentum (h = rvy), this leads to the following equations:

b 1 2
b - T rdo, (2)
2
r Jo
1 2
2PyIb = Yo, rd6 3)
r 2
nr Jo
1 2
xPpb = Thrdf . 4)
2
nr Jo

As 2P is given by Eq. (2), v!P and v}P are easily computed from
Egs. (3) and (4).

Then, during the time step, the computation of all stages is
performed in the 1D grid as well as in the ghost rings. The 1D
grid “feels” the ghosts via the Navier-Stokes equations. As the
1D ghost rings have been filled with quantities inherited from
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Fig. 4. Viscous spreading of a ring. The theoretical curves (obtained by
numerical solution of Eq. (14) of Lynden-Bell & Pringle (1974) with
the boundary condition £(0.02) = 0) are thin, while the numerical ones
obtained with our code are bold. The vertical dashed lines show the po-
sition of the interfaces, where the solution provided by our code remains
perfectly smooth.

the 2D grid, the 1D grid behaves as if it felt the 2D grid outside
the interface.

Symmetrically, inside the interface, a Ng number of 2D rings
are added: the 2D grid ghosts. They are treated as normal
2D rings, except that at the beginning of each time step, the az-
imuthal means of surface density, of radial momentum and an-
gular momentum density are set equal to the respective values
measured in the corresponding 1D rings, as sketched with ar-
rows in Fig. 3. So, the 2D grid effectively “feels” the 1D grid
inside the interface. Filling the 2D ghosts is more elaborate than
in the 1D ghost rings case. For a given 2D ghost ring, one has to
proceed in four steps: (i) store for each cell the surface density,
the radial momentum, and the angular momentum; (ii) compute
the azimuthal means of these quantities; (iii) subtract in each
cell, for each of the three considered quantities, the difference
between its azimuthal mean and its value in the corresponding
1D ring; (iv) find the velocity in each cell by dividing the new
momenta by the new surface density.

The minimal number of ghost rings needed, Ng, depends on
the numerical scheme: it is the number of rings that causally af-
fects a given ring during a time-step, or equivalently the number
of rings in which the information contained in a ring propagates
during a time-step; it is often called the kernel. For instance in
FARGO, Ng = 5.

This way of coupling the 1D and 2D grids ensures a smooth
transition for each of the quantities computed in the code. In
particular, if there is no planetary perturbation, the global disk
(2D + 1D parts) behaves exactly as predicted by the Lynden-
Bell & Pringle (1974) equations. This can be seen in Fig. 4,
which corresponds to Fig. 4 in the aforementioned paper: it
shows the evolution of the density distribution at four times, for
X=0(r) = 6(r—1), with ¢ the Dirac distribution. As in Lynden-
Bell & Pringle (1974), T* denotes the viscous time: T* = 6vt in
our units. The little discrepancy between the theoretical profile
(thin) and the numerical one (bold) at 7* = 0.004 most likely
comes from the fact that the initial distribution is not exactly a &
function,; this little difference vanishes with time.
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3.3. Fluxes at the interface

The fluxes of mass and angular momentum through the inter-
faces have to be perfectly conservative. What leaves the 2D grid
has to enter the surrounding 1D grid, and vice versa.

3.3.1. Mass flux

The definition of v!P in Eq. (3) makes the mass flux through a
centered circle of radius r computed in 1D the same as the one
computed in 2D. Their theoretical expressions are:

27

F = f v, rd6
0

F,LD = 2ﬂr21DviD.

Equation (3) is equivalent to F!P = F2P. However, in a numer-
ical scheme with finite time steps and discrete grid, the flux is
most often not computed so straightforwardly. Care has to be
taken that the numerical expressions of the flux coincide at the
interface between the 1D and the 2D grid. In staggered mesh
codes, the density and the velocity are not defined at the same
locations in the cells of the grid; typically, the density is given at
the center, while the radial component of the velocity is given on
the middle point of the inner edge and the tangential component
on the middle point of the left edge (see for instance Fig. 3 of
Stone & Norman 1993). Thus, the fluxes are most often com-
puted as:

FID

m computed

Francomputed = Z =l f] r660
J

2ry D U,I,D

where the index j goes through all the cells of the ring, 66 is the
angular size of a cell, r is the radius of the interface, and £* and
2P are the values of the densities £ and ='P at the interface
after half a time-step (Stone & Norman 1993, Sect. 4.4).

To ensure the mass conservation, we solve the following
equation instead of (3) for the ring next to the interface:

_ F2D

1D
F m computed* (5)

m computed —

This equation is only slightly different from Eq. (3). It is
an implicit equation in v'P, because X'®* depends on v!P.

Nevertheless, it can be solved by iteration.

3.3.2. Angular momentum flux

Denoting with a prime sign the non axisymmetric components
of the quantities (2’ = h — h'P, v’ = v, — v!P), using Eqs. (2)—(4)
the angular momentum fluxes in 1D and in 2D are:

27rx!Pp!Py!P

21 21
f Tho, rdd = F}P + f Shv,rdf .
0 0

Independently of the numerical scheme and of the modification
of v!P seen before, it appears that it is impossible for the 1D
flux to equal the 2D flux. While F }'ID corresponds to the angu-
lar momentum carried by the gas flowing through the interface,

F,P

2D
Fh

the term F} = 0277 Xh'v, rd@ corresponds to a flux of angular
momentum that is not due to advection by the axisymmetric
flow; it comes from the azimuthal perturbations of v, and vy,
that represents the angular momentum carried by a wave. The
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wave-carried propagation of angular momentum is well-known
in planet-disk interactions (see for instance Appendix C of Crida
et al. 2006; Goldreich & Nicholson 1989; Takeuchi et al. 1996),
but cannot be accounted for by a 1D grid. This is a conceptual
problem.

We face a degree of freedom problem. With only 3 free
variables (Z'°, v]P, and v}P), 4 quantities have to be set in the
1D ghosts: the mass and the angular momentum that is in each
ring, the mass and angular momentum fluxes. The first two are
set with the prescriptions (2) and (4), which determine the val-
ues of ='P and v;P. The third variable, v} is naturally set by
Eq. (3)/Eq. (5). It appears here that it is impossible to obtain the
correct flux of angular momentum in the 1D grid ghosts.

A possible solution is that, during the advection phase in the
1D part of the algorithm, one imposes that the angular momen-
tum flowing through the interface corresponds to the flux com-
puted in the 2D grid, F?P However, as the flux of angular

h  computed”
momentum carried by a non axisymmetric wave cannot be repre-
sented with 1D Navier-Stokes equations, F; would be deposited
abruptly in the first ring of the 1D grid. This would lead to the
formation of a spurious gap at the interface, and possibly lead to
a numerical instability.

It has been shown that pressure-supported waves travel
through the disk and deposit their angular momentum smoothly,
as they get damped viscously (Takeuchi et al. 1996) or through
shocks (Goodman & Rafikov 2001). Thus, a better solution is to
model this wave propagation through the 1D grid. We first per-
form advection as usual in each grid and evaluate at the interface
F;l = FﬁD _FfltD (OI‘, better’ 6Fh = FfztDcompuled _FfltDcompuled ~ Fi/z’
which might be slightly different to the former according to the
numerical scheme). Then, over a time-step 6t, we spread in the
1D grid the amount of angular momentum &F), 6t. A prescrip-
tion for the deposition of the flux can be found in Goodman &
Rafikov (2001) as a function of the distance from the planet. This
could be used when there is only one planet, but not if there are
several planets, because it is difficult to know what fraction of
O0F}, is due to each planet. Thus, we adopt an exponential func-
tion, because it is scale free so that, once 0F), is known at the
interface, its deposition does not depend on the position of the
planet(s) and is a function of the distance from the interface only.
In practice, we assume that, over a time-step ¢6t, the angular mo-
mentum deposited by the wave in a ring of width dr located at a
distance d from the interface between the 1D and 2D grids is:

d
o6h = 6F), ot lexp (—z) dr, (6)

where A is the damping length-scale of the flux. This assumption
will be justified in Sect. 4.1, where the evolution of the disk in the
1D grid is found to be insensitive to the position of the interface
with respect to the planet.

We assume that 4 = 0.5 in natural units, which is the value
obtained by fitting with an exponential the decay of the wave-
carried flux in Appendix C of Crida et al. (2006). For simplic-
ity, we assume that A does not depend on the disk’s viscosity
and scale-height (an assumption partially justified in Goodman
& Rafikov 2001).

The deposit of the quantity 64 of angular momentum in a ring
is simulated by applying a suitable torque, namely by adding to
viP the quantity 6v,° = 6h/r, where r is the radial distance of the
ring from the star.

Notice that the integral of (6) from d = 0 to infinity is equal
to the total angular momentum 5 F}, 6t carried by the wave at the
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grid interface. However, the 1D disk is not infinite in radial ex-
tent. Thus, a fraction of the angular momentum carried by the
wave will not be deposited in the disk, but will outflow from the
system. This outflowing momentum, as well as the angular mo-
mentum and mass advected through the inner and outer radius
of the 1D grid, are recorded, in analogy with what was done in
Sect. 2 for the 2D grid alone.

3.3.3. Mean viscous torque

The coupling of the 1D and the 2D grid described in the two
subsections above ensures a smooth, conservative evolution of
the disk. The gas is free to accrete and spread from the star to
its physical outer edge, through the interfaces between the grids.
However, at the interfaces, the shear gives an azimuthal viscous
stress. This appears as a torque exerted on a grid by its ghosts
(and reciprocally). The torque exerted by the part of the disk
inside a given radius ry on the part of the disk outside r reads,
from the Navier-Stokes equations:

27
t,(ro) = rof T .9 rodo,
0

Ty Toe
with D the strain tensor and I the identity matrix. Thus, T,y =
Ty = ZV(%% + r%). In a staggered mesh scheme, T,y is
defined at the inner edge of each cell.
For angular momentum conservation, the torque felt by

the 1D grid from its ghosts must equal the one exerted by
the 2D grid on its ghosts. This requires T};D(rime[face) =
NL,- 3 Trol j)(Finterface), Where the index j goes through the N
cells of the 2D ring next to the interface. However, given that
the expression of T,y implies the product of velocity gradients
by the density, its average is not equal to the product of the aver-
ages, and the required equality is not necessarily true. Thus, one
has to replace the value of TrlgD at the interface by the average of
T,y on the interface in the 2D grid.

where T = (T" T’H) is the stress tensor, T =23y (5 - (%Vv)}_),

3.4. Results and discussion

We consider the final state of the simulation of Sect. 2: a Jupiter
mass planet initially at 7, = 1 evolves in a gas disk represented
by a 2D grid extending from r = 0.25 to 3 for 16 000 time units
(=2500 orbits). The final density profile of the gas disk is shown
in Fig. 5 as a dashed line. One can see that the planet has opened
a gap and migrated inward (the planet is located in the middle
of the gap). Moreover, the surface density of the gas over the
considered range is strongly reduced relative to its initial value
(dot-dashed line in Fig. 5). We then compute another simula-
tion with the same planetary system and the same 2D grid, but
introducing a 1D grid extending from 0.117 to 20 length units
(approximately from 0.5 to 100 AU, assuming the unit length
equal to 5 AU). The final profile of the gas distribution obtained
in this new simulation is shown as a solid line in Fig. 5. Its bold
part corresponds to the 2D portion of the disk.

We see two important aspects in Fig. 5. First, the radial pro-
file of our new solution is clearly smooth, which indicates that
there are no artifacts in the passage of information from the
2D grid to the 1D grid and vice versa. The small kink visible
at the inner boundary of the 1D grid (r ~ 0.15) is due to the im-
plementation of the open boundary condition (see Appendix 6);
this artifact also appears in Figs. 4, 7 and 8. The change of sign of
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Fig. 5. Gas surface density profile after 16 000 time units ~2500 orbits
of the Jupiter mass planet initially placed at r, = 1. The solid line cor-
responds to a 2D (bold) and a 1D (thin) grid coupled, while the dashed
line stands for a 2D grid alone. The dot-dashed line shows the initial
profile.

the second order derivative of the radial profile near the outer in-
terface (r ~ 3) is a real feature at the considered time-step, as we
will discuss later (see Fig. 9 and the related discussion). Second,
despite that the disk in the new simulation has also significantly
evolved relative to the initial profile, the new surface density of
the disk is very different from that obtained in the simple 2D sim-
ulation (compare the solid and dashed curves). In particular, in
the new simulation the outer part of the disk has not significantly
evolved, which is due to the long viscous time there, as the lat-
ter scales with 72/v. Conversely, in the old simulation, because
of the open boundary condition, we observed a significant disk
erosion. This shows the importance of the boundary conditions
for the global evolution of the system.

The global conservation in the system (namely the evolution
of the mass and angular momentum of the planetary system, plus
those of the gas in the two grids, plus those advected through the
inner and outer radius of the 1D grid and recorded as outflow) is
presented in Fig. 6, and compared to the conservation obtained
in the code using the 2D grid only. One can see that the use of the
extended 1D disk does not change the excellent result obtained
in Sect. 2. Thus, the coupling between the two grids that we
described above is correct in terms of conservation properties.
Actually, the error in angular momentum is slightly larger in the
case with the 1D grid because the density at the inner interface
of the 2D grid does not vanish, as can be seen in Fig. 5; so, the
major source of error (the non axisymmetric outflow from the
2D grid, discussed at the end of Sect. 2.4) does not disappear,
while it does for the simulation using the 2D grid alone.

4. Performance of the code

In this section, we check the accuracy of the results, as a function
of the size of the 2D grid, and we discuss the CPU cost of this
hybrid scheme. We show that the coupling of a 1D grid increases
by far the realism of the results of the hydro-code, for a low
additional computation cost.
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Fig. 6. Relative variation of mass and angular momentum in the case of
a 2D grid with open boundaries and a 2D grid coupled with a 1D grid.
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Fig. 7. Inner disk profiles at the end of simulations with different loca-
tions of the inner interface between the 1D and the 2D grid. The bold
part of the profiles corresponds to the 2D grid.

4.1. Position of the interfaces with respect
to the planet

As already mentioned it in Sect. 3.1, the interface between the
2D and the 1D grids has to be sufficiently far from each planet
so that the flux of angular momentum carried by the wave at the
grid interface and the azimuthal dependence of the disk surface
density are both small enough. An obvious test of our code is
to check the dependence of the results on the positions of the
interfaces between the two grids.

We ran simulations like the one described in Sect. 3.4, with
different inner radii for the 2D grid, but keeping the grid resolu-
tions constant. Figure 7 shows the density profiles of the inner
disk obtained at the end of the computations (16 000 time units
~2500 orbits). It appears that the differences among the results
are small, even in the cases where the planet is not very far from
the interface (r, ~ 0.75). Only the cases with a transition radius
greater than 0.5 show not negligible differences with the three
other runs, which are remarkably similar to each other, in partic-
ular in the density profile of the inner edge of the gap. The case
with an interface at 0.5833 is clearly not accurate, but note that
it is not unrealistic, while the 1D grid starts only at 4 Hill radii
from the planet.

Fig.8. Inner disk profiles at the end of simulations similar to those
of Fig. 7, but without the implementation of the wave damping algo-
rithm (6). A strong sensitivity on Riperface QPpeArs.

All cases, however, give a quite consistent representation of
the surface density profile of the inner disk, which is — on the
contrary — very different from that obtained by using the 2D grid
alone (compare with the dashed curve in Fig. 5).

This would not be the case if we had not implemented in the
1D disk the exponential damping of the angular momentum car-
ried by the density wave launched by the planet. For instance,
Fig. 8 shows 3 of the simulations, recomputed by switching off
the calculation of (6). One sees a kind of discontinuity at the in-
terface, where the angular momentum deposition abruptly stops
in the disk. This change implies a modification of the local equi-
librium and of the shape of the density profile. Consequently,
the results are strongly dependent on Rijerface- This also high-
lights the importance for the gap structure of the flux of angular
momentum carried away by the pressure supported wake. This
flux is equivalent to the pressure torque studied in Crida et al.
(20006).

The outer interface has a much smaller influence on the
disk’s profile than the inner one, because it is further from the
planet in the studied case. In Fig. 5, it appears that the outer
interface corresponds to a change of sign in the second order
derivative of the density profile. Figure 9 shows that this is a real
feature, specific to the chosen output time. Indeed, this figure
shows the density profile at different times in the same simu-
lation; its evolution convincingly demonstrates that the second
derivative of the density at the interface (Rinterface = 2.9167, right
vertical dashed line) varies with time and can be non-zero. We
also repeated the same simulation, moving the outer interface
t0 Rinterface = 2.3167 (left vertical dashed line). The obtained
surface density profiles overlap exactly with those of Fig. 9 at
the corresponding time, so they are not plotted. This test also
demonstrates that the position of the outer interface has a negli-
gible influence on the global disk evolution.

The evolution of the disk has a strong influence on the type II
migration of the planet. Figure 10 shows the different migra-
tion rates in the simulations of Fig. 7, and in the simulation ob-
tained with the 2D grid alone. Once again, the two first cases
(Rinterface = 0.3333 and 0.4333) are remarkably similar, while the
other ones show a slightly slower inward motion of the planet.
However, the simulation done with only a 2D grid gives a migra-
tion that is sensibly faster, as expected due to the disappearance
of the inner disk.
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Fig. 9. Outer disk profile close to the outer interface (Rinerface = 2.9167,
marked by a vertical line) at 3 different times. The vertical line at r =
2.3167 marks the outer interface used in a second simulation, whose
results are indistinguishable from those plotted in this figure.
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Fig. 10. Type II migration of the Jupiter mass planet in the disk. The
semi-major axis is plotted as a function of time for all the cases al-
ready discussed: various positions of the inner interface between the
two grids, and no 1D grid.

The results presented in this section show that our method
for coupling the 2D and 1D calculations not only ensures the
conservation of the angular momentum, but also allows a robust
(i.e. weakly dependent on the grid interface position) modeling
of the disk’s structure and evolution.

4.2. Computational cost

In this subsection, we show how the use of a 1D grid allows the
study of the whole disk for a negligible extra cost while the use
of an extended 2D grid would be prohibitive.

From a theoretical complexity point of view, the number of
elementary operations for the computation of a time-step is pro-
portional to the number of cells of the considered grid. Thus, the
computation of the disk evolution in the 1D grid is negligible
with respect to the computation in the 2D grid. In addition, one
has to consider the three operations required to couple the grids,
which also need to be done at every time-step. They are the fill-
ing of the ghost rings, the computation of 6F, and its spreading,
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and the change of T4 in the 1D grid. They require computation
on Ng 2D rings or less. As the size of the ghost area is usually
negligible with respect to the size of the 2D grid, the computa-
tional cost of the coupling is also negligible with respect to the
one of a time-step in the 2D grid.

In the previous paragraph, we studied the number of ele-
mentary operations to be computed during a time-step. In most
codes, the length of the time-step is adapted to the conditions im-
posed by the required resolution and the existing perturbation. In
general, it is determined by the Courant-Friedrichs-Lewy (CFL)
condition (Stone & Norman 1993, Sect. 4.6). The limit most
likely comes from the cells with smallest radii, where the angular
velocity is the largest. To avoid numerical instabilities, the time-
step length 67 is set so that information does not propagate more
than one cell over one time-step; thus one has 6rQ < 2x/N;,
where Q is the angular velocity, which is about Keplerian in a gas
disk. Consequently, denoting by Ry, the inner boundary radius
of the 2D grid, one has 6f o« Rni]/nz This shows that extending the
2D grid toward the star shortens the time-step and slows down
the simulation significantly. The use of the FARGO algorithm
(Masset 2000a,b) enables one remove the mean angular velocity
and to consider only the perturbed motion and the shear, but this
leads to a similar conclusion, although the scaling of 67 with Ry,
is generally different.

The CFL condition in a 1D grid is much less constraining.
Consequently, the addition of a 1D grid inside the inner edge of
the 2D grid has no influence on the time step length, still deter-
mined by what happens in the 2D grid. It is thus important to in-
crease Rinerface @5 much as possible, to speed up the computation.
Some benchmarking confirmed this reasoning (see Appendix B
for more detailed results). The accuracy loss of the computation
with the increase of Rjywerface has been discussed in Sect. 4.1, so
that an acceptable trade-off can be found.

5. Astrophysical applications

The viscous evolution of the protoplanetary disk is thought to
govern type II migration. Our code, which has been designed in
order to correctly reproduce this evolution, while resolving the
planet-disk interactions, is therefore very useful for studying any
problem related to type II migration and the feedback exerted by
the presence of planets on the evolution of the disk.

‘We present two problems for which this hybrid scheme is the
tool of choice.

5.1. Outward migrating planets

A demonstration of how type II migration depends on the evolu-
tion of the disk has been provided by Veras & Armitage (2004).
A disk evolving under its own viscosity accretes onto the cen-
tral star, while spreading outward under the constraint of angular
momentum conservation. Thus, at any instant in time there is a
boundary in the disk within which the radial motion of the gas
is negative and beyond which it is positive — see the right panel
of Fig. 11 and Lynden-Bell & Pringle (1974). If a giant planet
is located beyond this boundary it should move outward, as its
migration has to follow the local evolution of the disk (see also
Lin & Papaloizou 1986). Veras & Armitage (2004) showed this
using a 1D model, where the disk evolved under its own vis-
cosity, the torque exerted in the planet-disk interaction had the
form (1), and the effect of waves carrying angular momentum
flux was neglected.
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Fig.11. Left panel: migration of a Jupiter mass planet initially put on
a circular orbit at r, = 1.4. Right panel: radial velocity in the gas disk
when the planet is introduced.

Using our code, we perform more precise simulations of this
process. The interaction between the planet and the disk is sim-
ulated in 2D, and the effect of waves is taken into account. This
implies that the gap opened by the planet in the disk is less wide
and deep than in the Veras & Armitage (2004) representation
(Crida et al. 2006). Moreover, the planet also feels a corotation
torque, which is otherwise neglected in the analytic expression
of the planetary torque given by Eq. (1).

We find that the situation is not as simple as illustrated by
Veras & Armitage (2004). For instance, the left panel of Fig. 11
shows the result of a simulation in which the planet is initially
putatr, = 1.4, which is deeply in the outward spreading zone as
shown by the right panel. Nevertheless, the planet migrates in-
ward, in what seems to be a runaway type III migration (Masset
& Papaloizou 2003). This is because the spreading disk forces
enough gas to pass through the coorbital region of the planet so
that the planet feels a strong corotation torque (Masset 2001) and
decouples from the disk evolution.

We do obtain outward planet migrations, but only in specific
cases. For instance when we place the planet initially outside of
the spreading disk (which is unrealistic), or if we hold it for a
sufficiently large number of orbits, so that it can open a deep
gap that effectively truncates the disk at its inner edge (which, in
practice, again places the planet outside of the spreading disk).

A detailed description of this mechanism and a comprehen-
sive exploration of the parameter space are beyond the scope of
this paper. However, we think this example shows that the evo-
lution of a Jovian mass planet is not an ideal type II migration.
Because the gap is not extremely clean, the planet is not fully
locked in the disk’s evolution. The planet feels the global mo-
tion of the disk (accretion or spreading) but at the same time it
also feels a non-negligible corotation torque. Only a code like
the one that we have developed in this paper can simulate the
two effects correctly and hence allow a quantitative study of the
planet’s evolution.

5.2. Cavity opening

If the migration of a giant planet is strongly influenced by the
evolution of the disk, the presence of the planet also influences
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the evolution of the disk, with a non negligible feedback on its
own migration.

Perhaps the best example is that of the formation of an inner
cavity in the disk. Once a planet has opened a wide and deep
gap, the accretion time of the inner disk onto the star is smaller
than the time scale of planet’s migration, because of the negative
torque exerted by the planet (Varniere et al. 2006). This leads to
the disappearance of the inner disk. This in turn enhances the im-
balance between the inner and outer torques felt by the planets,
and accelerates the planet’s migration. The presence of cavities
are deduced in some protoplanetary disks, because the spectral
energy distribution (SED) presents a lack of emissivity at the
wavelengths corresponding to hot gas in the vicinity of the star
(see for instance Calvet et al. 2005). Rice et al. (2003) suggest
the SED of GM Aur could be explained by a cavity maintained
by a two Jupiter mass planet.

Our algorithm clearly enables a more quantitative analysis of
the cavity opening process than ever done before, for a low com-
putational cost. As we have shown in Fig. 5, when the 1D grid
extends down to the real inner edge of the disk, the evolution of
the surface density of the inner disk is found to be slower than
in a classical code with a truncated 2D grid, which makes the
appearance of a deep cavity more difficult. Therefore, we think
that the estimates of the planet mass required to achieve cavities
of given depth, and the estimates of the lifetimes of these cavi-
ties, need to be revised. A detailed study of the cavity opening
mechanism as a function of planetary mass, disk viscosity and
aspect ratio is in progress and will be addressed in a forthcom-
ing article.

6. Conclusion and perspectives

It is well known that the migration of giant planets (i.e. planets
massive enough to open significant gaps in the disk’s density
distribution) is governed — or at least strongly affected — by the
global evolution of the disk under its own viscosity.

The usual simulation algorithms solve the hydrodynamical
equations over a 2 dimensional polar grid that is truncated at an
inner and outer radius to keep the computing time within reason-
able limits. Thus, they cannot correctly reproduce the evolution
of the disk, nor the planet’s migration.

In this paper, we have shown how the use of a 1D grid sur-
rounding a classical 2D grid allows us to simulate the global
evolution of the disk, while resolving the local planet-disk inter-
actions with the accuracy of the usual algorithms. Coupling the
two grids via a system of ghost rings, with special attention paid
to the conservation of angular momentum leads to a smooth evo-
lution of the disk from its inner radius (the truncation radius or
the surface of the star) to its outer edge, several hundreds of AU
away. This increases by far the accuracy of the simulation with
essentially no additional CPU cost.

Consequently, this algorithm is the tool of choice to properly
simulate type II migration and related problems. It also enables
the study of the effect of the presence of planets on the disk’s
global evolution, which in turn affects the migration of the plan-
ets in a feedback effect.

In our simulations, we observe that the disks slowly disap-
pear through the open boundaries of the 1D grid. However, disks
are believed to disappear rapidly after only a few million years,
under the action of photo-evaporation. This phenomenon could
easily be introduced in our code via a simplified prescription
consisting of removing a fraction of the gas in each cell, de-
pending on time and location. This will open the possibility of
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simulating the evolution of planets in a globally evolving gas
disk, over the disk’s lifetime.
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Appendix A: Open boundary condition

The “open” boundary condition that allows outflow from the grid
but not inflow is implemented as follows at the inner edge of the
1D grid.

In the innermost ring (number 0), the radial velocity is al-
ways 0 and the density is that of the neighboring ring. In the next
(ring number 1), the radial velocity is set equal to that of the fol-
lowing ring (number 2) if and only if it corresponds to outflow
from the grid (negative radial velocity), and to O otherwise. This
gives:

— 2(0) is set to X(1).
— Whenever v,(2) > 0, v,(1) is set to 0.

— Whenever v,(2) < 0, v,(1) is set to v,(2).

So, the first three rings are used for this computation, which ex-
plains the artifact observed in Figs. 4, 5, 7, and 8.

Appendix B: Benchmarking

We ran 3 simulations of a Jupiter mass planet initially placed
at r, = 1, evolving in a gas disk for 1000 time units on an Intel
Xenon 2.66 GHz processor. The results, summed up in Table B.1
confirm our reasoning of Sect. 4.2.

With or without the 1D grid, the computing cost is about the
same.

Also, the computing time is not directly proportional to the
number of cells, and is strongly increased by the higher shear in
the vicinity of the star, otherwise the third simulation would not
have been more that twice as long as the first one.

Third, the second simulation was slightly shorter than the
first one because with the 1D grid, the density at the boundaries
of the 2D grid does not tend to zero, the profile is smoother and
consequently the CFL condition is less constraining there.
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Table B.1. Benchmarking results

parameters of the 2D grid 1D grid CPU time
extension N; N, extension of process
0.35-3.0 165 320 none 6167 s.
0.35-3.0 165 320 0.1167 -20 6008 s.
0.1167-5.0 294 320 none 99494 s.
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