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ABSTRACT
We study the effect of a Jovian planet on the gas distribution of a protoplanetary disc, using

a new numerical scheme that allows us to take into consideration the global evolution of the

disc, down to an arbitrarily small inner physical radius. We find that Jovian planets do not open

cavities in the inner part of the disc (i.e. interior to their orbits) unless (a) the inner physical

edge of the disc is close to the planet’s location or (b) the planet is much more massive than

the disc. In all other cases the planet simply opens a gap in the gas density distribution, whose

global profile is essentially unchanged relative to the one that it would have if the planet were

absent. We recognize, though, that the dust distribution can be significantly different from the

gas distribution and that dust cavities might be opened in some situations, even if the gas is

still present in the inner part of the disc.

Concerning the migration of the planet, we find that classical type II migration (with speed

proportional to the viscosity of the disc) occurs only if the gap opened by the planet is deep

and clean. If there is still a significant amount of gas in the gap, the migration of the planet

is generally slower than the theoretical type II migration rate. In some situations, migration

can be stopped or even reversed. We develop a simple model that reproduces satisfactorily

the migration rate observed in the simulations, for a wide range of disc viscosities and planet

masses and locations relative to the inner disc edge. Our results are relevant for extrasolar

planetary systems, as they explain (a) why some hot Jupiters did not migrate all the way down

to their parent stars and (b) why the outermost of a pair of resonant planets is typically the

most massive one.

Key words: accretion, accretion discs – Solar system: formation – planetary systems: forma-

tion – planetary systems: protoplanetary discs.

1 I N T RO D U C T I O N

The planet–disc interactions have been subject of an increased in-

terest since the discovery of the first exoplanet (Mayor & Queloz

1995). Indeed, the first extrasolar planets discovered were giant

gaseous planets orbiting surprisingly close to their parent star, so

that they are called hot Jupiters. According to classical planetary

formation models in protoplanetary discs (Pollack et al. 1996), hot

Jupiters could not form where they currently orbit, because there

was not enough solids to build a massive core that would accrete a

gaseous atmosphere (there is much more solid material beyond the

so-called ‘snow line’ where water condensates into ice). In addi-

tion, gas heated by the star is more difficult to capture for the solid

core than cold gas. It has been shown by Bodenheimer, Hubickyj &

Lissauer (2000) that in situ formation of hot Jupiter is not impos-

�E-mail: crida@oca.eu

sible, but it is not the most likely scenario. This suggests that the

planets migrate in the disc via angular momentum exchanges with

the gas.

In fact, the planet always exerts a positive torque on the part

of the disc outside its orbit, and a negative one on the part of the

disc inside its orbit (Goldreich & Tremaine 1979; Lin & Papaloizou

1979; Ward 1997). Reciprocally the disc exerts the opposite torques

on the planet; if the disc density profile is not perturbed by the

planet, the sum of the torques is not zero but results in the so-called

differential Lindblad torque, which is negative and responsible for

the inward type I migration (Ward 1997). However, the torques

exerted by the planet on the disc tend to repel the gas away from

the planetary orbit; whether the internal stress in the disc is strong

enough to counterbalance this planetary torque and spread the gas

into the void regions determines whether the corotation region of

the planet is depleted or not, leading to the opening of a more or less

clean gap. For more detail on the gap opening process, we refer to

Crida et al. (2006) and references therein; the basic idea is that the

C© 2007 The Authors. Journal compilation C© 2007 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/377/3/1324/1746954 by guest on 18 M
arch 2021



Cavity opening and planetary migration 1325

density profile evolves in response to the presence of the planet, in

order to achieve an equilibrium among three torques exerted on a

fluid element. These torques are due to the gravity of the planet and to

the viscosity and the pressure in the gas; the two latter ones depend

strongly on the gas density profile. The stronger is the planetary

torque (it is proportional to the planet mass) the steeper has to be

the density profile, and thus the deeper is the gap.

If a clean gap is opened, the planet is locked into it because the

outer and the inner disc are repellent for the planet. Thus, the planet

is supposed to follow the viscous evolution of the disc (accretion on

to the central star and viscous spreading, see Lynden-Bell & Pringle

1974, hereafter LP74); this is the definition of type II migration.

However, Quillen et al. (2004) noticed that if the planet is more

massive than the inner disc, the outer disc is not able to push the

planet inward at the speed of the natural gaseous accretion on to

the star. Indeed, in that case the planet has more angular momentum

to lose than the unperturbed disc would have, so that it migrates more

slowly. Meanwhile, nothing prevents the inner disc from accreting

on to the star. Even more, Varnière et al. (2006) suggested that, as

the planet exerts a negative torque on the inner disc, it accelerates

the accretion of the latter on to the primary. Consequently, the inner

disc accretes on to the central star faster than it would naturally. This

makes the inner disc disappear before the planet migrates inward.

The result is the opening of a cavity: a great depletion of the disc

from the star to the planet’s orbit.

Once a cavity is opened, the outer disc still tends to accrete on to

the central star and to push the planet inward, while the planet cannot

take angular momentum from the inner disc anymore. A big mass of

the planet with respect to the disc may slow down this process, but

the final result should ineluctably be the inward type II migration of

the planet toward the star. Reality, however, is not so simple. In fact,

in this work we will show that, under some conditions on the gas

disc viscosity, the orbit of the planet is not ‘gasproof’ and viscous

accretion can happen without forcing the migration of the planet.

The cavity opening process and its feedback on planet migra-

tion are not easy to study and quantify with the help of numerical

simulations. Indeed, the computation of the inner disc evolution is

prohibitive with classical hydrocodes. Thus, Quillen et al. (2004)

only made the simulation of a planet orbiting inside a pre-existing

cavity – showing that it did not migrate inward very fast – and

Varnière et al. (2006) performed only a few simulations showing

the opening of a cavity by a Jupiter mass planet in a low-density

disc. The cavity opening appeared to be more rapid than the viscous

time-scale, confirming the idea that the planet ‘helps’ the accretion

of the inner disc on to the star. However, Varnière et al. (2006)

did not provide an exploration of the parameter space, and could

not study the planetary migration because the planet was about 100

times more massive than the disc. With the help of a new numeri-

cal scheme that simulates efficiently and realistically the inner disc

evolution (Crida, Morbidelli & Masset 2007), we can perform such

a study for the first time. This is the main scope of this paper. This

analysis is particularly interesting because observations suggest that

some protoplanetary discs most likely host cavities. Understanding

what kind of cavity a planet can open in terms of size, shape and

depth, in which conditions and with which lifetime, may provide

some keys to interpret these observations. We also stress that the

ALMA interferometer will enable us to make precise images of the

inner part of protoplanetary discs. In this frame, it is relevant to

study the features resulting from planet–disc interactions that might

be observed.

In Section 2, we will shortly review the observations of proto-

planetary discs that seem to host cavities. After a brief description

of the algorithm used for our numerical simulations (Section 3), we

present the results in Section 4 in terms of cavity opening and mi-

gration. These numerical experiments are interpreted in Sections 5

and 6 with a semi-analytical model. We discuss in particular the

survivability of a cavity opened by a planet with regard to type II

migration, and we find that the corotation torque can prevent this

inward migration. In Section 8 we discuss the difference between

gas cavities and dust cavities. Finally, we conclude and discuss the

implications of this work in Section 9.

2 E V I D E N C E S F O R C AV I T I E S I N
P ROTO P L A N E TA RY D I S C S

Discs of gas and dust around young stars are heated by the star

and by internal viscous dissipation. Consequently, the dust becomes

an infrared (IR) source. In the spectral energy distribution (SED)

of the star, an IR excess reveals the presence of such a disc. The

near-IR (NIR) emission corresponds to the hottest part of the disc,

which is the closest to the central star, while the mid-IR emission

is due to colder dust, corresponding to the outer part of the disc.

Consequently, a lack of IR excess in the NIR part of the spectrum can

be interpreted as the presence of an inner cavity in the disc (Beckwith

1999). Such a cavity discovered by SED analysis is sometimes called

a spectral hole.

One of the most clear examples of spectral hole is given in fig. 2 of

Forrest et al. (2004) for the T-Tauri star CoKu Tau/4 observed with

the Spitzer telescope. The size of the spectral hole is such that there

seems to be no dust at temperature larger than 123 K. The authors

convincingly deduce from this SED that dust grains in the disc of

CoKu Tau/4 are excluded from the innermost 10 au; this makes a

remarkable dust cavity. The question whether this cavity could be

opened and maintained by a planet has been addressed in Quillen

et al. (2004). They suppose that a planet opened a gap in the disc at

10 au, and that the inner disc subsequently accreted on to the star.

Then the age of the system has to be bigger than the viscous time-

scale of accretion on to the star of the inner disc. This gives a lower

limit for the viscosity. Given the viscosity, a minimum planet mass

is required to open a gap. For the planet not to migrate immediately

after the depletion of the inner disc, the planet has to be more massive

than the outer disc, so that the angular momentum taken by the latter

from the planet is a negligible fraction of the angular momentum

of the planet. From these considerations, Quillen et al. performed a

simulation with a planet of mass 3 × 10−4M∗ on a circular orbit at

10 au in a disc with Reynolds number 105 and density �(r) = 10−6

(1.1rp/r)M∗ au−2 for r > 1.1rp and 100 times smaller for smaller

radii. The planet efficiently maintained the cavity for the duration of

the simulation (100 orbits). However, they did not make a simulation

of the process of cavity opening.

The T-Tauri stars TW Hya, DM Tau and GM Aur also present a

spectral hole. To interpret their SEDs, Calvet et al. (2002, 2005) used

the following model. They divided the disc into three components:

an optically thick outer disc, its inner edge (represented as a wall

directly exposed to stellar radiations) and an optically thin inner

region. Adjusting the free parameters (the wall radius and height,

the outer disc scaleheight, its mass and viscosity) they obtained a

satisfactory fit of the SED of these three objects. They concluded that

TW Hya and DM Tau present a 3–4 au wide cavity, while GM Aur

should have the truncation radius of the outer disc located at 24 au

from the star. Previous work on GM Aur (Bergin et al. 2004) based

on different data, concluded that the cavity is 6-au wide. Such a

cavity could be maintained by a 1.7 Jupiter mass planet on a fixed

circular orbit at 2.5 au (Rice et al. 2003).
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Dullemond, Dominik & Natta (2001) proposed a different model

for the SED of Herbig Ae stars that does not involve the presence

of a planet. In their model, the inner part of the disc is removed,

so that the inner rim is directly exposed to stellar radiations. It is

thus heated a lot, and gets puffed up. This has two consequences:

first, this rim is a strong IR source, leading to a peak at 2–3 μm in

the SED; second, the disc behind the puffed up inner rim is in the

shadow. Thus, this region remains cold and does nearly not radiate

in IR. If the disc is flared, however, the outermost part of the disc

can be lightened by the star, and then becomes an IR source. In that

case, the SED presents a gap between the peak at 2–3 μm due to

the hot rim and the emission of the outer disc at larger wavelength,

because it is colder. This is in good agreement with the SED of the

Herbig Ae star AB Aur, with a rim of height 0.1 at 0.52 au (which

corresponds to the dust sublimation radius).

More recently, interferometric observations at Plateau de Bure

Interferometer clearly showed a remarkable dust depletion in the

inner 50 au of the disc of LkCa15 (Piétu et al. 2006). The possibility

that a massive planet or a brown dwarf is responsible for this is work

in progress and will be addressed in a forthcoming paper.

Thus, cavities are relatively common features in protoplanetary

discs. It is not easy to constrain their characteristics, as sometimes

different dust distributions can give indiscernible SEDs, but the ev-

idence for cavities in protoplanetary discs is quite strong.

3 N U M E R I C A L S I M U L AT I O N S S E T- U P

Classical hydrocodes for the simulation of planet–disc interactions

represent the disc with a two-dimensional (2D) polar grid extend-

ing between an inner and an outer radius (R2D
in and R2D

out). The grid

covers the planetary region and, provided that the resolution is good

enough, satisfactorily describes the local planet–disc interactions.

The grid cannot reasonably cover the full disc, for the following

reasons. First, a prohibitive number of cells would be required to

extend the grid from the planet region (a few astronomical units

from the star) to the physical outer edge of the disc (often located at

several hundreds of astronomical units from the star). Second, and

more important, the simulation of the inner part of the disc requires

a shortage of the time-step and an increase of CPU time roughly

proportional to �−1
max ∝ (R2D

in )−3/2 in most codes, where � is the an-

gular velocity. Because the grid covers only a portion of the disc, the

global evolution of the disc cannot be realistically described. Yet,

it is the global evolution of the disc that governs type II migration.

Thus, the accuracy of the type II migration observed in simulations

can be questioned. Another point related to the global evolution of

the disc is the evolution of its innermost part and its accretion on

to the star, that is the opening of a cavity. Consequently, it seems

that classical hydrocodes are not adapted for the study of these two

problems on which we wish to focus. We developed an improvement

to the classical algorithm that we briefly present below.

3.1 Code description

The code used for this work is based on the hydrocode FARGO (Masset

2000a,b). To describe correctly the evolution of the disc outside the

2D grid, we add a one-dimensional (1D) grid extended all over the

physical disc, from its inner edge (the radius of the central star or

the X-wind truncation radius) to its outer edge. This non-azimuthally

resolved grid is coupled to the 2D grid at the boundaries of the latter

in a conservative way. Thanks to this coupling, the disc perturbations

due to the planet – computed locally in the 2D grid in FARGO –

influence the global evolution described in the 1D grid; this evolution

in turn affects the computation in the 2D grid as it provides realistic,

time-evolving boundary conditions for the latter. This numerical

scheme, described in Crida et al. (2007), enables us to simulate the

type II migration with an excellent reliability as well as the accretion

of the inner disc on to the star, for a negligible additional computing

cost with respect to a classical 2D hydrocode.

3.2 Units and parameters

The central star mass is set equal to M�, which is our mass unit.

As length unit, we adopt the astronomical unit (au), and we set for

simplicity the gravitational constant G = 1 (so that 1 yr lasts 2π time

units).

The initial density profile corresponds to a disc that evolved for

some time under the effect of its own viscosity and was provided by

Guillot & Hueso (2006). It can be approximated by

�(r ) ≈ 10−5 exp(−r 2/1320). (1)

This initial density corresponds to the minimal-mass solar nebula

(Hayashi 1981) at the location of Jupiter (5.2 au). The aspect ratio

H/r is constant in space and time; its default value is 0.05. These

parameters (density and aspect ratio) will be changed in some test

runs to study their influence on the results. The sound speed is

cs = H�, where H is the height of the disc. The equation of state is

isothermal (the pressure is P = ρc2
s , where ρ is the volume density,

so that it becomes P = �c2
s in our 2D formalism, after integration

on the disc’s scaleheight).

If not specified otherwise, in most of the runs the 2D grid extends

radially from R2D
in = 1.75 to R2D

out = 15 au and is divided in Nr = 165

elementary rings, themselves divided into Ns = 320 sectors. The

1D grid extends radially from 0.58333 to 100 au, over N1D
r = 1193

elementary rings.

4 R E S U LT S

We computed a few simulations with a Jupiter mass planet (q =
Mp/M∗ = 10−3) initially placed on a circular orbit at rp = 5 au in

a disc with different viscosities. The kinematic viscosity of the gas,

ν, is constant in space and time. Its values in the simulations are

such that the Reynolds number at the initial location of the planet

(R = rp
2�p/ν) goes from 103.8 to 106.

4.1 Density profile and cavity opening

Fig. 1 shows with bold lines the density profiles for four simulations

after half a viscous time (tν = r2
pν

−1), or only a quarter of viscous

time in the least viscous case. The depth of the gap opened by the

planet strongly depends on the Reynolds number. This is not surpris-

ing, as it is well known that viscosity plays against gap opening (see

for instance Crida et al. 2006, and references therein). The gap is

centred on the planetary orbit, which is not any more at 5 au because

the planet has migrated.

Concerning the opening of a cavity, we see that the density in the

inner disc is significantly smaller than in the outer disc. In particular,

the least viscous cases show an inner disc with very low density, so

that a sort of cavity is formed: in fact, the density is about five times

smaller for r < 2.5 than for r > 3. The profile clearly shows a wall at

r ≈ 2.5, beyond which the disc profile is about flat while the density

is negligible at the base of the wall.

The thin dotted lines show the density profile obtained in similar

simulations, at the same time, in the same conditions, but without

the planet. The density also decreases in the innermost region of the
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Figure 1. Bold lines: surface density profile at tν/2, for different Reynolds

number, labelled on the corresponding panel. ForR = 105.5, the time is tν/4.

Thin dashed lines: surface density profile at the same times for a similar disc

with no planet. The units of mass and length are those specified in Section 3.2:

solar mass and astronomical unit.

disc. So, it seems that the observed depletion of the inner disc is not

fully caused by the planet, as will be discussed in Section 5.

4.2 Migration rate

Fig. 2 shows the evolution of the semimajor axis of the planet with

time, in units of the viscous time tν . In proper type II migration,

the migration rate is proportional to the viscosity and thus, in this

time unit, it should be independent of R. This is indeed the case for

R � 105: the three curves are almost linear and overlap, at least

in the first part of the evolution. However, for higher viscosities,

a very different behaviour is observed. When R decreases below

105, the migration rate becomes slower than expected. As viscosity

increases, the planets migrates inward more and more slowly with

respect to the viscous time, and the migration is even stopped for

R = 104.15. We will refer to this case hereafter as the stationary
case. For larger viscosities, the migration is reversed and the planet

moves outward.

This result is particularly surprising and new. This outward mi-

gration is not an effect of the resolution of the grid; we have recom-
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R = 104 and two different resolutions. Bottom panel: quasi-stationary evo-

lution of a Jupiter mass planet for R = 104.15 and three different aspect

ratios.

puted the simulation with R = 104, using Nr = 330, Ns = 640:

the planet also migrates outward, at about the same speed (see top

panel in Fig. 3). With this high resolution, the size of a cell around

the planet is about a tenth of the Hill radius in radius and a seventh

of the Hill radius in azimuth, so that the Hill sphere of the planet is

covered by about 220 cells. This is largely sufficient; in particular

the corotation zone of the planet, which plays a crucial role as will

be shown further, is correctly simulated. We also investigated the

effect of the aspect ratio on the migration rate, from the stationary

case. It appears that this parameter only plays a marginal role (see

bottom panel in Fig. 3).

One may wonder if the stationary case observed forR = 104.15 for

a Jupiter mass planet is a feature valid for any planet mass. Fig. 4

shows that it is not the case. The more massive is the planet the

faster it migrates inward, approaching the classical type II regime.

For planets lighter than Jupiter, the migration is directed outward.

However, there is a stationary orbit further from the star to which

these low-mass planets tend, asymptotically; this will be shown in

Fig. 6.
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5 M O D E L L I N G T H E D E N S I T Y P RO F I L E

In this section we build a model to understand the shaping of the disc

density profiles observed in Fig. 1. Our approach is done in three

steps. First, we review the global viscous evolution of a disc that is

not perturbed by any planet; then, we discuss how a gap is opened

by a massive planet and finally we analyse in which situations the

resulting density profile may show a significant depletion (a ‘cavity’)

in the full inner part of the disc, up to the planetary orbit.

5.1 Global disc’s viscous evolution

The natural viscous evolution of a gaseous disc is described in LP74.

Using their partial differential equation (14), one can compute, with

a step-by-step integration, the evolution of any initial profile. If the

initial profile has a Gaussian shape (�(r) = �0 exp(−ar 2), where

a is an arbitrary constant), there is an explicit solution, given by

equations (18) and (18′) of LP74. The initial shape is conserved, the

surface density being

�(r ) = �0T −5/4 exp

(
−ar 2

T

)
,

where T = 12aνt + 1.

This solution is valid only for a disc extending between 0 and

infinity in radius. However, the inner radius of the disc, Rinf, is never

0; it is at least the radius of the central star, most likely the corotation

radius at a few tenth of astronomical units where the lines of the

magnetic field reconnect (the so-called X-point; Shu et al. 1997). It

could even be bigger, in the case of jet-emitting disc (JED): indeed,

at the base of the jet, which may be several astronomical units large

(Bacciotti et al. 2003; Coffey et al. 2004), accretion is dominated

by the torque exerted by the jet and is much larger than the standard

accretion; so, the outer radius of the jet could be considered as the

inner open boundary of the standard disc. The explicit solution of

the LP74 equations with a finite inner edge of the disc comes from

equation (25) of LP74. With our units (G = M∗ = 1), it gives

�LP74(r , t) = �0T −5/4

(√
r − √

Rinf√
r

)
exp

(
−ar 2

T

)
. (2)

Thus the density starts from 0 at r = Rinf and grows with r until

r 	 Rinf, where a classical Gaussian shape is reached. This kind

of profile is illustrated by the thin dashed lines in Fig. 1. Fig. 5

shows the agreement between the disc profiles obtained for various

viscosities in numerical simulations and the theoretical profile given

by equation (2) with �0 = 1.224 × 10−5 and a = 1/1320 at tν/2

(i.e. T = 1.114). All profiles overlap with each other. This shows

that, once the time is renormalized relative to the viscous time,

the evolution of the disc density distribution is independent of the

Reynolds number. Furthermore, it shows the excellent agreement

between equation (2) and the numerical solution achieved with our

simulation scheme. The little discrepancy visible in Fig. 5 comes

from the fact that the original profile in the simulations is not given

by equation (2) at T = 1 but by equation (1).

5.2 Gap opening in an evolving disc

Equation (14) of Crida et al. (2006) provides a way of comput-

ing semi-analytically the density profile of a gap for any disc and

planet parameters. This equation comes from the equilibrium be-

tween the torques due to the gravity of the planet, the viscosity and

the pressure in the disc. It applies outside the corotation zone of the

planet, which approximately extends on each side of the orbit over a
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Figure 5. Surface density profile of an unperturbed disc at t = tν/2. Plain

lines: profiles from simulations with R = 104, 104.5 and 105. Dashed line:

profile from equation (2).

width x+
s ≈ x−

s ≈ 2RH, where RH is the Hill radius of the planet. The

equation reads

RH

�

d�

dr
= 0.35q2Rrp

3r�−4sgn(�) − (3/4)(�/�p)

(H/r )2(r/rp)Ra′′ + (3/2)(r/RH)(�/�p)
, (3)

where a′ ′ = (1/8)|�/RH|−1.2 + 200 |�/RH|−10 and � = r − rp.

Notice that a boundary condition is needed to solve this differ-

ential equation with a step-by-step procedure. The solution of this

equation corresponds to the gap profile �(r) in an ideal disc in

steady state, under the influence of a non-migrating planet. Without

the presence of the planet, the unperturbed profile of such a disc

would be proportional to r−1/2 because ν is assumed to be constant

over r. Thus, to compute the profile in the inner part of the disc,

we start from � = �0/
√

Rinf at r = Rinf and we compute the den-

sity step-by-step until r− = rp − x−
s . For the outer disc, we start

with � = �0/
√

Rsup at r = Rsup and follow equation (3) down to

r+ = rp + x+
s . Unfortunately, �(r−)/

√
r− is not necessarily equal

to �(r+)/
√

r+. Thus, we choose the lowest of these two values, say

the one at r−, and adjust the outer edge of the gap at r+ + δ, with δ

such that �(r+ + δ)/
√

r+ + δ = �(r−)/
√

r−. As shown in Crida

et al. (2006), this procedure gives a satisfactory approximation of

the gap depth.

The use of equation (3) as explained above provides the gap profile

in a disc whose unperturbed profile is �(r) = �0r−1/2. Thus, mul-

tiplying this gap profile by
√

r/�0 gives the gap profile in terms of

fraction of the unperturbed profile. Let us denote σ (r) this fractional
profile. We think that it is reasonable to assume that the fractional

profile is independent of the unperturbed profile. This is supported

by Fig. 1, which shows that the planet opens a gap in the natural

profile of the disc, without essentially changing it. Consequently, as

a simple model of the gap profile in an evolving disc, we suggest

that the unperturbed profile given by equation (2) can be multiplied

by the fractional profile, obtaining

�(r ) = σ (r )�LP74(r , t). (4)

Fig. 6 displays this model in the R = 104.15 case. The secondary

panel shows the fraction profile σ (r). In the main plot, the dashed

line shows the unperturbed profile �LP74(r, t) at t = tν/2. The gap

profiles from the numerical simulation at the same time (thin line)

and from equation (4) (bold line) are compared. The agreement is

quite satisfactory, in particular if one keeps in mind that we only have
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Figure 6. Gap profile in an evolving disc with R = 104.15: the thin line

results from numerical simulation while the bold line comes from our

simple model. Dashed line: the unperturbed profile �LP74(r, tν/2) from

equation (2). Secondary panel: ‘fraction profile’σ (r) of the gap deduced from

equation (3).

a semi-analytic estimate of the gap profile. Indeed, as discussed in

Crida et al. (2006), equation (3) provides gap profiles that are a bit

too narrow and shallow for R � 105 (while it provides slightly too

wide and deep gaps for R > 105.5). This is observed here as well.

However, the gap edges in the model correspond quite well to the

ones from the simulation in terms of position and slope. In addition,

the profiles in the inner and outer disc nearly match those observed

in the simulation.

We present here only this case, corresponding to a non-migrating

planet. In the cases of a migrating planet, the situation is similar.

This shows that this simple idea of multiplying the unperturbed

profile by a schematic gap profile is valid in first approximation. As

a matter of fact, a slight depletion of the inner disc with respect to

the unperturbed profile is visible for cases with inward migrating

planets. We will explain this in Section 7, after having developed a

model that reproduces the migration rates.

5.3 Cavity opening

As we have seen above the disc density profile can be described

effectively as the product of the fractional gap profile with the profile

described by equation (2). This equation gives profiles which are

proportional to (1 − (r/Rinf)
−1/2)exp(−ar 2/T). The first term is

about 1 for r > 30 Rinf, so that the profile at large radius is about

Gaussian. However, for r/Rinf < 5, the first term shapes the profile

growing from 0 at r = Rinf, with a slope proportional to (r/Rinf)
−3/2.

Thus, it seems that Rinf is a key parameter for the profile of the

innermost part of an evolving disc (see also Lubow & D’Angelo

2006).

Fig. 7 shows the density profiles at t = tν/10 for discs with

R = 105 and four different values of Rinf, as they result from nu-

merical simulations. The plain line corresponds to Rinf = 0.65 au as

before (nominal case). The dotted line corresponds to a four times

smaller value of Rinf. All other parameters are the same in the two

simulations. In both cases, the Jupiter mass planet has opened a

gap in the disc and migrated down to rp ≈ 3.85. The outer disc

profiles almost overlap. The inner disc profiles, however, present

a huge difference: the maximum density is nearly twice bigger in

the small Rinf case than in the nominal Rinf case. In the nominal
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Figure 7. Density profiles obtained in numerical simulations at t = tν/10

for discs with R = 105 and different values of Rinf.

case, the inner disc is being depleted and a cavity is appearing.

In the small Rinf case, there is only a gap. The tendency to the

opening of deeper cavities with larger Rinf is confirmed in the last

two simulations (short dashed and long dashed curves, respectively,

in Fig. 7).

In conclusion, depending on the width and shape of the gap and

on the position of the planet rp with respect to the inner edge of the

disc Rinf, the density profile may show a cavity or not. Indeed, if

the inner edge of the gap falls in the flat profile zone (r � 10 Rinf),

a classical gap is shaped (case R = 104 in Fig. 1 and case Rinf =
0.16 in Fig. 7). If it falls between 0 and ∼4 Rinf, the density in the

inner disc cannot grow enough before that the inner edge of the gap

is reached and the planet seems to open a cavity (case R = 105.5

in Fig. 1). Thus, the main parameter to determine whether a planet

opens a cavity or not is the ratio between rp and Rinf. This should

be taken into account in the interpretation of numerical simulations.

To perform realistic simulations, it is necessary to have a realistic

value of Rinf. Thus, our code with coupled 2D and 1D grids (Crida

et al. 2007) seems to be a tool of choice as it can handle arbitrarily

small Rinf.

Our result differs from the one by Varnière et al. (2006). They

claimed that the depletion of the inner disc was faster than viscous

because of the negative torque exerted by the planet. However, a

planet in equilibrium in the middle of the gap simply transfers to

the inner disc the torque that it feels from the outer disc; otherwise,

the planet would move with respect to the gap. More precisely, in

type II migration, the planet generally feels a total negative torque,

and migrates inward, together with the disc and the gap; thus, the

negative torque that the planet exerts on the inner disc is a bit smaller
in magnitude than the one it feels from the outer disc. The differ-

ence corresponds to the loss of angular momentum of the planet.

In the absence of the planet, there would be gas in the gap; this

gas would also feel a negative torque from the outer disc, exert a

smaller negative torque on the inner disc and migrate inward losing

angular momentum. If the planet has the same mass as the gas that

was initially in the gap, it has exactly the same effect on the disc.

Consequently, we believe that the presence of the planet does not

modify substantially the evolution of the inner disc – except maybe

if the planet is much more massive than the disc, which was indeed

the case in Varnière et al. (2006) analysis. This is confirmed in our

simulations (see Section 7).
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6 M O D E L L I N G T H E M I G R AT I O N R AT E

It seems quite logical that, when the planet opens a clean gap, its

migration follows a proper type II regime. With a Jupiter mass planet

and a disc aspect ratio of 0.05, this happens for R > 105 (see Figs 1

and 2).

However, for smaller Reynolds numbers, the gap is not com-

pletely gasproof. The gas in the gap has two major consequences:

(i) it partially sustains the outer disc, effectively reducing the torque

felt by the planet from the outer disc; (ii) it exerts a corotation torque

on to the planet. The possibility of gas flowing through the gap de-

couples the planet from the gas evolution.

In this section we show with a simple model that taking into

account these effects allows us to explain the evolution of the planet

as a function of the various parameters. Our model is based on

previous works on the corotation torque (Masset 2001), the viscous

evolution of accretion discs (LP74) and the shape of gaps (Crida

et al. 2006).

6.1 Classical type II torque

In an accretion disc, the viscous stress is such that angular momen-

tum flows outward while matter falls on to the star. In a Keplerian,

circular disc with ν and � independent of the radius, the torque

exerted by the part of the disc extending from a given radius r0 to

infinity on the inner part {r < r0} is Tν = −3π�νr0
2�0 (it can

be easily found from the strain tensor). It causes a mass flow of

gas F, carrying the equivalent angular momentum: Tν = Fr0
2�0 =

(2πr0�vr) r0
2�0, where vr is the radial velocity of the gas. In this

model vr = −(3/2)(ν/r0), which can also be found from the Navier–

Stokes equations. This gives the following equality, which we will

use further:

ν = −2vr

3
r0. (5)

If a planet opens a deep gap in such a disc, no gas flow is allowed

through the planetary orbit. The outer disc is maintained outside

of the gap by the planet, and an equilibrium is reached so that the

planetary torque balances Tν . Consequently, the planet feels from

the outer disc the torque Tν . This torque is proportional to the vis-

cosity and not to the planet mass. This is the case of standard type

II migration.

In a more realistic, viscously evolving disc, the scheme for type

II migration is the same, but the above formula for Tν is no longer

valid. In that case, the equations of LP74 provide the density, the

viscous torque and the radial velocity as a function of radius and

time. In our case of a disc with Rinf > 0, it gives

Tν = 3πν�0T −5/4 (h − hinf) exp

(
−ar 2

T

)
, (6)

�LP74 = Tν

3πν
√

r
, (7)

F = −∂Tν

∂h
, (8)

vr = F

2πr�LP74

, (9)

where h = r 2� = √
r is the specific angular momentum. Notice

that equation (6) is exactly equation (25) in LP74, while equation (7)

is equivalent to equation (2).

Thus, in standard type II migration, we consider that the planet

feels from the disc a torque

TII = Fh = 2πr+�LP74(r+)vr(r
+)

√
r+, (10)

where r+ = rp + xs is the radius of the external edge of the gap, and

�LP74 and vr come from equations (7) and (9), respectively.

6.2 Torque exerted on the outer disc by the gas in the gap

The gas in the gap, the density of which is denoted �gap, exerts on the

outer disc a positive viscous torque T(i) that is given by equation (10),

with �gap instead of �LP74 and the opposite sign. This torque par-

tially sustains the outer disc, and therefore needs to be subtracted

from the torque that the planet would suffer from the outer disc if

the gap were clean (given by equation 10). So, denoting by f the

ratio �gap/�LP74 we have

T(i) = − f TII. (11)

We now discuss how to evaluate f in practice. We have presented

in Section 5 a way to compute semi-analytically the gap profile and

the gap depth. However, making a step-by-step integration until the

bottom of the gap it is not very convenient. Consequently, we looked

for a simple empirical formula for the gap depth as a function of

the viscosity, the aspect ratio of the disc and the planet mass. Crida

et al. (2006) showed that the density inside the gap is less than

10 per cent of the unperturbed value (i.e. f < 0.1) if and only if

P = 3

4

H

RH

+ 50

qR � 1. (12)

Using equation (3), we have computed the depth of the gap for

various values of the parameter P . For each value of P , we impose

q = 10−3 and H/r = 0.05, and find the corresponding viscosity.

Then, we use these parameters in equation (3); the obtained gap

depth is shown as big dots in Fig. 8. We repeat the same operation

for q ranging from 5 × 10−4 to 2 × 10−3; the results are reported

as crosses in Fig. 8. Furthermore, we impose q = 10−3 and ν =
0, and find the corresponding H/r and the resulting gap depth. We

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10

ra
tio

 o
f 

th
e

 g
a

p
 s

u
rf

a
ce

 d
e

n
si

ty
 t

o
 t

h
e

 u
n

p
e

rt
u

rb
e

d
 s

u
rf

a
ce

 d
e

n
si

ty

P

f(P)
q = 0.001
H/r = 0.05

H/r = 0.05 ; q = 0.001

Figure 8. Gap depth (measured as ratio of the gap surface density to the

unperturbed density at r = rp + 2RH) as a function of P . The data points for

each value of P are obtained from the integration of equation (3), assuming

different values of ν and H/r and keeping q = 10−3 (points) or different

values of ν and q and keeping H/r = 0.05 (crosses); the big dots correspond

to the gap depths obtained for different values of ν and keeping both H/r
= 0.05 and q = 10−3 (see text for a more precise description of the sets of

measures). The bold line is an approximate fit of the data.
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Cavity opening and planetary migration 1331

repeat the operation for ν ranging up to its maximum possible value

compatible with P; the results are shown as dots in Fig. 8. Finally,

for a given value of P , different depths are observed because the

shape of the gap is not the same whether the viscosity or the pressure

dominates. However, there is a very clear tendency for deeper gaps

with decreasing P , as could be expected. The bold line in Fig. 8

shows the fit that we adopt:

f (P) =
{

(P − 0.541)/4 if P < 2.4646,

1 − exp[−(P0.75/3)] if P � 2.4646,
(13)

where f (P) stands for �gap/�LP74.

As the gap depth given by equation (3) is not very precise and

shows variations at fixed P , this fit is clearly a crude approximation

of the real depth. However, the evolution of the gap depth as a

function of the parameters is satisfactorily described by f (P), in

particular if one imposes q = 10−3 and H/r = 0.05, which is the

most common case for us. As we are looking for a simple model,

this approximation is sufficient for our purpose.

6.3 Corotation torque

In Masset (2001), the corotation torque is computed as

TC = 3

2
�p

2xs
4�∞F (zs),

where �∞ is the unperturbed surface density (assumed to be in-

dependent of radius), zs = (R/2π)1/3xs/rp, the function F (z) =
z−3 − z−4g(z)/g′(z) and g is a linear combination of the Airy func-

tions Ai and Bi defined in equation (A18) of Masset (2001). This

formula can easily be generalized for an arbitrary profile of � (see

Ward 1991), and be rewritten as

TC = 3

4
�p

2xs
4�

d log(�/B)

d log r
F̂

(
1

(xs/rp)3R

)
,

where B is the second Oort constant (B =�/4 in Keplerian rotation),

and F̂ (z) = 4F [(z/2π)(1/3)].

The function F̂ (z) is shown in graphical form in fig. 2 of Masset

(2001). For z < 0.1 (which is our case if we consider xs = 2RH, q =
10−3 and R > 103.6) one has F̂ (z) ≈ 20z. Thus, we may write

TC = 3

4
20xs�prp�ν

d log(�/B)

d log r
.

In Masset (2001), the approximation that ν and � are independent

on r is made. Thus, we can use equation (5) and write equivalently

TC = −10 xs�prp
2�vr

d log(�/B)

d log r
. (14)

Here, � is the density inside the gap, which is equal to

�LP74(r+) f (P), and vr is the radial velocity at r = rp, which is

given in equation (9). The term (d log (�/B))/(d log r) is computed

from the unperturbed density �LP74(r), assuming a Keplerian rota-

tion of the disc.

6.4 Total torque exerted on the planet

The total torque felt by the planet is, therefore, Tp = T II − T (i) +
TC. From equations (10), (11) and (14), the total torque reads

Tp = 2πr+�LP74(r+)vr(r
+)

√
r+

×
[

1 − f (P) − 15

2π

xs

r+
�prp

2

√
r+

vr(rp)

vr(r+)
f (P)

d log(�/B)

d log r

]
,

(15)

with P and f defined, respectively, in equations (12) and (13), while

r+ = rp + xs, xs = 2RH and �LP74 and vr come from equations

(6)–(9). This expression involves (directly or via vr or �LP74) the

viscosity of the disc ν, its aspect ratio H/r, the planet to primary

mass ratio q, the radius of the planetary orbit rp and the radius of

the inner edge of the disc Rinf. In the following, we test it against

numerical simulations for a wide range of these parameters.

6.4.1 Dependence on the Reynolds number

In the top panel of Fig. 9 we plot the total torque felt by a Jupiter mass

planet located at rp = 5 au in a disc with 0.05 aspect ratio and Rinf =
0.65 au as a function of R. The torque given by equation (15) with

t = tν/100 is plotted as a bold line. The crosses with the error bars

represent the torque felt by the planet in the numerical simulation,

measured at t = tν/100 (so that the planet is still at about rp =
5 au). The error bars correspond to the maximum and minimum

migration rates measured between tν/200 and tν/50. The torque TII,

corresponding to classical type II migration, is drawn as a thin line;

it is proportional to ν ∝ R−1. The bottom panel shows, as reference,

the gap depth f (P) as a function of R.

As one can see in Fig. 9, the model reproduces very well the

general tendency. For R > 105, f (P) < 0.125 and Tp is close to

TII, negative and proportional to the viscosity, as expected in proper

type II migration; in other words, TII dominates T(i) and TC in the

calculation of Tp. For lower Reynolds numbers, the effects of the gas

in the gap counterbalance the classical TII. For R < 104, f (P) >

0.7 and the total torque is positive. Both the measures from the

simulations and the results of equation (15) show a minimum of

the torque felt by the planet at about R = 104.5. This shows that

type II migration speed is bounded. One could think that an increase

in the gas viscosity, and therefore of the gas accretion rate, would
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in Section 3.2, as a function of the Reynolds number. Bottom panel: the gap

depth f (P) as a function of the same parameter.
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Figure 10. Torque felt by a planet as a function of its mass.

increase the type II migration speed of a giant planet. In reality, this

favours the filling of the gap, which decouples the planet from the

disc evolution.

Notice however that for very low Reynolds number (high viscos-

ity) our model reaches its validity limits. In fact, our model predicts

a very fast outward migration, which is not observed in the simula-

tions. In these cases, f (P) is more than 0.8 (essentially no gap), so

that the basic idea on which our model is built is no longer valid.

Eventually, for large enough viscosity, the planet has to migrate

inward, at a type I migration rate.

6.4.2 Dependence on the planet mass

In Fig. 10, the torque exerted on a planet placed at rp = 5 in a

disc with R = 104.15, H/r = 0.05 and Rinf = 0.65 is plotted as

a function of the planet mass. The bold line corresponds to our

model, and the crosses correspond to numerical experiments (with

the error bars computed with the same prescription as before). Once

again, we recover the observed trend. The discrepancy at very low

mass comes in fact from the estimation of the gap depth f(P); for

q < 5 × 10−4, the density in the ‘gap’ is larger than 0.8, so that the

gap is shallow and f is not very accurate. Using directly equation (3)

instead of prescription equation (13) for the gap depth gives a better

result, shown as a thin line; this validates again our model.

The torque felt by the planet is a decreasing function of its mass.

The explanation for this behaviour is quite easy: the lighter is the

planet the shallower is the gap, and the more important are the effects

of the gas in the gap on the total torque. Symmetrically, the more

massive is the planet the deeper is the gap it opens, and thus the

closer to type II migration is its migration regime.

This result is relevant for extrasolar planets as it can explain why,

of the many couples of resonant planets, typically the most massive

object is the outermost one. Indeed, resonant capture is possible

only if the outer planet migrates inward faster than the inner planet

which, according to Fig. 10, requires that the outer planet is the most

massive.

6.4.3 Dependence on planet accretion

The planet mass is not necessarily constant. Planets are supposed

to accrete gas continuously. Gas accretion by the planet perturbs

the gas flow through the planetary orbit; in addition, mass accretion
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R = 103.8 and H/r = 0.05. Bottom panel: corresponding evolution of their

masses.

exerts an additional torque on the planet (Lubow & D’Angelo 2006).

Therefore, in principle, accretion could change the dynamics. We

have implemented planetary accretion following the recipe of Kley

(1999): it consists in removing a fraction of the material in the Hill

sphere of the planet and adding it to the mass of the planet. The

accretion rate, expressed as a fraction of mass removed per time

unit is imposed as an input parameter. More precisely, we apply the

input removal rate faccr in the inner part of the Hill sphere (extended

up to 0.45 RH), and two thirds of faccr in the region from 0.45RH to

0.75RH.

Considering R = 103.8 and H/r = 0.05, we performed simula-

tions of a Jupiter mass planet initially on a circular orbit at 5 au, with

input removal rates f accr = 0.5�p and f accr = 0.1�p. The results in

terms of migration and accretion are shown in Fig. 11 and compared

with the no accretion case. Another simulation with input removal

rate 0.5�p and initial mass of the planet 5 × 10−4 is also performed.

The results show that accretion does not prevent outwards migration.

The comparison between the top panel (migration) and the bottom

panel (mass evolution) shows that the migration speed seems to be

governed by the planet mass, and not by the accretion rate. While

the accretion rate is constant with time in all cases, the migration

rate is not, and its evolution follows the evolution of the planet mass.

As expected from the discussion above, the outwards migration rate

is slower for more massive planets; if the planet reaches 3 Jupiter

masses, its migration vanishes; the migration is directed inwards for

more massive planets.

6.4.4 Dependence on the radii of the planetary orbit and of the
disc inner edge

One may wonder about the dependence of the migration rate on the

planet’s location in the disc. This is governed by the radial depen-

dence of viscosity and aspect ratio.
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If the viscosity is constant, the Reynolds number R increases

as
√

r . Thus, the depth of the gap opened by the planet increases
with the planet’s location rp. As a consequence a planet should

migrate inward if it is sufficiently far from the star, and outward

if it is sufficiently close. The migration paths therefore converge

towards the stationary solution, at some specific radius, dependent

on viscosity and planet mass.

However, if the viscosity of the disc depends on radius as de-

scribed in an α model (Shakura & Sunyaev 1973), the Reynolds

number is independent of radius. If the disc is flared, H/r increases

with r and therefore the depth of a gap opened by the planet de-
creases with rp. Consequently, the planet tends to move outward if

it is far from the star and inward if it is close. Any stationary solution

would therefore be unstable.

If the disc is not flared and the Reynolds number does not depend

on r, then the behaviour of the planet depends on the ratio rp/Rinf.

This effect is subtle. If the ratio rp/Rinf is smaller, the planet is in a

location of the disc where � and vr have a steeper positive slope,

and vr is also larger in absolute value, following equation (9). In our

model, the gas radial velocity multiplies all the torques that appear in

equation (15). Therefore, the only dependence on rp/Rinf is through

the gradient of the gas radial velocity vr(rp)/vr(r+) and the gradient

of the logarithm of the density that appear in equation (15) for the

corotation torque. Fig. 12 shows as a bold line the torque felt by a

Jupiter mass planet for R = 104.15 at t = tν/100, as expected in

our model. The gradient effect becomes important when Rinf/rp �
1/2. The crosses with the error bars correspond to measures from

numerical simulations. Once again, our model reproduces very well

the observed trend.

This result might be relevant to explain the existence of hot or

warm Jupiters. Although several solutions have been proposed, the

issue of why these planets did not migrate all the way into their par-

ent stars remains open. Fig. 12 shows that, for the parameters used

in that calculation, a planet approaching the inner edge of the disc

has eventually to stop at the location where the migration rate turns

from negative to positive. Therefore, the survival of some hot/warm

Jupiters against migration seems to be a natural consequence of the

local surface density gradient at the inner edge of the disc, predicted

by LP74. Notice however that some hot Jupiters are so close to

the central star that they are presumably well within the corotation

radius. As the disc inner edge should not have been closer than
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Figure 12. Torque felt by a Jupiter mass planet at rp = 5 with R =
104.15, H/r = 0.05, at t = tν/100, as a function of the radius of the in-

ner edge of the disc Rinf.

the corotation radius, these planets somehow managed to migrate

past the inner edge of the disc. In the framework of our model this

may be possible for massive planets in low-viscosity discs, open-

ing deep and clean gaps. In these cases, the planets presumably

stopped migrating when their outer 1:2 mean motion resonances

reached the inner disc edge, as proposed in Kuchner & Lecar (2002).

In conclusion, the dynamical diversity of the exoplanets could

be a consequence of the physical diversity of the protoplanetary

discs.

7 E F F E C T O F P L A N E T M I G R AT I O N O N T H E
I N N E R D I S C D E P L E T I O N

In Fig. 6 we have shown that in the case of a non-migrating planet,

the density profile in the inner part of the disc coincides with the

unperturbed profile given by LP74 equations. This showed that the

overall mass flow through the disc was unperturbed by the presence

of the planet.

Fig. 13 is the same as Fig. 6 but for a case where the planet moves

inward at slow rate. In this case there appears to be a deficit in the

inner part of the disc, while the outer part shows a little overdensity,

relative to the unperturbed case and to the prediction of our simple

model. This reveals that only a fraction of the unperturbed mass

flow effectively passes from the outer to the inner disc.

Based on the model developed above, we can illustrate this fact

and develop an a priori estimate of the inner disc mass deficit.

Because of the migration of the planet, the surface of the inner

disc shrinks at a speed

Ȧp = 2πrpṙp.

In the unperturbed case, if we draw a fictitious boundary between

the inner and the outer disc moving at the radial velocity of the gas,

the surface of the inner disc shrinks at a speed

Ȧunp = 2πrpvr.

Thus, for the inner mass of the disc to remain the same as in the

unperturbed case, the mass flow into the inner disc through a planet’s

gap must be equal to

Ṁ0 = −( Ȧunp − Ȧp)� = 2πrp(ṙp − vr)�,
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Figure 13. Gap profile in an evolving disc with R = 104.5: the thin, short-

dashed line results from numerical simulation while the bold, plain line

comes from our simple model. Long-dashed line: the unperturbed profile

�LP74(r, tν/2) from equation (2). Secondary panel: ‘fraction profile’ σ (r)

of the gap integrated from equation (14) of Crida et al. (2006).
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where � is the unperturbed gas density, to be identified with �LP74

above. The mass flow into the inner disc through the planet’s gap

corresponds to the angular momentum loss of the outer disc. It can

be expressed as

Ṁ ′ = − J̇o/ j, (16)

where Jo is the total angular momentum of the outer disc and j is

the specific angular momentum. Obviously, J̇o = J̇o,unp − J̇p, where

J̇o,unp is the change of angular momentum of the outer disc in the

unperturbed case and J̇p is the change of angular momentum of the

planet.

Thus, the mass flow deficit into the inner disc is

δṀ = Ṁ0 − Ṁ ′ = 2πrp(ṙp − vr)� + ( ˙Jo,unp − J̇p)/ j . (17)

Now, remembering that J̇p = ṙp Mp/2
√

rp and that J̇o,unp =
2πrpvr� j , the expression above becomes

δṀ = J̇p

j

(
4
μ

q
− 1

)
, (18)

where μ = πr2
p�/M∗ and q = Mp/M∗ are the reduced masses of

the inner disc and the planet.

Some remarks on equation (18) are in order. If the planet does

not migrate, J̇p = 0 and thus there is no mass flow deficit into the

inner disc, in agreement with Fig. 6. If q = 4μ there is also no

mass deficit in the inner disc. This case corresponds to ṙp = vr,

that is to a planet that migrates inward at the same speed of the

unperturbed gas. We recall that this is the maximal migration speed

of a planet in type II migration. So, if q < 4μ, equation (18) does not

apply.

Finally, to compute the mass of the inner part of the disc (and

therefore the cavity depth) one can follow the approach illustrated

in Section 5 and multiply the result by

1 − δṀ/Ṁ0 = 1 − q/4μ − 1

(q/4μ)( ˙Jo,unp/ J̇p) − 1
. (19)

From equation (19), it also appears that if the planet mass is large

with respect to the disc mass, then the mass flow deficit δṀ/Ṁ0

tends to J̇p/ J̇o,unp. If this planet opens a clean gap, J̇p ≈ J̇o,unp

and ṙp/vr � 1, so that δṀ ≈ Ṁ0. In summary, the two conditions

q/μ	1 and formation of a clean gap are required to deplete strongly

the inner disc and form a deep cavity.

To confirm this result, we performed a simulation with the same

Jupiter mass planet initially placed on a circular orbit at rp = 5 au,

and the same initial disc profile as before, except that the gas density

is divided by 100. The Reynolds number is taken equal to 105 and

the aspect ratio is decreased to 0.03 for the planet to open a cleaner

gap than before. Fig. 14 displays the resulting disc profile at t = tν/2

(thin solid curve): one can see that the planet did almost not migrate,

but the inner disc has been significantly depleted with respect to

the unperturbed profile (thin dotted curve) and to the profile given

by equation (4) (bold solid curve). As we have seen above, for

‘reasonable’ values of disc height and viscosity a Jupiter mass planet

does not open a very clean gap. So, in practice, an effective cavity

opening planet would need to have 3–5 Jupiter masses, embedded

in a sub-Jovian mass disc.

The migration rate of the planet at t = tν/2 in the simulation is

J̇p = 2.88×10−11. The unperturbed density is 8.48 × 10−8 M� au−2

so that q/4μ = 36.84, and the unperturbed radial velocity of the gas

is −1.03 × 10−5. Following equation (19), this gives a relative mass

deficit in the inner disc:

δṀ/Ṁ0 = 0.45.
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Figure 14. Gap profile in a small mass evolving disc with R = 105 and

H/r = 0.03: the thin solid curve results from a numerical simulation while the

bold line comes from our simple model. Thin dashed curve: the unperturbed

profile �LP74(r, tν/2) from equation (2). Bold dotted curve: the inner disc

profile in our model, multiplied by the estimated relative mass deficit.

Our model density profile, multiplied by 0.55 gives for the inner disc

the bold dotted curve in Fig. 14. This agreement is quite satisfactory,

although – admittedly – a better agreement with the real inner disc

profile would be given by a coefficient of about 0.75.

8 G A S C AV I T I E S V E R S U S D U S T C AV I T I E S

Up to this point, we have discussed only the gas distribution of the

disc. However, the observations reviewed in Section 2 constrain the

absence of dust in the inner part of the disc, rather than the absence

of gas.

The dust distribution and the gas distribution are not necessarily

the same. As recently pointed out by Rice et al. (2006) (see also

Paardekooper & Mellema 2006), the opening of a gap in the gas

disc can act as a filter on the dust. Only the very small dust can

flow with the gas through the gap and refill the inner part of the

disc. Larger dust particles are repelled by the positive gas pressure

gradient at the outer edge of the gap, and consequently they cannot

pass through the planet’s orbit.

Our model provides all the ingredients to compute what is the

maximal size of dust particles that can flow with the gas through the

gap as a function of the various parameters of the problem (planet

mass, P etc.), as outlined below.

The gas orbital velocity vg differs from the Keplerian velocity vK

due to pressure effects as

v 2
g

r
= v 2

K

r
+ 1

�

dP

dr
,

where P is the pressure and � is the surface density. Using our

equation of state (see Section 3.2) and assuming that sound speed cs

does not change significantly along the gap’s edge, the last term of

the above equation can be rewritten as (1/�) d�/dr. Its maximum

value can be obtained from equation (3) at r = rp + 2RH.

Once vg is computed, the outward drift speed v(d)
r of a dust

particle of a given size and density can be computed following

Weidenschilling (1977). The quantity v(d)
r is actually a speed rel-

ative to the gas radial motion. Thus, if the inward radial velocity

of the gas v(g)
r is larger in absolute value than v(d)

r , the dust flows

inwards, passing through the planet’s gap. In the opposite case the

dust is repelled by the pressure gradient and accumulates at the edge
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of the gap. The radial velocity of the gas at the base of the gap, where

the pressure effect on the dust is maximal, can be computed as

v(g)
r = Ṁ ′

2πrp� f (P)
, (20)

where Ṁ ′ is given in equation (16). Assuming that the mass flux

from the outer to the inner disc is not strongly perturbed by the

presence of the planet (i.e. Ṁ ′ ∼ Ṁ0, which is strictly true in the

case of a non-migrating planet) one has

v(g)
r = vr

f (P)
, (21)

where vr is given in equation (9). Finally, because v(d)
r depends on

the dust particle size, the equation |v(d)
r | = |v(g)

r | gives the maximal

size of the particles that flow in the inner disc with the gas.

However, we think that it is not evident that a real dust cavity is

opened inside the orbit of the planet, even for dust sizes that cannot

pass through the gap. The dust in the inner disc should accumulate

at the place of the relative maximum of the gas density distribution,

rather than follow the gas in its accretional motion on to the star.

In fact, the positive density gradient at the inner edge of the disc is

comparable to that at the outer edge of the gap opened by the planet

(see Figs 1 and 7). So, if the dust is repelled by the gap edge, it should

also be repelled by the inner disc edge. In this situation a ring of

dust should form in the inner disc, its width depending on the local

velocity dispersion due to the turbulence. Hence, the planet appears

opening a wide and deep gap in the dust distribution (Paardekooper

& Mellema 2006), rather than a cavity. This, however, may still be

consistent with the observations: if these rings of large dust grains

are very narrow (as they may well be) the particles may not con-

tribute significantly to the observed SED; so, the SED observations

would still suggest an inner cavity with small grains (producing a

10-μm feature) and a population extending to larger sizes in the

outer disc.

Possibilities to get rid of the larger dust grains in the inner disc

could be (i) the collisional comminution into smaller particles that

are coupled to the gas and therefore – as the gas – accrete on to the

star, (ii) formation of larger particles or planetesimals favoured by

the high dust density in the ring and (iii) sublimation of the dust if the

ring is located sufficiently close to the star. Obviously the situation

is complicated. The study of the dust distribution requires the use of

an adapted bifluid code, including irradiation effects. This should

be the object of future work.

9 C O N C L U S I O N

In this paper, we have performed numerical simulations of giant

planets embedded in a gas disc of equivalent mass. The disc in the

simulations is viscously evolving, reproducing (in absence of plan-

etary perturbation) the evolution described in LP74. This is made

possible by the use of a new numerical scheme that complements

the usual 2D grid with a 1D grid spanning over the assumed physical

extension of the disc (Crida et al. 2007), so that the global evolution

of the disc is taken into account. This is a key point for the accurate

simulation of both the cavity opening process and the planet mi-

gration. Indeed, the first phenomenon depends on the accretion of

the inner disc on to the central star; thus the simulation of the disc

evolution down to its physical inner edge is necessary for reliable

results. As for the planetary migration, proper type II migration cor-

responds to the case where the planet follows the disc evolution; the

global evolution of the disc is thus the key phenomenon that needs

to be reproduced.

If the disc mass is not negligible with respect to the planet mass,

we found that the planet does not modify substantially the disc

profile with respect to the free viscous evolution; it simply opens a

more or less deep gap in the unperturbed profile. Consequently, the

opening of a cavity mainly depends on the position of the planetary

orbit with respect to the inner edge of the disc Rinf. Indeed, at this

inner edge, the density is 0. It grows with r until the inner edge of

the gap. Thus, if the gap is close to the inner edge of the disc, the

density in the inner disc does not reach the maximum value and a

cavity appears. As a result, it is much easier to open cavities in discs

with large Rinf than in discs with small Rinf. The size of this inner

radius may vary in astrophysical discs, depending on the process

that governs the fall of the gas on to the central star. We stress that

one should be aware of the primordial influence of this parameter

on the inner disc evolution when computing numerical simulations.

In the intermediate regime between type I and type II migration –

where the planet opens a non-gasproof gap – the migration may be

stopped or reversed. In fact, if the gap is not clean, the gas in the gap

exerts a positive viscous torque on the outer disc, so that the outer

disc does not push the planet inward as efficiently as when the gap is

clear. In addition, the corotation torque is positive and proportional

to the density in the corotating zone. Thus, the total torque felt by the

planet may be zero, or even positive, if the Reynolds number is low

enough (Fig. 9). We built a model based on simple, qualitative ideas

that leads to a simple expression of the total torque felt by a planet in

an evolving disc (equation 15). This enabled us to reproduce the de-

pendence of planet migration on the various parameters. Viscosity

plays a major role: standard type II migration occurs only when the

planet opens a very clean gap, that is at low viscosity; if the viscosity

increases, the gap becomes less depleted and less gasproof, which

leads to the decoupling of the migration with respect to the disc evo-

lution. The role of the planet mass is very intuitive: the more massive

is the planet the deeper is its gap and thus the closer to standard type

II migration is its behaviour. Last, the role of the radius of inner

edge of the disc Rinf is significant only when it is more than about

half the orbital radius of the planet: in that case, the density gradient

of the disc at the planet location increases with Rinf, which en-

hances the corotation torque and makes the planet migrate outward.

In conclusion, under some conditions on the disc parameters,

type II migration may be avoided for a Jupiter mass planet at 5 au in

an accreting disc, provided it does not open a very deep gap. This

could explain why all the known giant planets (in the Solar system

and in extra-Solar systems) are not hot Jupiters. Our results also

explain why hot Jupiters had to stop migrating before falling on to

their parent stars. They also explain why, among pairs of resonant

planets, the outermost one is typically the most massive object.
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