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Abstract. A simple model accounting for the ejection of heavy particles from the
vortical structures of a turbulent flow is introduced. This model involves a space
and time discretization of the dynamics and depends on only two parameters:
the fraction of space-time occupied by rotating structures of the carrier flow
and the rate at which particles are ejected from them. The latter can be heuristically
related to the response time of the particles and hence is a measure of their
inertia. It is shown that such a model reproduces qualitatively most aspects of the
spatial distribution of heavy particles transported by realistic flows. In particular
the probability density function of the mass m in a cell displays a power-law
behaviour at small values and decreases faster than exponentially at large values.
The dependence of the exponent of the first tail upon the parameters of the
dynamics is explicitly derived for the model. The right tail is shown to decrease
as exp(−C m log m). Finally, the distribution of mass averaged over several cells
is shown to obey rescaling properties as a function of the coarse-grain size and
of the ejection rate of the particles. Contrary to what has been observed in direct
numerical simulations of turbulent flows (Bec J et al 2007 Phys. Rev. Lett. 98
084502), such rescaling properties are only due in the model to the mass dynamics
of the particles and do not involve any scaling properties in the spatial structure
of the carrier flow.
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1. Introduction

Understanding the dynamics of small-size tracer particles or of a passive field transported by an
incompressible turbulent flow plays an important role in the description of several natural and
industrial phenomena. For instance it is well known that turbulence has the property to induce an
efficient mixing over the whole range of length and time scales spanned by the turbulent cascade
of kinetic energy (see e.g. [1]). Describing quantitatively such a mixing has consequences in
the design of engines, in the prediction of pollutant dispersion or in the development of climate
models accounting for transport of salinity and temperature by large-scale ocean streams.

However, in some settings, the suspended particles have a finite size and a mass density
very different from that of the fluid. Thus they can hardly be modelled by tracers because they
have inertia. In order to fully describe the dynamics of such inertial particles, one has to consider
many forces that are exerted by the fluid even in the simple approximation where the particle
is a hard sphere much smaller than the smallest active scale of the fluid flow [2]. Nevertheless
the dynamics drastically simplifies in the asymptotics of particles much heavier than the carrier
fluid. In that case, and when buoyancy is neglected, they interact with the flow only through a
viscous drag, so that their trajectories are solutions to the Newton equation

d2X

dt2
= −1

τ

[
dX

dt
− u(X, t)

]
, (1)

where u denotes the underlying fluid velocity field and τ is the response time of the particles.
Even if the carrier fluid is incompressible, the dynamics of such heavy particles lags behind
that of the fluid and is not volume-preserving. At large times particles concentrate on singular
sets evolving with the fluid motion, leading to the appearance of strong spatial inhomogeneities
dubbed preferential concentrations. At the experimental level such inhomogeneities have been
known for a long time (see [3] for a review). At present the statistical description of particle
concentration is a largely open question with many applications. We mention the formation of
rain droplets in warm clouds [4], the coexistence of plankton species [5], the dispersion in the
atmosphere of spores, dust, pollen, and chemicals [6], and the formation of planets by accretion
of dust in gaseous circumstellar disks [7].

The dynamics of inertial particles in turbulent flows involves a competition between two
effects: on the one hand particles have a dissipative dynamics, leading to the convergence of their
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trajectories onto a dynamical attractor [8], and on the other hand, the particles are ejected from
the coherent vortical structures of the flow by centrifugal inertial forces [9]. The simultaneous
presence of these two mechanisms has so far led to the failure of all attempts made to obtain
analytically the dynamical properties or the mass distribution of inertial particles. In order to
circumvent such difficulties a simple idea is to tackle independently the two aspects by studying
toy models, either for the fluid velocity field, or for the particle dynamics that are hopefully
relevant in some asymptotics (small or large response times, large observation scales, etc).
Recently an important effort has been made in the understanding of the dynamics of particles
suspended in flows that are δ-correlated in time, as in the case of the well-known Kraichnan
model for passive tracers [10]. Such settings, which describe well the limit of large response
time of the particles, allows one to obtain closed equations for density correlations by Markov
techniques. The δ-correlation in time, of course, rules out the presence of any persistent structure
in the flow; hence any observed concentrations can only stem from the dissipative dynamics.
Most studies in such simplified flows dealt with the study of the separation between two particles
[11]–[15].

Recent numerical studies in fully developed turbulent flows [16] showed that the spatial
distribution of particles at length scales within the inertial range is strongly influenced by the
presence of voids at all active scales spanned by the turbulent cascade of kinetic energy. The
presence of these voids has a noticeable statistical signature on the probability density function
(PDF) of the coarse-grained mass of particles which displays an algebraic tail at small values.
These numerical investigations confirmed a prediction made in [17] regarding the presence of
such a power-law behaviour at small masses, which was based on studying the growth rate
of mass moments in the limit of small particle response times. To understand at least from a
qualitative and phenomenological viewpoint how voids form and how they affect the statistics of
the mass distribution, it is clearly important to consider flows with persistent vortical structures
which are ejecting heavy particles. For this purpose, we introduce in this paper a toy model
where the vorticity field of the carrier flow is assumed piecewise constant in both time and space
and takes either a finite fixed value ω or vanishes. In addition to this crude simplification of the
spatial structure of the fluid velocity field we assume that the particle mass dynamics obeys the
following rule: during each time step there is a mass transfer between the cells having vorticity
ω toward the neighbouring cells where the vorticity vanishes. The amount of mass escaping to
neighbours is at most a fixed fraction γ of the mass initially contained in the ejecting cell. We
show that such a simplified dynamics reproduces many aspects of the mass distribution of heavy
particles in incompressible flow. In particular, we show that the PDF of the mass of inertial
particles has an algebraic tail at small values and decreases as exp(−A m log m) when m is large.
Analytical predictions are confirmed by numerical experiments in one and two dimensions.

In section 2, we give some heuristic motivations for considering such a model and a
qualitative relation between the ejection rate γ and the response time τ of the heavy particles.
Section 3 consists of a precise definition of the model in one dimension and in its extension to
higher dimensions. Section 4 is devoted to the study in the statistical steady state of the PDF of
the mass in a single cell. In section 5, we study the mass distribution averaged over several cells
to gain some insight on the scaling properties in the mass distribution induced by the model.
Section 6 encompasses concluding remarks and discussions on the extensions and improvements
of the model that are required to get a more quantitative insight on the preferential concentration
of heavy particles in turbulent flows.
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2. Ejection of heavy particles from eddies

The goal of this section is to give some phenomenological arguments explaining why the model
which is briefly described above, might be of relevance to the dynamics of heavy particles
suspended in incompressible flows. In particular we explain why a fraction of the mass of
particles exits a rotating region and give a qualitative relation between the ejection rate γ and
the response time τ entering the dynamics of heavy particles. For this we focus on the two-
dimensional case and consider a cell of size � where the fluid vorticity ω is constant and the fluid
velocity vanishes at the centre of the cell. This amounts to considering that the fluid velocity is
linear in the cell with a profile given to leading order by the strain matrix. Having a constant
vorticity in a two-dimensional incompressible flow means that we focus on cases where the two
eigenvalues of the strain matrix are purely imaginary complex conjugate. The particle dynamics
reduces to the second-order two-dimensional linear system

d2X

dt2
= −1

τ

dX

dt
+

ω

τ

[
0 1

−1 0

]
X. (2)

It is easily checked that the four eigenvalues of the evolution matrix are the following complex
conjugate

λ±,± = −1 ± √
1 ± 4iτω

2τ
. (3)

Only λ+,− and λ+,+ have a positive real part which is equal to

µ = −1 + (1/2)
√

2
√

1 + 16τ2ω2 + 2

2τ
. (4)

This means that the distance of the particles to the center of the cell increases exponentially fast
in time with a rate µ. If we now consider that the particles are initially uniformly distributed
inside the cell, we obtain that the mass of particles remaining in it decreases exponentially fast
in time with a rate equal to −2µ. Namely the mass of particles which are still in the cell at time
T is

m(T ) = m(0)(1 − γ) = m(0) exp

[
−T

τ

(
−1 +

1

2

√
2
√

1 + 16τ2ω2 + 2

)]
. (5)

The rate γ at which particles are expelled from the cell depends upon the response time τ of
the particles and upon two characteristic times associated to the fluid velocity. The first is the
time length T of the ejection process which is given by the typical life time of the structure with
vorticity ω. The second time scale is the turnover ω−1 which measures the strength of the eddy.
There are hence two dimensionless parameters entering the ejection rate γ: the Stokes number
St = τω giving a measure of inertia and the Kubo number Ku = Tω which is the ratio between
the correlation time of structures and their eddy turnover time. We hence obtain the following
estimate of the ejection rate

γ = 1 − exp

[
−Ku

St

(
−1 +

1

2

√
2
√

1 + 16St2 + 2

)]
. (6)
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Figure 1. Fraction of the mass of particles that are uniformly distributed and
ejected from an eddy of arbitrary size � as a function of the Stokes number
St = τω. The various curves refer to different values of the Kubo number Ku

as labelled.

The graph of the fraction of particles ejected from the cell as a function of the Stokes number
is given in figure 1 for three different values of the Kubo number. The function goes to zero as
Ku St in the limit St → 0 and as Ku St−1/2 in the limit St → ∞. It reaches a maximum which
is an indication of a maximal segregation of the particles, for St ≈ 1.03 independently of the
value of Ku.

In three dimensions, one can extend the previous approach to obtain an ejection rate for
cells with a uniform rotation, i.e. a constant vorticity ω. There are however two main difficulties.
The first is that in three dimensions the eigenvalues of the strain matrix in rotating regions are
no longer purely imaginary but have a real part given by the opposite of the rate in the stretching
direction. Such a vortex stretching has to be considered to match observation in real flows. The
second difficulty stems from the fact that the vorticity is now a vector and has a direction, so
that ejection from the cell can be done only in the directions perpendicular to the direction of ω.
These two difficulties imply that the spectrum of possible ejection rates is much broader than in
the two-dimensional case. However the rough qualitative picture is not changed.

3. A simple mass transport model

We here describe with details the model in one dimension and mention at the end of the section
how to generalize it to two and higher dimensions. Let us consider a discrete partition of an interval
in N small cells. Each of these cell is associated to a mass which is a continuous variable. We
denote by mj(n) the mass in the jth cell at time t = n. At each integer time we choose randomly
N independent variables; �j = 1 with probability p and �j = 0 with probability 1 − p. The
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j

j j + 1− 1j
0

1

Ω

µ

Figure 2. Sketch of the dynamics in the one-dimensional case: the fluxes of mass
are represented as arrows. A cross means no flux.

evolution of mass between times n and n + 1 is given by:

mj(n + 1) =




mj(n) − γ

2
[2 − �j−1 − �j+1] mj(n) if �j = 1 ,

mj(n) +
γ

2
[�j−1 mj−1(n) + �j+1 mj+1(n)] if �j = 0 .

(7)

In other terms, when �j = 1, the jth cell loses mass if �j−1 = 0 or �j+1 = 0, and when �j = 0,
it gains mass if �j−1 = 1 or �j+1 = 1. The flux of mass between the jth and the (j + 1)th cell is
proportional �j − �j+1 (see figure 2). In particular, if �j = �j+1, no mass is transferred between
cells. When the system is supplemented by periodic boundary conditions between the cells N

and 1, it is clear that the total mass is conserved. Hereafter we assume that the mass is initially
mj = 1 in all cells, so that the total mass is

∑
j mj = N. Spatial homogeneity of the random

process �j implies that 〈mj〉 = 1 for all later times, where the angular brackets denote average
with respect to the realizations of the �j’s.

A noticeable advantage of such a model for mass transportation is that the mass field
m = (m1, . . . , mN) defines a Markov process. Its probability distribution pN(m, n + 1) at time
n + 1, which is the joint PDF of the masses in all cells, is related to that at time n by a Markov
equation, which under its general form can be written as

pN(m, n + 1) =
∫

dNm′pN(m′, n)P[m′ → m]

=
∫

dNm′pN(m′, n)

∫
dN� p(�)P[m′ → m|�], (8)

where P[m′ → m|�] denotes the transition probability from the field m′ to the field m

conditioned on the realization of � = (�1, . . . , �N). In our case it takes the form

P[m′ → m|�] =
N∏

j=1

δ[mj − (m′
j + µj−1(n) − µj(n))]. (9)

The variable µj denotes here the flux of mass between the jth and the (j + 1)th cell. It is a
function of �j, �j+1, and of the mass contained in the two cells. It can be written as

µj(n) = γ

2

[
�j(n)(1 − �j+1(n))m′

j(n) − �j+1(n)(1 − �j(n))m′
j+1(n)

]
. (10)
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Figure 3. Left panel: sketch of the ejection model in two dimensions; the rotating
cells are designated by small eddies; the flux of mass (blue arrows) is from the
rotating cells to those without any eddy. Right panel: snapshot of the distribution
of mass in the statistically steady regime for a domain of 502 cells with p = 0.75;
white squares are almost empty cells and the darker regions correspond to cells
where the mass is concentrated.

In the particular case we are considering, the joint probability of the �j’s factorizes and we have

p(�j) = pδ(�j − 1) + (1 − p)δ(�j), (11)

so that the Markov equation (8) can be written in a rather explicit and simple manner.
The extension of the model to two dimensions is straightforward. The mass transfer out from

a rotating cell can occur to one, two, three or four of its direct nearest neighbours (see figure 3
left panel). One can similarly derive a Markov equation which is similar to (8) for the joint PDF
pN,N(M, n) at time n of the mass configuration M = {mi,j}1�i,j�N . The transition probability
reads in that case

P[M′ → M|�] =
N∏

i=1

N∏
j=1

δ[mi,j − (m′
i,j + µ

(1)
i−1,j − µ

(1)
i,j ) + µ

(2)
i,j−1 − µ

(2)
i,j )]. (12)

where the fluxes now take the form

µ
(1)
i,j = γ

4

[
�i,j(1 − �i+1,j)m

′
i,j − �i+1,j(1 − �i,j)m

′
i+1,j

]
, (13)

and µ
(2)
i,j defined by inverting i and j in the definition of µ

(1)
i,j .

After a large number of time steps, a statistically steady state is reached. The stationary
distribution is obtained assuming that pN,N(M, n) = pN,N(M) is independent of n in the Markov
equation (8). In this stationary state the mass fluctuates around its mean value one corresponding
to a uniform distribution; strong deviations at small masses can be qualitatively observed (see
figure 3 right panel).

The model can be easily generalized to arbitrary space dimensions. However, as we have seen
in previous section, besides its interest from a purely theoretical point of view, the straightforward
extension to the three-dimensional case might not be relevant to describe concentrations of inertial
particles in turbulent flows.
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Table 1. Enumeration of all possible configurations of the spin vorticity � in
three neighbouring cells, together with their probabilities and the associated
mass fluxes.

�j−1 �j �j+1 Probability µj−1 µj

0 0 0 (1 − p)3 0 0
0 0 1 p(1 − p)2 0 −γm′

j+1/2
0 1 0 p(1 − p)2 −γm′

j/2 γm′
j/2

0 1 1 p2 (1 − p) −γm′
j/2 0

1 0 0 p(1 − p)2 γm′
j−1/2 0

1 0 1 p2 (1 − p) γm′
j−1/2 −γm′

j+1/2
1 1 0 p2 (1 − p) 0 γm′

j/2
1 1 1 p3 0 0

4. Distribution of mass

Let us consider first the one-dimensional case in the statistically stationary regime. After
integrating (8), one can express the single-point mass PDF p1 in terms of the three-point mass
distribution p3 at time n

p1(mj) =
∫

dm′
j−1dm′

jdm′
j+1p3(m

′
j−1, m

′
j, m

′
j+1)

∫
d�j−1d�jd�j+1 × p(�j−1)p(�j)p(�j+1)

× δ[mj − (m′
j + µj−1 − µj)]. (14)

We then explicit all possible fluxes, together with their probabilities, by considering all possible
configurations of the spin vorticity triplet (�j−1, �j, �j+1). The results are summarized in table 1.
This leads to rewriting the one-point PDF as

p1(m) = [p3 + (1 − p)3]p1(m) +
2p2(1 − p)

1 − γ/2
p1

(
m

1 − γ/2

)
+

p(1 − p)2

1 − γ
p1

(
m

1 − γ

)

+2p(1 − p)2

∫ 2m/γ

0
dm′ p2

(
m′, m − γ

2
m′

)

+p2(1 − p)

∫ 2m/γ

0
dm′

∫ 2m/γ−m′

0
dm′′p3

(
m′, m − γ

2
(m′ + m′′), m′′

)
. (15)

The first term on the right-hand side comes from realizations with no flux. The second term is
ejection to one neighbour and the third to two neighbouring cells. The fourth term involving an
average over the two-cell distribution is related to events when mass is transferred from a single
neighbour to the considered cell. Finally, the last term accounts for transfers from the two direct
neighbours. Note that, in order to write (15), we made use of the fact that p2(x, y) = p2(y, x).

Numerical simulations of this one-dimensional mass transport model are useful to grab
qualitative information on p1. Figure 4 represents the functional form of p1 in the stationary
regime for various values of the ejection rate γ and for p = 1/2. The curves are surprisingly
similar to measurements of the spatial distribution of heavy particles suspended in homogeneous
isotropic turbulent flows [3, 16]. This gives strong evidence that, on a qualitative level, the
model we consider reproduces rather well the main mechanisms of preferential concentration.
More specifically, a first observation is that in both settings the PDFs display an algebraic
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Figure 4. Log–log plot of the one-point PDF of the mass in one dimension for
p = 1/2 and different values of the parameter γ as labelled. The integration was
done on a domain of 216 = 65 536 cells and time average we performed during
106 time steps after a statistical steady state is reached.

behaviour for small masses. This implies that the ejection from cells with vorticity one has a
strong statistical signature. A second observation is that at large masses, the PDF decays faster
than exponentially, as also observed in realistic flows. As we will now see these two tails can be
understood analytically for the model under consideration.

We here first present an argument explaining why an algebraic tail is present at small masses.
For this we exhibit a lower bound of the probability P < (m) that the mass in the given cell is less
than m. Namely, we have

P < (m) = Prob(mj(n) < m) � Prob(A), (16)

where A is a set of space-time realizations of � such that the mass in the jth cell at time n is
smaller than m. For instance we can choose the set of realizations which are ejecting mass in
the most efficient way: during a time N before n, the jth cell has spin vorticity one and its two
neighbours have zero. The mass at time n is related to the mass at time n − N by

mj(n) = (1 − γ)Nmj(n − N), that is N = log [mj(n − N)/mj(n)]

log(1 − γ)
. (17)

The probability of such a realization is clearly pN (1 − p)2N . Replacing N by the expression
obtained in (17), we see that

Prob(A) =
[

mj(n)

mj(n − N)

]β

with β = log[p(1 − p)2]

log(1 − γ)
. (18)
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the value predicted by theory.

After averaging with respect to the initial mass mj(n − N), one finally obtains

P < (m) � Amβ. (19)

Hence the cumulative probability of mass cannot have a tail faster than a power law at small
arguments. It is thus reasonable to make the ansatz that p1(m) have an algebraic tail at m → 0, i.e.
that p1(m) � Cmα. To obtain how the exponent α behaves as a function of the parameters γ and
p, this ansatz is injected in the stationary version of the Markov equation (15). One expects that
the small-mass behaviour involves only the terms due to ejection from a cell, namely the three first
terms in the rhs of (15), and that the terms involving averages of the two-point and three-point
PDFs give only sub-dominant contributions. This leads to

Cmα ≈ C
[
p3 + (1 − p)3

]
mα + C

2p2(1 − p)

1 − γ/2

[
m

1 − γ/2

]α

+ C
p(1 − p)2

1 − γ

[
m

1 − γ

]α

. (20)

Equating the various constants we finally obtain that the exponent α satisfies

2p

(1 − γ/2)α+1
+

(1 − p)

(1 − γ)α+1
= 3. (21)

Note that the actual exponent α given by this relation is different from the lower-bound β + 1
obtained above in (18) and (19). However it is easily checked that α approaches the lower bound
when p → 0. As seen from figure 5, formula (21) is in good agreement with numerics. Note
that the large error bars obtained for p small and γ large are due to the presence of logarithmic
oscillations in the left tail of the PDF of mass. This log periodicity is slightly visible for γ = 0.9
in figure 5. It occurs when the spreading of the distribution close to the mean value m = 1 is
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much smaller than the rate at which mass is ejected. This results in the presence of bumps in the
PDF at values of m which are powers of 1 − 2γ . Notice that for all values of p, one has α � 0
when γ � 2/3. However, according to the estimate (6), values of the ejection rate larger than
2/3 can be attained only for large enough Kubo numbers. This is consistent with the fact that
power-law tails with a negative exponent were not observed in the direct numerical simulations
of turbulent fluid flows [16] where Ku ≈ 1.

It is much less easy to get from numerics the behaviour of the right tail of the mass PDF
p1(m). As seen from figure 4, there was no events recorded where the mass is larger than roughly
ten times its average. We however present now an argument suggesting that the tail is faster than
exponential, and more particularly that log p1(m) ∝ −m log m when m
1. We first observe
that in order to have a large mass in a given cell, one needs to transfer to it the mass coming
form a large number M of neighbouring cells. Estimating the probability of having a large mass
is equivalent to understand the probability of such a transfer. For moving mass from the jth cell
to the (j − 1)th cell, the best configuration is clearly (�j−1, �j, �j+1) = (0, 1, 1). After N time
steps with this configuration, the fraction of mass transfered is 1 − (1 − γ/2)N . This process is
then repeated for moving mass to the second neighbour, and so on. After order M iterations, the
mass in the Mth neighbour is

m = 1 − [
1 − (1 − γ/2)N

]M

(1 − γ/2)N
(22)

This means that

M = M(m, N) = log
[
1 − m(1 − γ/2)N

]
log

[
1 − (1 − γ/2)N

] (23)

with the condition that N > −(log m)/[ log(1 − γ/2)]. The probability of this whole process of
mass transfer is

P = [
p2(1 − p)

]N M = exp
[
log(p2(1 − p))N M(m, N)

]
. (24)

All the processes of this type will contribute terms in the right tail of the mass PDF. The dominant
behaviour is given by choosing N = N
 such that N
 M(m, N
) is minimal. Such a minimum
cannot be written explicitly. One however notices that, on the one hand, if N is much larger than
its lower bound (i.e. N
 − (log m)/[ log(1 − γ/2)]), then NM(m, N)
 − m(log m)/[ log(1 −
γ/2)]. On the other hand when N is chosen of the order of log m, then NM(m, N) ∝ m log m.
This suggests that the minimum is attained for N
 ∝ log m. Finally, such estimates lead to the
prediction that the right tail of the mass PDF behaves as

p1(m) ∝ exp
[−C m log m

]
, (25)

where C is a positive constant that depends upon the parameters p and γ . As seen in figure 6,
such a behaviour is confirmed by numerical experiments.

The estimations of the left and right tails of the distribution of mass in a given cell can be
extended to the two-dimensional case. The results do not qualitatively change. The exponent α
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Figure 6. Lin-log plot of the one-point PDF of the mass m in one dimension
represented as a function of m log m for p = 1/2 and various values of the
parameter γ as labelled; the different colours and symbols are the same as those
used in figure 4. Inset: behaviour of the constant C appearing in (25) as a function
of the ejection rate γ for three different values of the fraction of space p occupied
by eddies (blue crosses: p = 0.1, black times: p = 0.5, red circles: p = 0.9).

of the algebraic behaviour at small masses is given as a solution of

4p3

(1 − γ/4)α+1
+

6p2(1 − p)

(1 − γ/2)α+1
+

4p(1 − p)2

(1 − 3γ/4)α+1
+

(1 − p)3

(1 − γ)α+1
= 5(1 − p + p2). (26)

By arguments which are similar to the one-dimensional case and which are not detailed here,
one obtains also that log p1(m) ∝ −m log m. Numerical experiments in two dimensions confirm
these behaviours of the mass probability distribution.As seen from figure 7 an algebraic behaviour
of the left tail of the PDF of m is observed and the value of the exponent is in good agreement
with (26).

5. Coarse-grained mass distribution

We investigate in this section the probability distribution of the mass coarse-grained on a scale
L much larger than the box size �, which is defined as

m̄L = �

L

K∑
j=−K

mj, where K = L/2�. (27)

As seen from the numerical results presented on figure 8, the functional form of the PDF pL(m̄)

is qualitatively similar to that of the mass in a single cell. In particular for various values of L
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Figure 7. Log–log plot of the one-point PDF of the mass in two dimensions for
p = 1/2 and various values of the parameter γ; the symbols and colour refer to
the same values of γ as in figure 4. The integration was done on a domain of 10242

cells and time average were performed during 3 × 104 time steps after a statistical
steady state is reached. Inset: exponent α of the algebraic left tail as a function
of the ejection rate γ for three different values of p (blue crosses: p = 0.1, black
times: p = 0.5, red circles: p = 0.9). The solid lines show the analytic values
obtained from (26).

it also displays an algebraic tail at small arguments with an exponent which depends both on L

and on the parameters of the model. We here present some heuristic arguments for the behaviour
of the exponent.

For this, we consider the cumulative probability P<
L (m̄) to have m̄L smaller than m̄. We first

observe that in order to have m̄L small, the mass has to be transfered from the bulk of the coarse-
grained cell to its boundaries. Assume we start with a mass order unity in each of the 2K + 1
sub-cells. The best realization to transfer mass is to start with ejecting an order-unity fraction
of the mass contained in the central cell with index j = 0 to its two neighbours. For this the
three central cells must have vorticities (�−1, �0, �1) = (0, 1, 0), respectively, during N time
steps. After that the second step consists in transferring the mass toward the next neighbours;
the best realization is then to have during N time steps (�−2, �−1, �0, �1, �2) = (0, 1, 1, 1, 0).
The transfer toward neighbours is repeated recursively. At the jth step, the best transfer is given
by choosing (�−j−1, �−j, �−j+1) = (0, 1, 1) and (�j−1, �j, �j+1) = (1, 1, 0) during a time N.
One can easily check that for large N and after repeating this procedure K times, the mass
which remains in the 2K + 1 cells forming the coarse-grained cell is m̄L � (1 − γ/2)N . The
total probability of this process is [p4(1 − p)2]KN , which leads to estimating the cumulative
probability of m̄L as

P <
L (m̄) ∝ m̄αL, with αL ≈ 1

2

L

log(1 − γ/2)
log

[
p4(1 − p)2

]
. (28)
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Figure 8. Log–log plot of the PDF of the coarse-grained mass m̄L in one
dimension for p = 2/3 and various values of γ and L associated to three different
ratios κ = L/ log(1 − γ/2) as labelled.

This approach guarantees that the PDF pL(m̄) = dP <
L /dm̄ of the coarse-grained mass m̄ behaves

as a power law at small values. Note that only the contribution from realizations with an optimal
mass transfer is here evaluated and the actual value of the exponent should take into account
realizations of the vorticity which may lead to a lesser mass transfer. However we expect the
estimation given by (28) to hold for L sufficiently large, because the contribution from realizations
with a sub-dominant mass transfer become negligible in this limit.

As to the right tail of pL(m̄), one expects a behaviour similar to that obtained in the case of the
one-cell mass distribution, namely log pL(m̄) ∝ −m̄ log m̄ for m̄ 
 1. Indeed, the probability
of having a large mass in a coarse-grained cell should clearly be of the same order as the
probability of having a large mass in a single cell. This, together with the estimates (28) for the
exponent of the left tail, gives a motivation for looking, at least in some asymptotics, for possible
rescaling behaviours of pL(m̄) as a function of L and of the ejection rate γ . For instance one can
argue whether the limits L → ∞ and γ → 0 are equivalent. The estimation (28) suggests that
the exponent αL depends only on the ratio κ = L/log(1 − γ/2). Note that the limit of small γ

should mimic that of small response time of the heavy particles. Rescaling of the distribution
of the coarse-grained mass was observed in direct numerical simulations of heavy particles in
turbulent homogeneous isotropic flows [16].

Such a rescaling is confirmed by numerical simulations. Figure 8 represents the PDF of the
coarse-grained mass m̄L for various values of L and γ chosen such that the ratio κ is 8, 10 or 14.
While the left-hand tail and the core of the distribution are clearly collapsing, the rescaling is
much less evident for the right-hand tail. Obtaining better evidence would require much longer
statistics in order to resolve the distribution at large masses.
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6. Conclusions

We introduced here a simple model for the dynamics of heavy inertial particles in turbulent
flow which solely accounts for their ejection from rotating structures of the fluid velocity field.
We have shown that this model is able to reproduce qualitatively most features of the particle
mass distribution which are observed in real turbulent flows. Namely the probability density of
the mass in cells is shown to behave as a power-law at small arguments and to decrease faster
than exponentially at large values. Moreover, we studied how this distribution depends on the
parameters of the model, namely the ejection rate of particles from eddies and the fraction of space
occupied by them. Such dependence reproduce again qualitatively observations from numerical
simulations in homogeneous turbulent flows. Finally, we have seen that coarse-graining masses
on scales larger than the cell size is asymptotically equivalent to decrease the ejection rate related
to particle inertia. This gives evidence that there exists a scaling in the limit of large observation
scale and small response time of the particles, even if the flow has no scale invariance.

There are several extensions that need to be investigated in order to gain from the study
of such models more quantitative information on the distribution of particles in real flows. The
most significant improvement is to give a spatial structure to the fluid velocity. This can be done
by introducing a spatial correlation between the vorticities of cells. Preliminary investigations
suggest that such a modified model could be approached by taking its continuum limit. Another
effect that may be worth taking into consideration is random sweeping of structures by the fluid
flow. We assumed that the eddies are frozen (and occupy the same cell) during their whole
lifetime. The model could be extended by adding to the dynamics random hops between cells of
these structures. Another extension could consist of investigating in a systematic manner three-
dimensional versions of the model. As stated above, many statistical quantities may depend
on how ejection from rotating regions is implemented in three dimensions. Finally, it is worth
mentioning again that the main advantage of such models is to give a heuristic understanding of
the relations between the properties of the fluid velocity field and the mass distribution of particles.
This first step is necessary in the development of a phenomenological framework for describing
the spatial distribution of heavy particles in turbulent flows. This would allow Kolmogorov 1941
dimensional arguments to be used to understand how the particle dynamical properties depend
on scale. Moreover, such a framework could be used to obtain refined predictions accounting
for the effect of the fluid flow intermittency and to describe the dependence upon the Reynolds
number of the spatial distribution of particles.
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[13] Duncan K, Mehlig B, Östlund S and Wilkinson M 2005 Clustering by mixing flows Phys. Rev. Lett. 95 240602
[14] Derevyanko S, Falkovich G, Turitsyn K and Turitsyn S 2006 Explosive growth of inhomogeneities in the

distribution of droplets in a turbulent air Preprint nlin.CD/0602006
[15] Bec J, Cencini M and Hillerbrand R 2007 Heavy particles in incompressible flows: the large Stokes number

asymptotics Physica D 226 11–22
[16] Bec J, Biferale L, Cencini M, Lanotte A, Musacchio S and Toschi F 2007 Heavy particle concentration in

turbulence at dissipative and inertial scales Phys. Rev. Lett. 98 084502
[17] Balkovsky E, Falkovich G and Fouxon A 2001 Intermittent distribution of inertial particles in turbulent flows

Phys. Rev. Lett. 86 2790–3

New Journal of Physics 9 (2007) 77 (http://www.njp.org/)

http://dx.doi.org/10.1038/nature00983
http://dx.doi.org/10.1017/S0022112005003368
http://dx.doi.org/10.1017/S0022112087000193
http://dx.doi.org/10.1137/S0036139999366401
http://dx.doi.org/10.1103/PhysRevLett.92.250602
http://dx.doi.org/10.1103/PhysRevLett.95.240602
http://arxiv.org/abs/nlin.CD/0602006
http://dx.doi.org/10.1016/j.physd.2006.10.007
http://dx.doi.org/10.1103/PhysRevLett.98.084502
http://dx.doi.org/10.1103/PhysRevLett.86.2790
http://www.njp.org/

	1. Introduction
	2. Ejection of heavy particles from eddies
	3. A simple mass transport model
	4. Distribution of mass
	5. Coarse-grained mass distribution
	6. Conclusions
	Acknowledgment
	References

