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ABSTRACT

According to Shannon Sampling Theory, cardinal sine (sinc)
interpolation is the optimal way to reach subpixel accuracy
from a properly sampled digital image. However, for most
images sinc interpolation tends to produce an artifact called
ringing, that consists in undesirable oscillations near objects
contours. In this work, we propose a way to detect this ringing
artifact in an a-contrario framework. Using Euler zigzag num-
bers, we compute the probability that neighboring gray-levels
form an alternating sequence by chance, and characterize this
way ringing blocks as structures that would be very unlikely
in a random image. We then show two applications where the
associated algorithm is used to test or enforce the compliance
of an image with sinc interpolation.

Index Terms— Shannon sampling Theory, ringing, sinc
interpolation, Euler zigzag numbers, a-contrario detection.

1. INTRODUCTION

Inadequate sampling or processing of a digital image may
cause various artifacts, including blur, aliasing, blocking,
ringing, etc. Among them, the ringing artifact can be char-
acterized by the presence of undesirable oscillations of the
image intensities, generally located near objects contours.
These oscillations are generally caused by the use of fre-
quency domain techniques (Fourier Transform, wavelets) or
by non-monotone image filters (deconvolution, non-positive
interpolation kernels, etc.).

In this paper, we propose a new method to detect im-
age zones containing high-frequency ringing, that is, oscil-
lations at Nyquist frequency (period of 2 pixels). This high-
frequency ringing may appear in particular when an image
is interpolated in Fourier domain (the so-called “sinc inter-
polation”). Image shrinking for example, can be performed
optimally (in the L2 sense) by bandlimiting an image with a
hard cutoff in the frequency domain prior to downsampling.
However, this process generally causes ringing artifacts in the
shrinked image, since the multiplication with a window func-
tion in the frequency domain is equivalent in the image do-
main to the convolution with an oscillating sinc kernel. High-
frequency ringing also appears when an aliased image (that

is, an image that has not been sampled above Nyquist rate)
is interpolated in Fourier domain, and, as we shall see later,
this phenomenon can be used on purpose to detect aliasing.
High-frequency ringing is also typical of periodization arti-
facts caused by the use of the Discrete Fourier Transform on
images. More generally, as soon as subpixel interpolation is
required on an image, ringing detection is a very interesting
tool not only to decide whether the optimal sinc interpola-
tion can be used or not, but also to choose an appropriate
image preprocessing filter or to select an alternative interpo-
lation kernel.

Among ringing metrics proposed in the literature, very
few of them are no-reference metrics. Marziliano et al. [1]
propose to detect vertical edges, then to measure the oscilla-
tions heights on a given support fixed in advance. Oguz [2]
defines the Visible Ringing Measure after an edge map ob-
tained from morphological processing. It has been recently
used by Yang at al. [3] to measure the efficiency of a ring-
ing removal algorithm for JPEG2000 images. Other papers
(e.g. [4, 5]) essentially investigate ringing as a compression
artifact. In all cases, no criterion is given to ensure that no
ringing would be found in noise, so that an arbitray threshold
has to be set.

In Section 2, we propose an a-contrario probabilistic
model to detect suspiciously large oscillating patterns in an
image. We obtain a criterion that permits to detect ringing ar-
tifacts in a contrast-invariant way, while offering the warranty
that no detection occurs in a white noise image (whatever
the noise distribution is). The resulting algorithm is then
applied in Section 3 to test the compliance of an image with
sinc interpolation, and later in Section 4 to perform optimal
ringing-free image reduction.

2. A-CONTRARIO RINGING DETECTION

As we can see on Fig. 2 (right image), high-frequency
ringing results in alternated gray levels on a given line. If
g1, g2, . . . gn are the successive gray levels encountered on
such a line, we shall say that they form an alternating se-
quence if

∀k ∈ {1, ..n− 2}, (gk+2 − gk+1) · (gk+1 − gk) < 0.



In other terms, the signs of g2−g1, g3−g2, . . . gn−gn−1 are
alternating like +,-,+,... or -,+,-,... To decide whether an alter-
nating sequence should be considered as normal or suspicious
in an image, we propose to use the a-contrario framework [6]
and compute the probability to obtain, by chance, an alternat-
ing sequence with length at least n. If the gray-levels (gk) are
obtained from distinct pixels of a white noise image — that is,
a random image U such that all U(x, y) are independent and
identically distributed (i.i.d.) —, then each sign gk+1−gk has
a probability 1/2 to be positive, and a probability 1/2 to be
negative. However, the successive signs are not independent,
as shown by the following theorem.

Theorem 1 Let U be a discrete white noise image, that is,
i.i.d. gray values drawn according to a given probability mea-
sure admitting a density with respect to Lebesgue measure.
Then, for any sequence of n ≥ 3 distinct pixels, the probabil-
ity that the corresponding n gray levels form an alternating
pattern is

pn =
2An

n!
,

where An is the n-th Euler zigzag number, that can be ob-
tained from the exponential generating function

tan
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From classical expansions of An and n!, it is not difficult
to show that

pn ∼
n→∞

p̃n, with p̃n = 4 ·

(

2

π

)n+1

,

and the approximation is very good even for small n (see Ta-
ble 2). If the successive signs were independent, the proba-
bility to obtain an alternating pattern would be qn = 22−n,
which asymptotically underestimates the actual probability
pn by a factor 4/π = 1.273... per point.

Now we come to the definition of an horizontal ringing
block. In the following, u is a gray-level image, that is a real-
valued function defined on Ω = {0, ..M − 1}×{0, ..N − 1}.
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3 2 6 0.667 1.45 · 10−2

4 5 24 0.417 3.86 · 10−3

5 16 120 0.267 1.44 · 10−3

10 50521 3628800 0.0278 5.62 · 10−6

20 3.7 · 1014 2.4 · 1018 3.04 · 10−4 9.56 · 10−11

Table 1. Euler zigzag numbers (An) and n! permit to compute the
probability pn that a sequence of gray values alternates in a white
noise image (see Theorem 1). Note on the right column that the ap-
proximation of pn by its asymptotics p̃n becomes rapidly excellent
as n increases.

A rectangle of Ω is a subset R = I × J of Ω, where I and J
are intervals of Z (that is, sets made of consecutive integers).
We shall say that R has size l×w (length l, width w) if |I| = l
and |J | = w.

Definition 1 Le u : Ω→ R be a gray-level image. A discrete
rectangle R = I×J of Ω is a horizontal ringing block (HRB)
if (u(x, y))x∈I is an alternating sequence for all y ∈ J .

Thanks to Theorem 1, the probability to observe a l × w
HRB in a random image is (pl)w. Let us consider the domain
D∞ = {3, .. +∞} × {1, .. +∞} and for any α > 0, the
subdomain

Dα = {(l, w) ∈ D∞, (pl)
w ≤ α}.

Let us call n(α) the minimum number of discrete regions
(quarter-planes) of the kind {l0, .. +∞} × {w0, .. +∞} (l0
and w0 being arbitrary integers) needed to cover exactly Dα.
Considering the shape of Dα (see Fig. 1), it is easy to show
that n(α) is the number of horizontal (or vertical) lines re-
quired to draw the boundary of Dα. The function α 7→ n(α)
is nonincreasing, and since p3 = 2/3, n(α) is bounded from
above by d logα

log(2/3)e (upper integer part). Typical values of
n(α) are n(10−6) = 10, n(10−8) = 11, n(10−10) = 13,
n(10−23) = 20.

Definition 2 Let u : Ω → R be a M × N gray-level image.
If R is a l × w HRB of u, we write

α(R) = MN · (pl)
w,

and say that R is ε-meaningful if ϕ(α(R)) ≤ ε, where

ϕ(α) = α · n
( α

MN

)

. (1)

We say that R is maximal ε-meaningful if there is no ε-
meaningful HRB of u that contains strictly R.
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Fig. 1. TheDα domain for α = 10−5 can be covered by 10 quarter-
planes, that is, n(α) = 10.



The previous definition finds its justification in the fol-
lowing theorem, that guarantees that on a white noise image,
at most ε maximal ε-meaningful HRBs (on average) will be
found by chance (a-contrario property, see [6]).

Theorem 2 For any ε > 0 and any M × N image u, let us
call mε(u) the number of maximal ε-meaningful HRBs of u.
Then for any white noise image U , one has

∀ε > 0, E

(

mε(U)
)

≤ ε.

Proof — Any maximal ε-meaningful HRB R of U satisfy
α(R) ≤ ᾱ, where ᾱ is the maximum value of α such that
ϕ(α) ≤ ε. By definition of n(ᾱ), there exists a finite subset
Cᾱ of Dᾱ such that

Dᾱ =
⋃

(l0,w0)∈Cᾱ

{l0, ..+∞}× {w0, ..+∞}.

Let us call minimal ε-meaningful HRB of U any l × w HRB
of U such that (l, w) ∈ Cᾱ. By definition of Cᾱ, any ε-
meaningful HRB of U (maximal or not) can be written as the
union of minimal ε-meaningful HRBs of u. Hence, it is pos-
sible to build the set of maximal ε-meaningful HRBs of U
from the set of minimal ε-meaningful HRBs of U , by apply-
ing a recursive fusion process, and the number of maximal
HRBs obtained this way will be smaller than the number of
original minimal HRBs. Now, since the total number of pos-
sible minimal ε-meaningful HRBs is MN · n

(

ᾱ
MN

)

and the
probability of one of these rectangles to be a HRB is less than
ᾱ

MN , the expected number of minimal ε-meaningful HRBs is
less than

MN · n
( ᾱ

MN

)

·
ᾱ

MN
= ϕ(ᾱ) ≤ ε,

which concludes the proof. ¤

3. ALGORITHM

Thanks to the previous results, we can tell if ringing is present
in a M ×N image using the following procedure :

1. Choose a bound ε on the expected number of false
alarms, typically ε = 1 (at most one false alarm per image);

2. Find ᾱ such that ϕ(ᾱ) ≤ ε (if M = N = 1000 and
ε = 1, then ᾱ = 1/11 is convenient);

3. Find all horizontal extrema of u, that is, all pixels (x, y)
such that u(x− 1, y), u(x, y), u(x+1, y) form an alternating
sequence;

4. Among these points, find all maximal rectangles, and
dilate them by one pixel horizontally;

5. Among these rectangles, select maximal ε-meaningful
HRBs by checking the condition α(R) ≤ ᾱ.

Note that this algorithm is contrast-invariant (that is, the
result is unchanged if u is changed into g ◦ u, where g :

R → R is an increasing contrast change), and that it only
depends on one parameter (the choice of ε, that controls the
expected number of false alarms). We checked that the num-
ber of maximal ε-meaningful HRBs on white noise images
remained small (generally 0 or 1 for ε = 1, almost always 0
for ε = 0.1), as guaranteed by Theorem 2.

4. APPLICATION TO SINC INTERPOLATION

As we mentionned before, the so-called “sinc interpolation”
(also known as Fourier Interpolation) is the optimal way
to reach subpixel accuracy from a properly-sampled image.
However, most real-world images are undersampled (hence
aliased), because undersampling yields a better appearance,
making images look crisper despite the fact that they are less
precise as regards subpixel accuracy. A good way to check
if an image is “Shannon-compliant” (which means that it
is well interpolated by the sinc kernel) is to resample it on
a translated grid (typically by half of a pixel) and to see if
ringing appears on the result. Since we focused on horizontal
ringing, this amounts to the following procedure :

1. Compute the periodic component p of u (see [7]);
2. Translate p by (1/2,0) in the Fourier domain, that is,

compute the image q whose Discrete Fourier Transform is
q̂(a, b) = p̂(a, b) · exp

(

−iπa
M

)

;
3. Find all maximal 1-meaningful HRBs on q.

The step 1 permits to avoid ringing artifacts due to the fact
that the Discrete Fourier Transform implicitely assumes that
images are periodic, causing strong (non Shannon-compliant)
discontinuities on image borders. It can be discarded but in
that case, meaningful HRBs found near the image border have
to be discarded too after step 3.

We applied this procedure to the “caps” image taken from
the Live database [8] (see Fig. 2). As expected, no ringing
was found on the original image, whose quality is good. How-
ever, several ringing blocks were found on the translated im-
age, which shows that this image is not Shannon-compliant,
as the sinc interpolation cannot be applied without creating
ringing artifacts.

5. SHANNON-COMPLIANT IMAGE REDUCTION

Thanks to Shannon Sampling Theorem, we know that if we
want to reduce an image to a given size without creating
aliasing, the “optimal way” (in the L2 sense) consists in
changing its Fourier spectrum into a smaller one by cutting
high-frequency components. Unfortunately, this hard fre-
quency cut-off procedure has another drawback: it produces
ringing (see Fig. 3, top row), due to the strong disconti-
nuity it creates in the Fourier domain. Since the algorithm
we proposed is able to detect ringing, we can try to perform
Shannon-compliant image reduction by removing these ring-
ing artifacts. A simple way to do that is to attenuate the



Fig. 2. The “caps” image from the Live database is not compliant
with sinc interpolation: ringing is detected (black zones on the left
image) after an horizontal translation of 0.5 pixel, especially near
the topright corner of the cap. The image on the right zooms on this
part, with contrast magnification and no detection marked.

high-frequency components of the shrinked image up to the
point where the ringing artifacts disappear (but not further in
order to introduce as little blur as possible). In practice, we
considered a family of parametric filters and used the ringing
detection to select the optimal value of the parameter, that
is the first one yielding no ringing (see Fig. 3, bottom row).
Compared to systematic lowpass filtering (see [9] in partic-
ular), the interest of this method is that it does not introduce
a systematic amount of blur, but only the minimal neces-
sary amount, so that if the initial image is already blurry, the
obtained shrinked image will be much sharper and precise
than with generic lowpass filtering. Of course, another inter-
est is that the algorithm guarantees that the resulting image
is Shannon-compliant, which opens interesting perspectives
concerning subpixel accuracy.

6. CONCLUSION

We proposed a new method to detect suspicious oscillating
blocks in an image while keeping control of the number of
false alarms in white noise. The resulting algorithm, thanks
to its ability to detect high-frequency ringing, can be used to
test the adequacy of an image with sinc interpolation, or to
reduce an image to the sharpest possible Shannon-compliant
one. Other applications involving high-frequency ringing ar-
tifacts could be investigated in a similar way, and the possi-
ble extension of the method to more general oscillating struc-
tures (lower frequencies, oblique directions, etc.) could lead
to interesting new applications (e.g., blind deconvolution with
ringing control).
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image sampling with ringing artifact control,” in International
Conference on Image Processing, 2005, vol. 3, pp. 577–580.


