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2 Université Paris Descartes, MAP5, CNRS UMR 8145, Paris, France
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ABSTRACT

According to Shannon Sampling Theory, Fourier interpola-
tion is the optimal way to reach subpixel accuracy from a
properly-sampled digital image. However, for most images
this interpolation tends to produce an artifact called ringing,
that consists in undesirable oscillations near objects contours.
In this work, we propose a way to detect this ringing arti-
fact. Using Euler zigzag numbers, we compute the probability
that neighboring gray-levels form an alternating sequence by
chance, and characterize these undesirable ringing blocks as
structures that would be very unlikely in a random image. We
then show two applications where the associated algorithm
is used to test or enforce the compliance of an image with
Fourier interpolation.

Index Terms— Image sampling, ringing, Fourier interpo-
lation, a-contrario detection.

1. INTRODUCTION

Inadequate sampling or processing of a digital image may
cause various artifacts, including blur, aliasing, blocking,
ringing, etc. Among them, the ringing artifact can be char-
acterized by the presence of undesirable oscillations of the
image intensities, generally located near objects contours. In
this paper, we propose a new method to detect image zones
containing high-frequency ringing, that is, oscillations at
Nyquist frequency (period of 2 pixels), that may appear in
particular when an image is interpolated in Fourier domain
(the so-called “ideal sinc interpolation” in a periodic setting,
see [1], Equation 26). Image down-scaling for example, can
be performed optimally (in the L2 sense) by band-limiting
an image with a hard cutoff in the frequency domain prior to
downsampling. However, this process generally causes ring-
ing artifacts in the shrinked image, since the multiplication
with a window function in the frequency domain is equivalent
in the image domain to the convolution with an oscillating
sinc kernel. High-frequency ringing also appears when an
aliased image (that is, an image that has not been sampled
above Nyquist rate) is interpolated in Fourier domain, and,
as we shall see later, this phenomenon can be used on pur-
pose to detect aliasing. More generally, as soon as subpixel

interpolation is required for an image, ringing detection is
a very interesting tool not only to decide whether the op-
timal Fourier interpolation can be used or not, but also to
choose an appropriate image preprocessing filter or to select
an alternative interpolation kernel.

All no-reference ringing metrics proposed in the literature
are concerned by the presence of visible ringing in images, in
particular as a compression artifact. Oguz [2] defines the Vis-
ible Ringing Measure after an edge map obtained from mor-
phological processing. It has been recently used by Yang et al.
[3] to assess the efficiency of a ringing removal algorithm for
JPEG2000 images. Liu et al. [4] use a perceptually more rel-
evant edge detector, but their ringing metric still depends on
image structures (edges) and contrast requirements. Sheikh
et al. [5] propose to learn natural scene statistics to rate the
quality of JPEG2000 images. In all cases, parameters must be
learned or tuned to mimic human perception.

In this work, we propose a way to detect high-frequency
ringing in an image in a generic way by characterizing suspi-
ciously large oscillating patterns with a probabilistic model.
In Section 2, we obtain a criterion that allows the detection
of ringing artifacts in a contrast-invariant way, while offering
the guarantee that no detection occurs in a white noise image
(whatever the noise distribution is). The resulting algorithm
(Section 3) is then applied in Section 4 to test the compliance
of an image with Fourier interpolation, and later in Section 5
to perform optimal ringing-free image down-scaling.

2. A-CONTRARIO RINGING DETECTION

By definition, high-frequency ringing results in alternated
gray levels on a given line (see for example the right image
of Fig. 3). If g1, g2, . . . gn are the successive gray levels
encountered on such a line, we shall say that they form an
alternating sequence if

∀k ∈ {1, ..n − 2}, (gk+2 − gk+1) · (gk+1 − gk) < 0.

In other terms, the signs of g2−g1, g3 −g2, . . . gn −gn−1 are
alternating like +,-,+,... or -,+,-,... To decide whether an alter-
nating sequence should be considered as normal or suspicious
in an image, we propose to use the a-contrario framework [6]



and compute the probability to obtain, by chance, an alternat-
ing sequence with length at least n. If the gray-levels (gk) are
obtained from distinct pixels of a white noise image — that is,
a random image U such that all U(x, y) are independent and
identically distributed (i.i.d.) —, then each sign gk+1−gk has
a probability 1/2 to be positive, and a probability 1/2 to be
negative. However, the successive signs are not independent,
as shown by the following theorem.

Theorem 1 Let U be a discrete white noise image, that is,
i.i.d. gray values drawn according to a given probability mea-
sure admitting a density with respect to Lebesgue measure.
Then, for any sequence of n ≥ 3 distinct pixels, the probabil-
ity that the corresponding n gray levels form an alternating
pattern is

pn =
2An

n!
,

where An is the n-th Euler zigzag number, that can be ob-
tained from the exponential generating function
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From classical expansions of An and n!, it is not difficult
to show that

pn ∼
n→∞

p̃n, with p̃n = 4 ·

(

2

π

)n+1

,

and the approximation is very good even for small n (see Ta-
ble 1). If the successive signs were independent, the proba-
bility to obtain an alternating pattern would be qn = 22−n,
which asymptotically underestimates the actual probability
pn by the non-negligible factor (4/π)n ' 1.273n.

Now we come to the definition of an horizontal ringing
block. In the following, u is a gray-level image, that is a real-
valued function defined on Ω = {0, ..M − 1}×{0, ..N − 1}.
A rectangle of Ω is a subset R = I × J of Ω, where I and J
are intervals of Z (that is, sets made of consecutive integers).
We shall say that R has size l×w (length l, width w) if |I| = l
and |J | = w.
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3 2 6 0.667 1.45 · 10−2

4 5 24 0.417 3.86 · 10−3

5 16 120 0.267 1.44 · 10−3

10 50521 3628800 0.0278 5.62 · 10−6

20 3.7 · 1014 2.4 · 1018 3.04 · 10−4 9.56 · 10−11

Table 1. Euler zigzag numbers (An) and n! permit to compute the
probability pn that a sequence of gray values alternates in a white
noise image (see Theorem 1). Note on the right column that the ap-
proximation of pn by its asymptotics p̃n becomes rapidly excellent
as n increases.

Definition 1 Le u : Ω → R be a gray-level image. A discrete
rectangle R = I×J of Ω is a horizontal ringing block (HRB)
if (u(x, y))x∈I is an alternating sequence for all y ∈ J .

Fig. 1 shows an example of a horizontal ringing block (HRB).

Fig. 1. Example of a 5×3 HRB (dashed rectangle) in a 8×5 image.

Thanks to Theorem 1, the probability of a l×w rectangle
to be a HRB in a random image is (pl)

w. Let us consider the
domain D∞ = {3, .. +∞}× {1, .. +∞} and for any α > 0,
the sub-domain Dα = {(l, w) ∈ D∞, (pl)

w ≤ α}. We
call n(α) the minimum number of discrete regions (quarter-
planes) of the kind {l0, .. + ∞} × {w0, .. + ∞} (l0 and w0

being arbitrary integers) needed to cover exactly Dα. Con-
sidering the shape of Dα (see Fig. 2), it is easy to show that
n(α) is the number of horizontal (or vertical) lines required
to draw the boundary of Dα. The function α 7→ n(α) is
nonincreasing, and since p3 = 2/3, n(α) is bounded from
above by d log α

log(2/3)e (upper integer part). Typical values of

n(α) are n(10−6) = 10, n(10−8) = 11, n(10−10) = 13,
n(10−23) = 20.

Definition 2 Let u : Ω → R be a M × N gray-level image.
If R is a l × w HRB of u, we write α(R) = MN · (pl)

w, and
say that R is ε-meaningful if ϕ(α(R)) ≤ ε, where

ϕ(α) = α · n
( α

MN

)

. (1)

We say that R is maximal ε-meaningful if there is no ε-
meaningful HRB of u that contains strictly R.

We expect that a ringing-free image will not contain ε-
meaningful HRBs for ε � 1, since, as we shall see now, the
expected number of maximal ε-meaningful HRBs in a ran-
dom image is less than ε (a-contrario property, see [6]).

Theorem 2 For any ε > 0 and any M × N image u, let us
call mε(u) the number of maximal ε-meaningful HRBs of u.
Then for any white noise image U , one has

∀ε > 0, E

(

mε(U)
)

≤ ε.

Proof — Any maximal ε-meaningful HRB R of U satisfy
α(R) ≤ ᾱ, where ᾱ is the maximum value of α such that
ϕ(α) ≤ ε. By definition of n(ᾱ), there exists a finite subset
Cᾱ of Dᾱ such that

Dᾱ =
⋃

(l0,w0)∈Cᾱ

{l0, .. + ∞}× {w0, .. + ∞}.
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Fig. 2. The Dα domain for α = 10−5 can be covered by 10 quarter-
planes, that is, n(α) = 10.

Let us call minimal ε-meaningful HRB of U any l × w HRB
of U such that (l, w) ∈ Cᾱ. By definition of Cᾱ, any ε-
meaningful HRB of U (maximal or not) can be written as the
union of minimal ε-meaningful HRBs of u. Hence, it is pos-
sible to build the set of maximal ε-meaningful HRBs of U
from the set of minimal ε-meaningful HRBs of U , by apply-
ing a recursive fusion process, and the number of maximal
HRBs obtained this way will be smaller than the number of
original minimal HRBs. Now, since the total number of pos-
sible minimal ε-meaningful HRBs is MN · n

(

ᾱ
MN

)

and the
probability of one of these rectangles to be a HRB is less than

ᾱ
MN , the expected number of minimal ε-meaningful HRBs is
less than

MN · n
( ᾱ

MN

)

·
ᾱ

MN
= ϕ(ᾱ) ≤ ε,

which concludes the proof. �

3. ALGORITHM

Thanks to the previous results, we can tell if ringing is present
in a M × N image u using the following procedure:

1. Choose a bound ε on the expected number of false
alarms, for example ε = 0.01 (we allow, in average, one false
alarm every 100 images);

2. Find ᾱ such that ϕ(ᾱ) ≤ ε (if M = N = 1000 and
ε = 0.01, then ᾱ = 1/1100 is convenient);

3. For each pixel (x, y) of u, detect if it is a horizontal
extrema, that is u(x − 1, y), u(x, y), u(x + 1, y) form an al-
ternating sequence;

4. Among these points, find all maximal rectangles, and
dilate them by one pixel horizontally;

5. Among these rectangles, select maximal ε-meaningful
HRBs by checking the condition α(R) ≤ ᾱ.

Image u has ringing if the number of these rectangles is
significantly greater than ε (if ε = 0.01, one rectangle is
enough). Note that this algorithm is contrast-invariant (that
is, the result is unchanged if u is changed into g ◦ u, where
g : R → R is an increasing contrast change), and that it only
depends on one parameter (the choice of ε, that controls the

expected number of false alarms). We checked that the num-
ber of maximal ε-meaningful HRBs on white noise images
remains small (generally 0 or 1 for ε = 1, almost always
0 for ε = 0.1), as guaranteed by Theorem 2. Of course, the
scope of this algorithm is not restricted to white noise images:
as usually seen for a-contrario models, setting thresholds on
noise images (in which there is no doubt that we should not
detect any structure) yields a good control of false alarms on
real-world images. In a sense, the method we propose here is
a definition of ringing, and it would be interesting to lead psy-
chovisual experiments to see how closely this model is linked
to our visual perception.

4. APPLICATION TO FOURIER INTERPOLATION

As we mentioned before, Fourier interpolation is the opti-
mal way to reach subpixel accuracy from a properly-sampled
image. However, most real-world images are undersampled
(hence aliased), because undersampling yields a better ap-
pearance (it makes images look artificially sharper). A good
way to check if an image has been well sampled is to resample
it on a translated grid (typically by half of a pixel) and to see
if ringing appears. Since we focused on horizontal ringing,
this amounts to the following procedure :

1. Compute the periodic component p of u (see [1]);
2. Translate p by (1/2,0) in the Fourier domain, that is,

compute the image q whose Discrete Fourier Transform is
q̂(a, b) = p̂(a, b) · exp

(

−iπa
M

)

;
3. Find all maximal 1-meaningful HRBs on q.

Step 1 permits to avoid ringing artifacts (edge effects) caused
by the implicit periodization performed by the Discrete
Fourier Transform (see [1]). It can be discarded but in that
case, meaningful HRBs found near the image border have to
be discarded too after Step 3.

We applied this procedure to the “caps” image taken from
the Live database [7] (see Fig. 3). As expected, no ringing
was found on the original image, whose quality is good. How-
ever, several ringing blocks were found on the translated im-
age, which shows that this image is badly sampled, as Fourier
interpolation creates ringing artifacts.

5. APPLICATION TO IMAGE REDUCTION

Thanks to Shannon Sampling Theorem, we know that if we
want to down-scale an image to a given size without creating
aliasing, the optimal way (in the L2 sense) consists in chang-
ing its Fourier spectrum into a smaller one by cutting high-
frequency components. Unfortunately, this hard frequency
cut-off procedure has a drawback: it produces ringing (see
Fig. 4, top row). Since the algorithm we proposed is able
to detect ringing, we can try to perform ringing-free image
reduction by selecting an adequate linear filter that will atten-
uate the high-frequency components of the shrinked image up



Fig. 3. The “caps” image from the Live database is not well-
sampled: ringing is detected (black zones on the left image) after
an horizontal translation of 0.5 pixel, especially near the top-right
corner of the cap. The image on the right zooms on this part, with
contrast magnification and no detection marked.

to the point where the ringing artifacts disappear (but not fur-
ther in order to introduce as little blur as possible). In practice,
we considered a family of parametric filters (hk) and used
the ringing detection to select the smallest value of the fil-
ter parameter k yielding no ringing (see Fig. 4, bottom row).
Compared to systematic lowpass filtering (see [8] in particu-
lar), the interest of this method is that it does not introduce
a systematic amount of blur, but only the minimal necessary
amount, so that the reduction of a blurry image may increase
its perceived sharpness. Another interest is that the algorithm
guarantees that the resulting image is well-sampled, which
opens interesting perspectives concerning subpixel accuracy.

6. CONCLUSION

We proposed a new method to detect high-frequency ringing
patterns in an image. As far as we know, this is the first
attempt to detect ringing not only from a perceptual point
of view (as done in [5] and [4]), but as an image process-
ing nuisance (ringing patterns that are not perceived in an
image can introduce strong artifacts when the image is pro-
cessed, in particular if image derivatives are estimated). In
fact, since the proposed algorithm is contrast-invariant, even
poorly contrasted ringing patterns can be detected in an im-
age provided that its SNR is large enough. Contrary to exist-
ing no-reference ringing metrics, no sensitive threshold has to
be set and we have a statistical guarantee that the method we
propose does not detect ringing in a random image. Despite
its limitation to the mere detection of horizontal (or vertical)
ringing patterns, our algorithm can be used to test the ade-
quacy of an image with Fourier interpolation, or to reduce an
image to the sharpest possible well-sampled one. Other ap-
plications involving high-frequency ringing artifacts could be
investigated in a similar way, and the possible extension of the
method to more general oscillating structures (lower frequen-
cies, oblique directions, etc.) could lead to promising new
applications (e.g., blind deconvolution with ringing control).

Fig. 4. The “nimes” image ( c©CNES) is shrinked using a hard fre-
quency cutoff (top left), which causes ringing artifacts (marked in
black), visible on the magnified part (top right). The ringing detector
is then used to select an appropriate attenuation filter in the Fourier
domain (cos filter), which result in a better-looking and ringing-free
image (bottom row) that complies well with Fourier interpolation.
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