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Simulation studies of structural changes and relaxation processes
in lysozyme under pressure
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The paper describes preliminary results of a molecular dynamics simulation study on the influence of non-denaturing hydrostatic pres-
sure on the structure and the relaxation dynamics of lysozyme. The overall compression and the structural changes are in agreement with 
results from recent nuclear magnetic resonance experiments. We find that moderate hydrostatic pressure reduces essentially the ampli-
tudes of the atomic motions, but does not change the characteristics of the slow internal dynamics. The latter is well described by a frac-
tional Ornstein–Uhlenbeck process, concerning both single particle and collective motions.
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1. Introduction

Different experimental techniques, like quasielastic neu-
tron scattering, fluorescence correlation spectroscopy
(FCS), and kinetic studies of ligand rebinding show that
protein dynamics is characterized by a vast spectrum of
relaxation rates, ranging from picoseconds to hours [1–3].
The typical time scales observed by quasielastic neutron
scattering are in the picosecond to nano-second range
(10�12–10�9 s), FCS probes protein dynamics in the milli-
second to second range, and studying ligand rebinding
after flash photolysis explores time scales in the millisecond
to hour range. Xie and co-workers used the fractional Orn-
stein–Uhlenbeck process as a model to describe the relative
motions of the flavin fluophore in flavin reductase with

respect to a fluorescence-quenching tyrosine side-chain in
the vicinity [4]. Models describing so-called fractional
Brownian dynamics are increasingly used to interpret the
relaxation dynamics of complex systems which do not exhi-
bit exponential relaxation, but a wide spectrum of relaxa-
tion rates [5].

Recently it has been shown that fractional Brownian
Dynamics is also seen on the pico- to nano-second time
scale, which is explored by quasielastic neutron scattering
and molecular dynamics (MD) computer simulations
[6,7]. Computer simulations play an important role in
developing models for the dynamics of liquids and pro-
teins, since they allow to perform numerical experiments
on a complexity scale between analytical calculations and
experiments. Using techniques known from signal process-
ing, one can in particular compute memory functions of
time correlation functions from the simulated trajectories
[8]. The latter yield a rigourous description of relaxation
processes on a microscopic basis [9].

Using the models and methods exposed in [8,6,7] we
investigate here in a preliminary study if and how high,
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1

mailto:kneller@cnrs-orleans.fr


but non-denaturing hydrostatic pressure influences the
internal structure and relaxation dynamics of lysozyme in
solution. First, we present the theoretical background of
relaxation phenomena in complex systems and then we
show analyses of molecular dynamics (MD) simulations
of a lysozyme protein solution at ambient temperature
and different pressures. We compare the overall compres-
sion and the essential structural changes with results from
recent nuclear magnetic resonance (NMR) experiments
and investigate the influence of pressure on the relaxation
dynamics. Here the single particle dynamics as well the col-
lective dynamics are considered. The paper is concluded by
a short discussion of the results.

2. Theoretical background

2.1. Memory function and relaxation time spectrum

In the following we consider an arbitrary dynamical var-
iable a, whose time evolution can be described in terms of
classical Hamiltonian dynamics. Such a dynamical variable
depends on the momenta p = {p1, . . . ,pn} and the coordi-
nates q = {q1, . . . ,qn} spanning the 2n-dimensional phase
space. Here n is the number of degrees of freedom.
Formally, the time dependence of a is given by aðtÞ ¼

expðiLtÞað0Þ, where L ¼ �i oH
opi

o

oqi
� oH

oqi

o

opi

n o

is the Liou-

ville operator and H(p,q) is the Hamilton function of the
system under consideration. Here a(t) is a short notation
for a(p(t),q(t)). We define the autocorrelation function

cðtÞ ¼ ha�ð0ÞaðtÞi ð2:1Þ

as an ensemble average over the equilibrium distribution in
phase space, where the asterisk denotes a complex conju-
gate. Zwanzig has shown that the time evolution of c(t) is
described by the integro-differential equation

dcðtÞ

dt
¼ �

Z t

0

dsjðt � sÞcðsÞ; ð2:2Þ

where j(t) is the memory function which is associated to
the time correlation function c(t) [9,10]. Introducing the
projector P on the variable a of interest, whose action on
another phase space variable f � f(p,q) is defined through

Pf ¼
ahaf i

ha2i
; ð2:3Þ

j(t) can be expressed as

jðtÞ ¼
h _a expði½1�P�LtÞ _ai

ha2i
: ð2:4Þ

The above expression shows that the memory function al-
lows to describe relaxation processes, at least formally, on
the basis of microscopic Hamiltonian dynamics.

For theoretical studies of slow relaxation processes it is
useful to introduce the normalized autocorrelation function

wðtÞ ¼
ha�ð0ÞaðtÞi

hjaj
2
i

; ð2:5Þ

writing the latter in the form

wðtÞ ¼

Z 1

0

dkpðkÞ expð�ktÞ: ð2:6Þ

Here kP 0 are relaxation rates and p(k) is a normalized
distribution with

R1

0
dkpðkÞ ¼ 1. It follows from (2.6) that

the Laplace transform of w(t), which is defined as
ŵðsÞ ¼

R1

0
dt expð�stÞwðtÞ (Rfsg > 0), is related to p(k)

through a Stieltjes transform,

ŵðsÞ ¼

Z 1

0

dk
pðkÞ

sþ k
: ð2:7Þ

The latter may be inverted to give [11]

pðkÞ ¼ lim
�!0þ

1

p
Ifŵð�½kþ i��Þg: ð2:8Þ

It follows from the Laplace transform of the memory func-
tion equation (2.2) that ŵðsÞ has the simple form

ŵðsÞ ¼
1

sþ ĵðsÞ
; ð2:9Þ

and one obtains thus from (2.8) a relation between the spec-
trum of relaxation rates, p(k), and the memory function. It
must be emphasized that the existence of a positive spectrum
of relaxation times depends on the form of w(t) and is thus
not guaranteed. It is instructive to compute p(k) from (2.8)
for the case of exponential relaxation, where w(t) =
exp(�k0t). As it should be, one finds p(k) = d(k � k0), where
d(Æ) denotes a Dirac distribution.

2.2. Fractional Ornstein–Uhlenbeck process

Any dynamical model for the internal dynamics of pro-
teins must account for the fact that atomic motions in a
protein are confined in space and that the relaxation
dynamics in proteins is reflected in strongly non-exponen-
tial correlation functions. It has been shown by one of us
(GRK) that the fractional Ornstein–Uhlenbeck process is
an analytical model which describes the dynamics of single
atoms in lysozyme, as well as its internal collective dynam-
ics on the pico- to nano-second time scale [7] at normal
pressure. The question we ask here is if and how the
parameters of the model are influenced by applying an
external pressure.

The classical Ornstein–Uhlenbeck process describes the
diffusion of a particle in a harmonic potential (K > 0)

UðxÞ ¼
1

2
Kx2 ð2:10Þ

and leads to an exponentially decaying position autocorre-
lation function. In order to account for a broad spectrum
of relaxation rates one considers a stochastic process which
is described by a fractional Fokker–Planck equation,

oPðx; tÞ

ot
¼ ~s1�a

0D
1�a
t LFPP ðx; tÞ: ð2:11Þ
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Here P(x,t) � P(x,tjx0,t0) is the transition probability den-
sity for a move from x0 at time t0 to x at time t, LFP is the
Fokker–Planck operator [12,13]

LFP ¼ g
o

ox
xþ D

o
2

ox2
; ð2:12Þ

and 0D
1�a
t denotes a fractional derivative of order 1 � a

[14]. For an arbitrary function f the latter is defined as

0D
1�a
t f ðtÞ ¼

d

dt

Z t

0

ds
ðt � sÞ

a�1

CðaÞ
f ðsÞ; 0 < a 6 1; ð2:13Þ

where C(Æ) is the Gamma function [15]. One sees that f is
not altered in case of a = 1. The two positive constants g

and D in the Fokker–Planck operator (2.12) denote,
respectively, a relaxation rate and the short-time diffusion
constant. The parameter ~s appearing in the right-hand side
of (2.11) has the dimension of a time and must be intro-
duced to assure its correct physical dimension.

The normalized position correlation function of the
fractional Ornstein–Uhlenbeck process, w(t) � hx(t)x(0)i/
hx2i, has the form

wðtÞ ¼ Eað�gat
aÞ; ð2:14Þ

where Ea(z) denotes the Mittag–Leffler function [16] and
ga ¼ ~s1�ag. The latter has the series representation

EaðzÞ ¼
X

1

k¼0

zk

Cð1þ akÞ
: ð2:15Þ

The exponential function is retrieved for a = 1, where
C(1 + k) = k!. The memory function associated with w(t)
has the form [6]

jðtÞ ¼
a� 1

CðaÞs2a

t

sa

� �a�2

; t > 0; ð2:16Þ

for 0 < a < 1. Here sa ¼ g�1=a
a . Although j(t) is singular for

t ! 0+, it is normalized to zero,
Z 1

0

dtjðtÞ ¼ 0: ð2:17Þ

Such a behavior indicates that j(t) is a distribution – sim-
ilar to the Dirac distribution – and not a normal function.

The Fourier spectrum of the correlation function and
the associated spectrum of relaxation rates can be com-
puted analytically [6,7]. One obtains a generalized Lorentz-
ian for the Fourier spectrum,

~wðxÞ ¼
2sa sinðap=2Þ

jxsajðjxsaj
a
þ 2 cosðap=2Þ þ jxsaj

�a
Þ
;

0 < a 6 1; ð2:18Þ

and the following relaxation rate spectrum,

pðkÞ ¼
sa

p

ðsakÞ
a�1

sinðpaÞ

ðsakÞ
2a
þ 2ðsakÞ

a
cosðpaÞ þ 1

; 0 < a < 1:

ð2:19Þ

Both the time correlation function and its spectrum exhibit
an algebraic behavior for large times and frequencies,

respectively. From the analytical properties of the Mit-
tag–Leffler function it follows that [16]

wðtÞ / t�a ð2:20Þ

for t � sa, and expression (2.18) shows that

~wðxÞ / x�ð1þaÞ ð2:21Þ

for x � s�1
a . It should also be noted that

pðkÞ /
ka�1 ifk � s�1

a ;

k�ð1þaÞ ifk � s�1
a :

(

ð2:22Þ

The first of the above relations shows that the relaxation
spectrum is not bound for relaxation rates tending to zero,
which correspond to relaxation times tending to infinity.

Fig. 1 shows the function w(t) given by Eq. (2.14) for
a = 0.5 (solid line), as compared to a normal exponential
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Fig. 1. Model correlation functions w(t) = Ea(�ta) for a = 0.5 (solid line),

w(t) = exp(�t) (broken line), and w(t) = exp(�ta) for a = 0.5 (dashed-

dotted line). The inset shows the memory function corresponding to

w(t) = Ea(�ta) for a = 0.5. More explanations are given in the text.
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Fig. 2. Relaxation rate spectrum (2.19) for a = 0.5 (full line) and a = 0.98

(broken line).
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function (broken line) and a stretched exponential func-
tion, exp(�ta), for a = 0.5 (dashed-dotted line). The insert
displays the memory function (2.16) which is associated
with the correlation function (2.14). Here the memory
function is given by expression (2.16) for t > � = 0.1, and
for 0 6 t < � it is represented by a linear function, in order
to fulfil the normalisation condition (2.17). In the limit
� ! 0, where j(t) becomes a distribution, the concrete rep-
resentation in the interval 0 6 t < � does not matter. Fig. 2
shows the relaxation rate spectrum corresponding to the
correlation function (2.14) for a = 0.5 and for a = 0.98.
In the latter case one recognizes that p(k) is centered on
k ¼ s�1

a .

3. Simulation and analysis

3.1. Simulation protocol

We have simulated a single lysozyme molecule in water,
using an orthorhombic simulation box of dimensions
6.16 · 4.19 · 4.61 nm3. The coordinates of lysozyme have
been taken from entry 193L [17] of the Brookhaven Protein
Data Bank [18]. From this coordinate set the positions of
the hydrogen atoms were reconstructed, leading to 1960
atoms for the lysozyme molecule. The simulation box
was filled with 3403 water molecules, containing thus
12169 atoms in total.

All MD simulations were performed with the MMTK
simulation package [19], using the Amber94 force field
[20]. In order to account for realistic thermodynamic
boundary conditions, all simulations were performed in
the thermodynamic NpT-ensemble, with fixed number of
particles and prescribed averages for temperature and pres-
sure [21,22]. In all cases the temperature was chosen to be
T = 300 K and the pressures were varied from ambient pres-
sure (1 bar) up to 7 kbar. Here only simulations at 1 bar,
2 kbar, and 3 kbar are reported on. The simulated trajecto-
ries were recorded for 1.2 ns at p = 1 bar and for 1 ns at
p = 2 kbar and p = 3 kbar, using in all cases a sampling time
step of Dt = 0.04 ps for later analyses. All simulations have
been carried out with an integration time step of 1 fs.

3.2. Trajectory analysis

In order to compare structural changes with results
obtained by structural NMR, which have been reported
in the literature [23], we computed a difference distance
matrix from the average structure of lysozyme at ambient
pressure and at p = 2 kbar. These calculations have been
performed using basic modules from the MMTK package.

The analysis of the relaxation dynamics on the basis of
the recorded MD trajectories has been performed with
the package nMoldyn [24]. Here we compare simulations
at ambient pressure and at p = 3 kbar. In order to inves-
tigate the influence of pressure on the single particle
relaxation dynamics we computed the average atomic
mean-square displacement

W ðtÞ ¼
1

N

X

N

j¼1

wjh½RjðtÞ � Rjð0Þ�
2
i ð3:23Þ

at different pressures. Here N is the number of atoms under
consideration, and wj are positive weights, with

PN

j¼1wj ¼
N . We chose wj to be proportional to the squared incoher-
ent neutron scattering lengths [25], which means in practice
to consider essentially the hydrogen atoms. We concentrate
on the hydrogen atoms since their motions have on average
the largest amplitudes and since the motion of hydrogen
atoms is probed in quasielastic neutron scattering experi-
ments, which will be used later for comparison in a more
detailed study.

Corresponding changes in the collective relaxation
dynamics have been examined by studying the coherent
intermediate scattering function

cðq; tÞ ¼ hdq�ðq; 0Þdqðq; tÞi; ð3:24Þ

which is computed from the spatially Fourier transformed
atomic density fluctuation

dqðq; tÞ ¼ qðq; tÞ � hqðq; tÞi: ð3:25Þ

Here qðq; tÞ ¼
PN

j¼1wi expðiq:RjðtÞÞ is the Fourier-trans-
formed atomic density and Rj(t) are the positions of the
atoms in the lysozyme protein as a function of time. Using
dq(q, t) and not q(q, t) as dynamical variable avoids a large
elastic peak in the Fourier transform of c(q, t) with respect
to time, which is due to static correlations in the atomic
positions. The weights wi have been chosen proportional
to the coherent scattering lengths for neutron scattering
[25]. The solvent molecules are not considered in the anal-
ysis. The correlation function c(q, t), its Fourier transform,
and the associated memory function are analysed in terms
of an autoregressive (AR) model for the dynamical variable
dq(q, t),

dqðq; tÞ ¼
X

P

k¼1

akðqÞdqðq; t � kDtÞ þ �ðq; tÞ: ð3:26Þ

Here P is the order of the AR process, ak(q) are q-depen-
dent coefficients, and �(q, t) is white noise with zero mean
and variance r2(q). The set of P + 1 coefficients {ak,r

2} is
obtained from a fit to the MD trajectory of dq(q, t). Details
are described in [8], and the method is implemented in the
nMoldyn package [24]. A summary can be found in [7].
Here we note only two key features of the method:

1. AR time series modelling allows us to compute reliable
estimates for memory functions by solving the discrete
memory function equation

cðq; nþ 1Þ � cðq; nÞ

Dt
¼ �

X

n

k¼0

Dtjðq; n� kÞcðq; kÞ ð3:27Þ

for j(q,n) � j(q,nDt).
2. AR time series modelling allows us to obtain high reso-

lution spectra directly from the parameters {ak,r
2},

without applying numerical Fourier transforms and
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window functions to reduce the numerical error of the
estimated spectra. Defining S(q,x) to be the Fourier
transform of c(q, t), we have

Sðq;xÞ ¼
Dtr2ðqÞ

1�
PP

k¼1akðqÞ exp½�ixkDt�
� �

1�
PP

m¼1a
�
mðqÞ exp½ixmDt�

� � :

ð3:28Þ

In the literature this approach is well known as the max-
imum entropy estimation of power spectra [26,27].

In the analyses shown in the following we used an AR
model of order P = 1000.

4. Results

4.1. Compression and structural changes

We will first briefly report on the overall compression
and on structural changes in lysozyme under pressure.
Lysozyme is a protein whose structure has been intensively
studied in the past. Of particular importance for our work
are studies of lysozyme under pressure by X-ray crystallog-
raphy [28] and by NMR [29,23]. The NMR studies are par-
ticularly useful for comparison with MD simulations since
they are performed on proteins in solution. From our sim-
ulation studies we find for the simulated lysozyme molecule
at p = 3 kbar a volume reduction of DV � �2% with
respect to ambient pressure [30]. Refaee et al. give an com-
pressibility of 7.5/Mbar for the whole protein [23], leading
thus to DV � �2.25% at p = 3 kbar. Our simulation result
is thus in excellent agreement with the NMR experiments.
In [29] Katamari et al. state a shortening of the hydrogen
bonds between the amid groups of the backbone of
0.02 Å on average at p = 2 kbar. This value is close to
the average reduction of 0.03 Å we find from our
simulations.

More detailed information on the influence of pressure
on the structure of lysozyme can be obtained from the dif-
ference distance map for the Ca-atoms in lysozyme which is
given by Refaee et al. [23]. Fig. 3 shows the difference dis-
tance plot displayed in Ref. [23] (left part) together with
our results from MD simulation (right part). In both cases
the structure at p = 2 kbar is compared to the one at ambi-
ent pressure. In contrast to the NMR experiment, where
two average structures are compared, which have been
averaged over a small ensemble (50 structures), we com-
pare average structures for whole MD trajectories. We note
here that the NMR structures are deposited as entries
1GXX (2 kbar) and 1GXV (ambient pressure) in the
Brookhaven Protein Databank. The coloring scheme is
chosen such that red2 indicates a reduction of distances
under pressure and blue an increase. The coloring scheme

in the secondary structure of lysozyme (upper left part of
the figure) is the same as in the difference distance plot.
Note that the simulation results are displayed in form of
the full symmetric difference distance matrix. It is difficult
to compare simulation and experiment on an absolute
scale, since the structures to be compared have not be
obtained in the same way, but the qualitative agreement
is quite satisfactory. The comparison shows in particular
in both cases residue 46, which is in a so-called b-turn in
the more flexible ‘b-domain’ of lysozyme, which contains
essentially loops and b-strands as secondary structure
motifs, is moved closer to the rest of the structure. A sim-
ilar observation obtained from the NMR results for residue
85, which is located in a short b-strand between two a-heli-
ces is less well visible in the MD results.

4.2. Single particle dynamics

Fig. 4 shows the average atomic mean square displace-
ments in lysozyme at pressures of p = 1 bar (diamonds)
and p = 3 kbar (circles). Assuming the model of fractional
Brownian diffusion in a harmonic well, we obtain the ana-
lytical expression

W ðtÞ ¼ 2hu2ið1� Eað�½t=sa�
a
ÞÞ ð4:29Þ

for the mean square displacement. Here it has been used
that for motions confined in space W(t) = 2hu2i(1 � w(t)).
The horizontal lines in Fig. 4 indicate the plateau values
of W(1) = 0.037 nm2 for p = 1 bar (solid line) and
W(1) = 0.026 nm2 for p = 3 kbar (broken line). These val-
ues have been obtained by estimating the corresponding
average atomic fluctuations by independent calculations
from the MD trajectories. The model function (4.29) has
thus two free parameters, a and sa, which were fitted in
the statistically safe region 0 < t < 50 ps. The resulting fits
gave a = 0.51 and sa = 32.03 ps at p = 1 bar (solid line)
and a = 0.55 and sa = 29.41 ps at p = 3 kbar (broken line).
The results show that pressures up to 3 kbar lead essen-
tially to a reduction of the amplitudes of the atomic mo-
tions in lysozyme, but not to an essential change in the
internal dynamics.

A remark concerning the fit of the model (4.29) to the
data obtained from MD simulation is in place here. It must
be emphasized that W(t) is a dynamical quantity, in con-
trast to the atomic fluctuation hu2i. Suppose the MD trajec-
tory is long enough to sample the atomic fluctuations
reasonably well, such that the error is below 10%. The
mean square displacement attains 90% of its plateau value
W(1) after t � 1 ns and 95% after t � 4 ns if we use the
model (4.29) for a = 1/2. To compute W(t) with sufficient
statistical accuracy for such times, the corresponding MD
trajectories must be at least an order of magnitude longer.
Given that most MD trajectories for protein simulations
do not exceed a few ns, these considerations show that a
precise calculation of mean square displacements of atoms
in proteins for times beyond 100–200 ps is usually not
feasible. The quasi-linear evolution of the mean square

2 For interpretation of color in Fig. 3, the reader is referred to the web

version of this article.
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displacements depicted in Fig. 4 for t > 100 ps illustrates
this point. Such a behavior indicates free diffusion and is
clearly an artefact, since the motions of atoms in a protein
are confined.

4.3. Collective dynamics

In Fig. 5 we show the results for the coherent dynamic
structure factor for lysozyme in solution at p = 1 bar (thin

black line) and p = 3 kbar (thick grey line). The coherent
dynamic structure factor is here defined as Fourier trans-
form of c(q, t) with respect to time. To interpret the data
in terms of an analytical model we use again the fractional
Ornstein–Uhlenbeck process, except that the dynamical
variable is here the Fourier transformed atomic density,
i.e. a dynamical variable describing collective motions,
and not the position of a single atom. Using this model,
we assume that there is an effective force proportional to
dq which drives the latter back to zero, i.e. to a homoge-

Fig. 3. Left: Secondary structure of lysozyme and difference distance plot for the Ca-atoms at ambient pressure and at p = 2 kbar given in Ref. [23] (with

permission from Elsevier). The coloring scheme uses red for a reduction of the distance under pressure and blue for an increase. Right: The corresponding

difference distance plot obtained from the MD structures averaged over the respective trajectories.
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nous atomic density in space. Only the data corresponding
to p = 1 bar have been used for the model fit of the
dynamic structure factor and the corresponding memory
function (broken lines), and the corresponding data have
been taken from Ref. [6]. Fig. 5 shows that the trends of
the dynamic structure factors at p = 1 bar and p = 3 kbar
and the corresponding memory functions are very similar.
As for the case of single particle dynamics, we do not find a
noticeable influence of the exerted pressure on the collec-
tive relaxation dynamics of lysozyme. At this point it
should be mentioned that the AR model gives reliable esti-
mates for correlation functions and the associated memory
functions, which would allow to detect small changes in the
characteristics of the dynamics of the system under consid-
eration. Although it is difficult to associate explicit error
bars, one can perform analyses with different numbers of
poles and different sampling steps, which show consistent
results with differences in the percent range [8,7].

5. Conclusion

The preliminary analysis of molecular dynamics simula-
tions of lysozyme in solution under hydrostatic pressure
showed that moderate, non-denaturing pressure leads to
an overall compression which is in excellent agreement with
results obtained from structural NMR experiments. Differ-
ence distance plots for the Ca-atoms in the protein main
chain at p = 2 kbar show satisfactory agreement with cor-
responding results from NMR. These findings are encour-
aging to study the influence of pressure on the relaxation
dynamics of lysozyme by MD simulation. Analysing simu-
lations at ambient pressure and at p = 3 kbar we find that
moderate pressures below the denaturation threshold
reduce the atomic fluctuations by about 30%, but do not
influence the relaxation dynamics of the protein. This con-
cerns the single particle dynamics, which is reflected in the
time evolution of the mean square displacement, as well as
the collective dynamics. Both types of dynamics are well
described by a fractional Ornstein–Uhlenbeck process,
where the atomic position is the dynamical variable in
the case of particle dynamics and the atomic density fluctu-
ation in the case of collective dynamics. Our findings are
consistent with a preliminary analysis of data obtained
from quasielastic neutron scattering on lysozyme in solu-
tion, which were obtained from the IN5 spectrometer at
the Institut Laue-Langevin in Grenoble [31].
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