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[1] A model for the nonlinear dynamics of mirror modes
near the instability threshold is presented. By matching the
quasi-linear theory for the space-averaged distribution
function with a reductive perturbative description of the
mirror modes, the model reproduces the early-time flattening
of the distribution function and the development of magnetic
humps from an initial noise, in agreement with Vlasov-
Maxwell numerical simulations. It suggests a possible
mechanism at the origin of the mirror structures observed
in planetary magnetosheaths and in the solar wind.
Citation: Hellinger, P., E. A. Kuznetsov, T. Passot, P. L. Sulem,

and P. M. Trávnı́ček (2009), Mirror instability: From quasi-

linear diffusion to coherent structures, Geophys. Res. Lett., 36,

L06103, doi:10.1029/2008GL036805.

1. Introduction

[2] Pressure-balanced magnetic structures in the form of
magnetic enhancements (humps/peaks) and depressions
(holes/dips) with a small change in the magnetic field
direction that are observed in the solar wind [Winterhalter
et al., 1995] and in planetary magnetosheaths [Joy et al.,
2006] are often associated with the nonlinear evolution of
the mirror instability [Vedenov and Sagdeev, 1958]. The
understanding of the nonlinear processes involved in the
saturation of this instability remains nevertheless incom-
plete. In spite of its aperiodic character, a quasi-linear (QL)
theory was first developed by Shapiro and Shevchenko
[1964] under the assumption that for each unstable wave
vector k, the growth rate gk is much smaller than kkvkth,
where vkth is the ion parallel thermal velocity and kk is the
parallel component of k (for the sake of simplicity, electrons
are assumed to be cold). This approach which is usually
based on a random phase approximation and induces a
diffusion in the velocity space, cannot describe regimes
involving coherent structures. Phenomenological models,
assuming the cooling of trapped particles in magnetic troughs
[Kivelson and Southwood, 1996; Pantellini, 1998] were
constructed to explain the existence of deep magnetic holes,
but hardly predict magnetic humps. In order to address the
onset of coherent structures as the nonlinear development of
the mirror instability, an asymptotic analysis near threshold,
based on a reductive perturbative expansion of Vlasov-
Maxwell (VM) equations was recently proposed [Kuznetsov
et al., 2007a; Califano et al., 2008]. The resulting equation

can be viewed as an extension of the dispersion relation of
the mirror modes including the dominant nonlinear
coupling whose effect is to reinforce the mirror instability,
thus leading to a finite-time singularity associated with a
subcritical bifurcation [Kuznetsov et al., 2007b]. The form
of this equation is generic, up to the coefficients which
depend on the equilibrium distribution function. The sign of
the nonlinear coupling coefficient prescribes in particular
the geometry (magnetic holes or peaks) of the emerging
structures. For a bi-Maxwellian distribution function, this
coefficient is positive and the model predicts the formation
of magnetic holes, while direct numerical simulations with
the same initial conditions indicate the formation of magnetic
humps. The formation of these structures is in fact preceded
by a transient regime during which the distribution function
displays a significant flattening, reminiscent of a quasi-linear
evolution. The aim of the present paper is to suggest a
possible matching of the two descriptions, aimed at
qualitatively reproducing the numerical observations.

2. Quasi-Linear Description

2.1. Quasi-Linear Model

[3] The QL approximation assumes a wide spectrum of
non-coherent random-phasemodes (or a sufficient overlapping
of resonances). The modes are supposed to have low ampli-
tudes together with slowly varying frequency (and growth/
damping rate), so that they can be treated at the linear level. At
the second order, they react on the distribution function, which
leads to a slow diffusion for the velocity distribution function
averaged over the space variables and the gyroangle:
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Here n is the background density of the protons, m their
mass, and pB = B0

2/8p denotes the background magnetic
pressure. Furthermore, near threshold, one has the positive
coefficients [Hellinger, 2007] (W denoting the proton
gyrofrequency),
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2.2. Numerical Algorithm

[4] We restrict ourselves to the case where the problem is
one-dimensional in the space variable. The angle qkB
between k and the ambient magnetic field is fixed to the
value corresponding to the most unstable direction, leading
to kk = k cos qkB, k? = k sin qkB. The distribution function is
conveniently written as a sum of the initial bi-Maxwellian
contribution

f 0ð Þ ¼ 1
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and the variation df.
[5] For the numerical simulation of the QL system, the

distribution function df is defined on a two-dimensional grid
dfi,j = df [(i � 1/2)Dvk, ( j � 1/2)Dv?] with i = 0, . . ., Nk + 1
and j = 0, . . ., N? + 1; only a quarter of the distribution
function is considered, due to the assumed symmetries df(vk,
v?) = df(±vk, ±v?). This is reflected in the inner boundary
conditions df0,j = df1,j and dfi,0 = dfi,1. For the outer
boundary conditions, we assume zero derivatives, dfNk+1, j

=
dfNk, j

and dfi,N?+1
= dfi,N?

. The wavenumber variable k is
discretized as km = mDk, m = 1, . . ., Nk.
[6] For solving the diffusion equation (1), the partially

implicit duFort-Frankel method is used, with space-centered
derivatives in the velocity space. This is a three level
method requiring df at times nDt and (n � 1)Dt (where

Dt is the time step). The first time step is done using a
forward time centered scheme. The magnetic modes bk are
advanced in a similar manner.
[7] The calculation of various coefficients is performed

by adding the initial bi-Maxwellian values b? = mnvth?
2 /pB,

bk = mnvthk
2 /pB, bG = b?

2 /bk, ~v = vthk/bG and ~r = vth?(bG �
b?)

1/2/W to the contributions originating from df. The
integration over vk and v? is replaced by the summation
over i (from 1 to Nk) and j (from 1 to N?). To calculate ~v, we

fit the quantity
R1
0
v?
4 dfdv? around 0 by a polynomial a0 +

a1vk
2 + a2vk

4; the coefficient a1 is then used to evaluate the
contribution from df to ~v.
[8] In the following simulations, we use initial conditions

such that bk = 1 and b? = 1.65, which gives G = 0.0725,
thus ensuring that the system is close to threshold. We
choose qkB = 83.3�, because this angle corresponds to
the maximum growth rate max(g) = 1.03 � 10�4 W, reached
for k = 0.118 W/vA. The numerical parameters are Dk =
9.2 � 10�4W/vA, Nk = 256, Dvk = 4.9 � 10�4vA, Nk = 1024,
Dv? = 4.9 � 10�3vA, N? = 1024, Dt = 0.2/W.

2.3. Quasi-Linear Evolution

[9] Figure 1 shows the evolution of different quantities
from the QL simulation. From left to right, the fluctuating
magnetic energy WB =

P
k jbkj

2, the distance from threshold
G and the maximum growth rate max(g) are displayed as
functions of time. Initially, the wave energy increases
exponentially, then the QL diffusion reduces G and conse-
quently max(g), making the system to approach marginal
stability. During this evolution, ~v slightly increases (by about
0.1%) whereas ~r decreases (by about 2%) and c remains
essentially constant (its relative decay is of order 10�8).
[10] The QL diffusion strongly affects the resonant region.

Figure 2 displays the proton distribution function at the
end of the simulation (t = 1.4 � 105/W): Figure 2 (top)
provides a grayscale plot of v?df as a function of vk and v?.
We note a strong similarity with Figure 4 of Califano et al.
[2008] which displays the same quantity obtained by direct
numerical integration of VM equations, supporting the
relevance of a QL description of the early stage of nonlinear
mirror mode evolution.
[11] The shape of the level lines of the distribution

function in Figure 2 is easily interpreted by noting that for
v? of order unity and vk small but out of the resonance, the
parallel diffusion Dkk term is dominant in equation (1). A
simple analysis shows that at a fixed time the solution of the

Figure 1. Results of the QL simulation: (left) fluctuating magnetic energy WB =
P

k jbkj2, (middle) distance from
threshold G, (right) maximum growth rate max(g) as functions of time.
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diffusion equation only depends on the self-similar coordi-
nate vk/v? whereas, in the region of small vk the self-similar
variable is vk/v?

2 .
[12] Figure 2 (bottom) plots the profile of df/f (0) as a

function of vk for v? = 2vA in the conditions of Figure 2
(top). In order to interpret this graph, a simple model can be
considered for the longitudinal diffusion. Concentrating on
the most unstable mode, we neglect the wave-vector
summation and define a rescaled time by dt = jbkj2dt.
Furthermore, since v? � O(1), kk � � and gk � �2 (here � =
G/c  1), we may restrict ourselves to the model equation
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supplemented by the initial condition f (0) = exp(�v2/vth
2 )

(up to an irrelevant multiplicative constant). The variation
of the distribution function df = f � f (0) then obeys
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Assuming v  vth, we have for the source term S, defined
as the r.h.s. of equation (9),
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S has a minimum at 0, S(0) = �2/vth
2 and two maxima for

v = ±
ffiffiffi
3

p
�, equal to 1/4vth

2 . Its profile is qualitatively similar
to that of df in Figure 2 (bottom). Thus S is of order unity in
the small-velocity range we are interested in, while its

typical scale (in the v variable) is of order �. As a
consequence df will also have the same typical scale in v.
Furthermore, after a typical diffusion time t � �2, we have
df � �2. Coming back to the physical time, we write t =
t/jbkj2 � �2/jbkj2. Estimating the level of saturation of the
magnetic fluctuations by balancing the diffusion time
�2/
P

k jbkj
2 and the inverse growth time 1/�2, gives at the

saturation time
P

k jbkj
2� �4, in agreement with the numerics

where � = 10�2 (as estimated from gk = 10�4) and whereP
k jbkj

2 � 10�8 at the saturation time t � 5 � 104.

3. Onset of Coherent Structures

[13] To address the regime of structure formation, the
reductive perturbative expansion near threshold developed
by Kuznetsov et al. [2007a] and Califano et al. [2008],
may be easily extended to any (frozen) smooth equilibrium
distribution function f (vk

2, v?) (provided ~v > 0, ~r2 > 0,
and c > 0). It leads to an equation for the (normalized)
parallel perturbation of the magnetic field, b = dBz(r, t)/B0,
of the form
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The linear part of this equation reproduces the linear growth
rate, whereas the nonlinear term involves a coefficient L
given by

L ¼ bL � 2bG þ
b?
2

þ 1

2
with bL ¼ mn
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where for a bi-Maxwellian distribution we have bL =
3/2b?

3 /bk
2. These results are obtained by neglecting the

contribution of resonant particles whose effect is subdomi-
nant in the case of a smooth distribution function with no
sharp variations. Similar results were obtained using the
drift-kinetic approach by Pokhotelov et al. [2008]. We note
here that most of the criticism of this paper with respect to
Kuznetsov et al. [2007a] is due to a misunderstanding about
the used variables.
[14] In order to take into account the QL regime observed

at early time in VM simulations, we are led to modify the
non-linear asymptotic equation (11), by assuming that the
coefficients are not frozen to their initial values but are
evaluated from the instantaneous distribution function given
by the QL diffusion equation. The computation of the
coefficient L needs however to be revisited because, as
previously mentioned, the QL evolution predicts that in the
time of order 1/�2 needed for the nonlinearity to become
relevant, the perturbation of the distribution function satisfies
df � �2. Since the typical variation takes place on a parallel
velocity range of order �, it follows that @2f/(@vk

2)2 � 1/�2

near vk = 0, leading to bL � 1/� because the effective
integration range on the vk is of order �. The contribution of
the resonant particles can thus no longer be neglected in the
evaluation of the nonlinear coupling. The magnitude of all
the other coefficients remain in contrast correctly estimated.
[15] In order to retain the contribution of the resonant

particles to bL, we return to the pressure balance equation as

Figure 2. Results of the QL simulation at t = 1.4 � 105/W:
(top) Gray scale plot of v?df as a function of vk and v?. Black
corresponds to negative values and white to positive ones;
(bottom) Profile of df/f (0) as a function of vk at v? = 2vA.
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given by Califano et al. [2008], and retain the full
contribution to bL that is no longer a number but becomes
the operator

B ¼ mn
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Neglecting the time derivative indeed reproduces bL. From
the Plemenj formula, it follows that

B ¼ bL þ
ffiffiffi
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whose initial bi-Maxwellian value is vthk/bL. This finally
leads to
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The presence of a denominator in the right-hand side of
equation (16) reminds one of the phenomenological correc-
tion to equation (11) suggested by Pokhotelov et al. [2008] to
model the flattening of the distribution function. A main
difference originates from the dynamical evolution of the
coefficients involved in our description. Let us investigate the

predictions of our model that retains the diffusion equation of
the QL theory for the distribution function, but prescribes the
nonlinear equation (16) for the evolution of the magnetic
fluctuations. Figure 3 shows the time variation of different
quantities as obtained by the numerical integration of this
model (solid line), using the same initial conditions as for
the QL simulation. From left to right and top to bottom, it
displays the time evolution of the energy of the parallel
magnetic fluctuations WB, the distance to threshold G, the
growth rate gk of the most unstable mode, the maximum of
the magnetic fluctuations b(x), together with the coefficients
L and vL

�1, as functions of time. The dotted line in Figure 3
corresponds to the time variation of the maximum of �b(x).
For comparison, the dashed curves show the evolution in the
QL model (see Figure 1).
[16] We observe that for a while, the dynamics is essen-

tially described by the QL model, but a departure is observed
when the QL evolution tends to saturate the magnetic field
fluctuations. In this model, the magnetic energy continues to
grow and the maximum of b(x) displays a sharp increase
suggesting a finite-time blowup, consistent with a subcritical
bifurcation [Kuznetsov et al., 2007b]. The computation
should thus be interrupted due to the lack of resolution. The
arrest of the singularity would require additional effects,
not retained in the present model, such as nonlinear finite
Larmor radius corrections [Kuznetsov et al., 2007a]. Figure 4
shows the profile of the magnetic fluctuations b at t =
6.3 � 104, shortly before the numerical explosion. We observe
that the present model predicts the formation of magnetic
humps, in agreement with the VM numerical simulations.
The reason is that the early QL evolution leads to a change of
sign of L which, being initially positive, becomes strongly
negative. A similar evolution is observed in VM direct
simulation [Califano et al. 2008, section 4.1] (which starts

Figure 3. Results of the simulation of equation (16): solid lines show the time evolution of (from left to right, from top to
bottom) WB =

P
k jbkj

2, G, maximum of gk, maximum of the magnetic fluctuations b(x), L and vL
�1. For comparison,

dashed lines show the evolution in the QL model. The dotted line in the left-bottom plot refers to the evolution of the
maximum of �b(x), as predicted by equation (16).
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further from threshold, G = 0.6) where L evolves from 6
to about �30. In the context of the QL evolution that
predicts a 1/� scaling for L it is not surprising that the
model gives an even larger magnitude of L. Nevertheless,
further corrective terms with regularizing effects could
possibly act near threshold, beyond the denominator in the
right-hand side of equation (16) which also involve a
relatively large coefficient. Particle trapping could for
example partially inhibit QL effects [Pantellini et al.,
1995], without changing the global features of the dynamics.

4. Conclusion

[17] Quasi-linear evolution of the mirror instability was
investigated by direct integration of the corresponding
diffusion equation. The resulting flattening of the distribution
function is in good agreement with the early time results of
Vlasov-Maxwell simulations. A dynamical model was then
presented that reproduces the formation of mirror structures
observed at later times. It provides a possible mechanism
for the formation of magnetic humps in a mirror unstable
plasma, as revealed by satellite measurements. A main
characteristic of the present model is the role of kinetic
effects that lead to small-amplitude but very sharp variations
of the parallel-velocity distribution function of the resonant
particles, which eventually prescribes the geometry of the
emerging structures.
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