M Sanchez
email: msanchez@toulouse.inra.fr

D Allouche
email: allouche@toulouse.inra.fr

S De Givry
email: degivry@toulouse.inra.fr

T Schiex
email: tschiex@toulouse.inra.fr

Poupées russes et décomposition arborescente

Les problèmes d'optimisation dans les modèles graphiques ont été étudiés dans différents formalismes de l'intelligence artificielle tels que les CSP pondérés (weighted CSP ou WCSP), le maximum de satisfiabilité (MaxSAT) ou dans les réseaux probabilistes (réseaux Bayésiens et champs markoviens). En identifiant des sous-problèmes conditionnellement indépendants,qui sont résolus de façon indépendante et dont l'optimum est mémorisé, il est possible de rendre les algorithmes de type Séparation-Évaluation (Branch and Bound) asymptotiquement plus efficaces. Mais la localité des bornes induites par la décomposition affaiblit les effets réels de ce résultat asymptotique car de nombreux sous-problèmes, ne participant pas à la construction d'une solution optimale, sont résolus à l'optimum inutilement.

En s'inspirant de l'algorithme des poupées russes (RDS pour Russian Doll Search), une approche possible pour surmonter cette faiblesse consiste à (récursivement) résoudre une relaxation de chacun des sous-problèmes pour obtenir des bornes renforcées. L'algorithme ainsi défini généralise à la fois l'algorithme RDS mais aussi les algorithmes de types Branch and Bound exploitant une décomposition arborescente tels que BTD ou AND-OR Branch and Bound. Nous étudions son efficacité sur différents problèmes et fermons une instance très dure de problème d'affectation de fréquences ouverte depuis plus de 10 ans.

Introduction

Le traitement de modèles graphiques est un problème central de l'intelligence artificielle. L'optimisation d'une combinaison de fonctions de coût local est en particulier étudiée dans les réseaux de contraintes valués [START_REF] Schiex | Valued constraint satisfaction problems : hard and easy problems[END_REF] . Elle permets de capturer des problèmes tels que le problème MaxSAT pondéré, CSP pondérés, recherche d'une explication de probabilité maximum (MPE pour Maximum Probability Explanation) dans les réseaux Bayésiens et les champs markoviens. Ses applications directes sont nombreuses notamment en affectation de ressources [START_REF] Verfaillie | Russian Doll Search for Solving Constraint Optimization Problems[END_REF][START_REF] Cabon | Radio link frequency assignment[END_REF] et en bioinformatique [START_REF] Sanchez | Mendelian error detection in complex pedigrees using weighted constraint satisfaction techniques[END_REF].

Ces dernières années, afin de résoudre des problèmes de satisfaction, d'optimisation ou de comptage, différents algorithmes de recherche arborescente exploitant le couplage d'une décomposition arborescente du problème avec une propagation des informations dures du réseau ont été proposés. Cette classe d'algorithme couvre l'algorithme de Recursive Conditioning [START_REF] Darwiche | Recursive Conditioning[END_REF], l'algorithme Backtrack bounded by Tree Decomposition (BTD) [START_REF] Terrioux | Hybrid backtracking bounded by tree-decomposition of constraint networks[END_REF] et l'algorithme AND-OR graph search [START_REF] Marinescu | Memory intensive branch-and-bound search for graphical models[END_REF], tous héritiers de l'algorithme de Pseudo-Tree Search [START_REF] Freuder | Taking advantage of stable sets of variables in constraint satisfaction problems[END_REF]. En comparaison avec des algorithmes de recherche arborescente traditionnels, ces algorithmes offrent des complexités asymptotiques améliorées, seulement exponentielles dans la largeur d'arbre du graphe du problème. Ce gain s'obtient toutefois au prix d'une restriction dans l'ordre d'affectation des variables (voir [START_REF] Jégou | Dynamic management of heuristics for solving structured CSPs[END_REF]).

Dans le contexte de l'optimisation (sans perte de généralité, nous considérons des problèmes de minimisation), l'exploitation d'une décomposition du problème a pour effet secondaire la perte de bornes globales. Dans les algorithmes Branch and Bound en profondeur d'abord traditionnels (DFBB pour Depth First Branch and , Bound), l'élagage se produit dès que le coût de la meilleure solution connue (le majorant) rencontre un minorant spécifique, habituellement calculé à partir d'une relaxation du problème global. Lorsqu'une décomposition arborescente est exploitée et qu'une affectation des variables connectant un sous-problème au reste du problème rend ce sous-problème indépendant, une solution optimale du sous-problème (conditionné par cette affectation) est recherchée. Ce calcul de solution optimale est coûteux, et souvent inutile car la solution optimale du sous-problème obtenue ne fait pas nécessairement partie de la solution optimale globale (du fait du reste du problème). Pour limiter ce comportement de "trashing" désagréable, il est possible d'informer l'algorithme en charge de la recherche d'une solution optimale qu'il doit absolument produire une solution suffisamment bonne pour pouvoir s'intégrer dans une solution globale ou sinon s'arrêter dès qu'il prouve que c'est infaisable. Ce majorant initial est obtenu en soustrayant du majorant global une combinaison des minorants disponibles sur le reste du problème.

Dans cet article, nous avons tenté d'améliorer l'algorithme décrit dans [START_REF] De Givry | Exploiting Tree Decomposition and Soft Local Consistency in Weighted CSP[END_REF] qui introduit des minorants obtenus par un filtrage cohérence locale pondérée [START_REF] Cooper | Arc consistency for soft constraints[END_REF] dans l'algorithme BTD. Dans l'objectif d'une meilleure prise en compte de la contribution du problème global dans la définition des majorants locaux, nous remplaçons le moteur de type "Branch and Bound" utilisé dans BTD par une algorithme de type "Poupées Russes" [START_REF] Verfaillie | Russian Doll Search for Solving Constraint Optimization Problems[END_REF]. L'algorithme RDS est étendu afin de pouvoir exploiter une décomposition arborescente et un niveau de cohérence local plus élevé. Dans l'algorithme RDS-BTD ainsi défini, des relaxations des sous-problèmes conditionnellement indépendants identifiés par la décomposition arborescente sont résolues de façon récursive. Les coûts des solutions optimales de ces relaxations définissent de puissants minorants et fournissent donc des majorants locaux améliorés, permettant ainsi de réduire de façon drastique le comportement de "trashing" observé.

Dans la suite de l'article, nous introduisons d'abord le cadre des CSP pondérés, l'algorithme BTD et l'algorithme RDS. Nous présentons ensuite notre algorithme générique qui peut se spécialiser en BTD ou en RDS. Enfin, l'algorithme RDS-BTD est évalué sur différentes instances de problèmes réels issues du domaine de l'affectation de fréquences et de la sélection de "Tag SNP" (en bioinformatique).

Weighted Constraint Satisfaction Problem

Un CSP pondéré (Weighted CSP, WCSP) est un quadruplet (X, D, W, m). X et D sont des ensembles de n variables et domaines, comme dans les CSP classiques. Le domaine de la variable i est noté D i , avec une taille de domaine maximum notée d. Étant donné un sous-ensemble de variables S ⊆ X, on note ℓ(S) l'ensemble des n-uplets (tuples) définis sur S. W est un ensemble de fonctions de coût. Chaque fonction de coût (ou contrainte molle) w S de W est définie sur un ensemble de variables S appelé sa portée. Cette dernière est supposée différent pour chaque fonction de coût. Une fonction de coût w S assigne un coût à chaque affectation des variables de S i.e. : Pour les fonctions de coût binaires et unaires, nous utilisons des notations simplifiées : une fonction de coût binaire entre les variables i et j est notée w ij . Une fonction de coût unaire sur la variable i est notée w i . Nous faisons l'hypothèse qu'il existe pour chaque variable, une fonction de coût unaire w i ainsi qu'une fonction de coût d'arité nulle notée w ∅ correspondant à un coût constant payé par toutes affectations.

Le coût d'une affectation complète t ∈ ℓ(X) dans un problème P = (X, D, W, m) est égal à Val P (t) = w S ∈W w S (t[S]) où t[S] représente la projection habituelle d'un tuple sur l'ensemble de variables S. La minimisation de Val P (t) défini un problème d'optimisation avec un problème de décision associé qui est NP-complet.

L'établissement d'une cohérence locale donnée sur un problème P consiste à transformer P = (X, D, W, m) en un problème P ′ = (X, D, W ′ , m) qui est équivalent à P (Val P = Val P ′) et qui satisfait la propriété de cohérence locale considérée. Ce processus peut augmenter w ∅ et fournir ainsi un minorant amélioré du coût optimum. Il s'appuie sur l'application de transformations préservant l'équivalence (EPT) qui déplace les coûts entre des portées différentes [START_REF] Schiex | Arc consistency for soft constraints[END_REF][START_REF] Cooper | Arc consistency for soft constraints[END_REF][START_REF] De Givry | Existential arc consistency : Getting closer to full arc consistency in weighted CSPs[END_REF][START_REF] Cooper | Optimal soft arc consistency[END_REF]. Un algorithme de recherche peut exploiter la propriété précédente pour autant qu'un ordre des variables adapté soit utilisé : les variables d'un cluster C e quelconque doivent être instanciées avant les variables restantes dans ses clusters fils. Dans ce cas, pour tout cluster C f ∈ Fils(C e), une fois le séparateur S f affecté, le sous-problème P f conditionné par l'affectation courante A f de S f (notée P f /A f) peut être résolue à l'optimalité indépendemment du reste du problème. Le coût optimal de P f /A f peut alors être enregistré avec pour conséquence qu'il ne sera jamais plus résolu pour cette affectation du séparateur S f . Ainsi, des algorithmes tels que BTD ou AND-OR graph search sont capables d'avoir une complexité temporelle exponentielle seulement dans la taille du plus grand cluster.

Dans [START_REF] De Givry | Exploiting Tree Decomposition and Soft Local Consistency in Weighted CSP[END_REF], l'algorithme BTD exploite de minorants produits par le maintien d'une propriété de cohérence locale pondérée. Pour tout cluster C e , une fonction de coût constante (d'arité nulle) spécifique au cluster (notée w e ∅) est utilisée. Elle peut être incrémentée par le mécanisme de filtrage par cohérence locale et ainsi fournir pour chaque cluster un minorant du coût d'une solution optimale. Au delà d'un meilleur élagage, ceci permet également d'éviter de résoudre systématiquement les sous-problèmes à l'optimalité en transmettant une exigence de coût maximum (un majorant) pour chaque sous-problème P f . Pour P 1 , au départ, le coût de la meilleure solution connue définit le majorant initial cub 1 . Il faut ensuite améliorer ce coût. Si l'on considère un cluster arbitraire C f , fils de C e avec un majorant associé cub e , le majorant du sous-problème P f est obtenu est en soustrayant de cub e les minorants associés à tous les autres clusters fils de C e . Ainsi, des minorants plus forts sur les autres sous-problèmes induit un majorant plus fort pour le problème courant.

Du fait de ce majorant initial, l'optimum de P f n'est pas nécessairement calculé mais un minorant est toujours obtenu. Ce minorant et son éventuelle optimalité sont enregistrés dans LB P f /A f et Opt P f /A f . Ils sont initialement fixés respectivement à 0 et faux.

Pour un élagage amélioré et de meilleurs majorants, BTD utilise le maximum du minorant w e ∅ (fourni par la cohérence locale) et du minorant enregistré (LB P f /A f). Les minorants enregistrés ne peuvent être utilisés que lorsque le séparateur S f est totalement instancié par l'affectation courante A. Ceci permet récursivement de définir le minorant utilisé dans [START_REF] De Givry | Exploiting Tree Decomposition and Soft Local Consistency in Weighted CSP[END_REF] comme lb(P e /A) = w e ∅ ⊕ C f ∈Fils(Ce) max(lb(P f /A), LB P f /A f).

Exemple 2 Dans l'exemple 1, les variables {1, 2, 3, 4} de C 1 sont affectées en premier, en utilisant par exemple l'heuristique d'ordonnancement dynamique min domain/max degree. L'algorithme BTD ainsi défini a une complexité temporelle qui, dans le pire des cas, est exponentielle dans la taille du plus grand cluster moins un, un nombre aussi appelé largeur d'arbre de la décomposition arborescente (C, T). Sa complexité spatiale est, dans le pire des cas, exponentielle en s où s = max Ce∈C |S e |, taille du plus grand séparateur [START_REF] De Givry | Exploiting Tree Decomposition and Soft Local Consistency in Weighted CSP[END_REF].

Soit A = {(4, a), (1, a), (2, b), (3, b)} l'affectation courante. Le filtrage par la cohérence locale EDAC [10] sur P 1 /A produit w 1 ∅ = 2, w 2 ∅ = w 4 ∅ = 1, w 3 ∅ = w 5 ∅ = 0, indui- sant lb(P 1 /A) = Ce∈C w e ∅ =

Poupées russes et décomposition arborescentes

L'algorithme original des poupées russes (RDS) [START_REF] Verfaillie | Russian Doll Search for Solving Constraint Optimization Problems[END_REF], a été introduit en 1996, alors qu'aucune cohérence locale pour les CSP pondérés n'avait été définie. Son mécanisme de base a été élaboré pour construire des minorants forts à partir de minorants plus faibles en utilisant une recherche arborescente. L'application de RDS consiste à résoudre n sous-problèmes imbriqués d'un problème initial P avec n variables. Étant donné un ordre des variables statique, RDS commence par résoudre le sous-problème défini par la dernière variable seule. Ensuite, il inclut la variable précédente dans l'ordre et résout le sous-problème avec deux variables. Ce processus est répété jusqu'à la résolution compléte du problème. Chacun des sous-problèmes est résolu avec un algorithme de type DFBB utilisant un ordre statique des variables suivant l'ordre de la décomposition en sous-problèmes imbriqués. Le minorant amélioré utilisé dans l'algorithme DFBB est obtenu en combinant le minorant faible fourni par "Partial Forward Checking" (similaire au filtrage par cohé-rence de noeud [START_REF] Larrosa | Solving Weighted CSP by Maintaining Arc-consistency[END_REF]) avec l'optimum du sous-problème résolu à l'étape précédente par RDS.

Nous nous proposons d'exploiter le principe de RDS en s'appuyant sur une décomposition arborescente (RDS-BTD). La principale différence avec RDS réside dans le fait que l'ensemble des sous-problèmes résolus est défini par une décomposition arborescente enracinée (C, T) : RDS-BTD résout |C| sous-problème ordonnés par un parcours en profondeur de T , démarrant aux feuilles jusqu'à la racine P rds L'avantage de l'utilisation de BTD réside aussi dans le fait que les minorants enregistrés peuvent aussi être exploités dans les itérations suivantes de RDS-1 En fait, du fait que le filtrage par cohérence locale peut déplacer des coûts entre les clusters, le minorant LB rds P f doit être ajusté. Ceci est rendu possible par l'utilisation de la structure de données ∆W introduite dans [START_REF] De Givry | Exploiting Tree Decomposition and Soft Local Consistency in Weighted CSP[END_REF] en soustrayant Le pseudo-code de l'algorithme RDS-BTD est présenté ci-aprés comme l'algorithme 1. L'algorithme BTD utilisé est le même que dans [START_REF] De Givry | Exploiting Tree Decomposition and Soft Local Consistency in Weighted CSP[END_REF] Les complexités temporelles et spatiales de RDS-BTD sont celles de BTD. Notez que sans mémorisation, en utilisant uniquement un filtrage par cohérence de noeud et une décomposition induite par un pseudo-arbre (avec un cluster pour chaque variable et un ordre statique des variables), RDS-BTD est équivalent à l'algorithme Pseudo-Tree RDS [START_REF] Larrosa | Pseudo-tree search with soft constraints[END_REF]. Si

L i∈S f max a∈D i ∆W f i (a)). 2 Une valeur a ∈ D i totalement supportée vérifie w i (a) = 0 et ∀w S ∈ W with i ∈ S, ∃t ∈ ℓ(S) with t[i] = a tel que w S (t) = 0.

Résultats expérimentaux

Nous avons codé DFBB, BTD, RDS-BTD, et RDS dans toulbar2 un solveur C++ de CSP pondérés 3 . A l'intérieur des clusters, l'heuristique dynamique de choix de variable min domain / max degree est utilisée (par BTD et RDS-BTD) et par DFBB, les exaequo sont classés par les coûts unaires maximum. Cette heuristique est modifiée par une heuristique de type "conflict back-jumping" comme cela est proposé dans [START_REF] Lecoutre | Last conflict based reasoning[END_REF]. Durant la recherche, un niveau de cohérence locale EDAC [START_REF] De Givry | Existential arc consistency : Getting closer to full arc consistency in weighted CSPs[END_REF] est maintenu à chaque étape. RDS s'appuie sur la cohérence de noeud [START_REF] Larrosa | Solving Weighted CSP by Maintaining Arc-consistency[END_REF] seulement. Les décompositions arborescentes sont construites par l'heuristique "Maximum Cardinality Search" (MCS), en utilisant le plus grand cluster comme racine (excepté pour le problème scen07). À partir de la décomposition arborescente fournie par MCS, nous avons dérivé des décompositions arborescentes alternatives définies par une taille de séparateur maximum s max comme cela est proposé dans [START_REF] Jégou | Dynamic management of heuristics for solving structured CSPs[END_REF] : en partant des feuilles de la décomposition, nous fusionnons un cluster avec son père si la taille du séparateur dépasse s max . Un ordre des variables compatible avec la décomposition arborescente enracinée exploitée est utilisé pour l'établissement de la cohérence locale DAC [START_REF] Cooper | Arc consistency for soft constraints[END_REF] ainsi que par RDS.

Les minorants enregistrés (et si disponibles, fournis par RDS) sont exploités par le filtrage par cohérence locale dés que le séparateur correspondant est totalement affecté. Si le minorant enregistré est optimal ou supérieur au minorant fourni par EDAC, le sous-problème (P e /A e) correspondant est déconnecté du filtrage par cohérence locale et la différence positive entre les minorants est ajoutée au minorant du cluster père (w Père(Ce)

∅

), conduisant à de nouveaux effacements de valeurs par cohérence de noeud.

Toutes les méthodes s'appuient sur un schéma de branchement binaire. Si d > 10, le domaine ordonné est coupé en deux parties (autour de la valeur centrale) sinon, la variable est affectée à son support complet ou cette valeur est retirée du domaine. Dans les deux cas, la branche contenant la valeur support complet est explorée en premier, excepté pour RDS et les méthodes dérivées de BTD qui choisissent en priorité (si elle existe) la branche qui contient la valeur de la dernière solution trouvée. Sauf mention précise, aucun majorant initial n'est fourni. Les temps CPU présentés correspondent au temps nécessaire pour trouver une solution optimale et prouver son optimalité.

Affectation de fréquences

Parmi les différentes instances du CELAR [START_REF] Cabon | Radio link frequency assignment[END_REF] qui peuvent être décrites comme un CSP pondéré binaire, nous avons sélectionné deux instances difficiles : scen06 and scen07. L'instance scen07 a été réduite par différentes règles de prétraitement (filtrage des domaines par singleton EDAC, par les règles de dominance proposées par Koster [START_REF] De Givry | Singleton consistency and dominance for weighted CSP[END_REF], élimination des variables de degré faible) conduisant à une instance où n = 162, d = 44 et e = 764. La décomposition arborescente utilisée a un s max = 3 et une largeur d'arbre de 53. Un majorant initial (354008) a été fourni à toutes les méthodes. Ce majorant et la solution correspondante ont été trouvés par un algorithme de type DFBB utilisant un mécanisme de type "Limited Discrepancy Search". Cette solution est également utilisée par RDS-BTD comme choix de valeur initial (les performances de DFBB et BTD sont dégradées par ce choix). Le cluster racine a été choisi sur la base du "First Fail Principle" (cluster de coût optimal maximum). BTD et RDS-BTD trouvent l'optimum de 343592 et prouvent l'optimalité en respectivement 6 et 4.5 jours (amélioration de 26% pour RDS-BTD) sur un processeur à 2.6 GHz équipé de 32GB de mémoire. BTD a enregistré 90528 minorants (20% de l'espace des affectations de séparateurs) comparés aux 29453 (6.4%) mémorisés par RDS-BTD. DFBB n'a pas terminé en 50 jours. C'est la première résolution avec preuve d'optimalité de ce problème ouvert depuis plus de 10 ans.

Nous avons aussi résolu l'instance scen06 (100 variables avec une largeur d'arbre de 11) sans aucun prétraitement ni majorant initial. BTD et RDS-BTD ont pris 221 et 316 secondes respectivement pour trouver l'optimum et prouver l'optimalité. Ils ont respective-ment enregistré 5633 et 7145 minorants malgré le fait que la taille des séparateurs n'ait pas été restreinte (on observe un s max = 8). DFBB a pris 2588 secondes et RDS n'a pas terminé en 10 heures.

Sélection de Tag SNP

Ce problème apparaît en génétique et analyse du polymorphisme. Les SNP (ou Single Nucleotide Polymorphism, prononcé snip) sont des variations ponctuelles dans le génome d'individus d'une même espèce. Il se caractérise par une altération d'un seul nucléotide (A,T,C,or G) dans la séquence. Par exemple, un SNP peut changer la séquence D'ADN AAGGCTAA en ATGGCTAA. Pour qu'une variation soit considérée comme un SNP, elle doit apparaître dans au moins 1% de la population considérée. Dans les trois milliards de nucléotides que compte le génome humain, on dénombre plusieurs millions de SNP. Ils expliquent jusqu'à 90% de toutes les variations génétiques humaines, notamment une partie du risque héritable de maladies communes ainsi que la susceptibilité de réponses aux pathogènes, produits chimiques, médicaments vaccins et autres agents.

Le problème TagSNP est une forme de compression d'information avec perte consistant à sélectionner un sous-ensemble de SNP tel que les SNP sélectionnés (appelés tag SNP) capturent l'essentiel de l'information génétique. Le but est de capturer un ensemble de petite taille le plus informatif possible afin de rendre possible le criblage et l'analyse statistique d'une population de grande taille [START_REF] Hirschhorn | Genome-wide association studies for common diseases and complex traits[END_REF].

La mesure de corrélation r 2 entre une paire de SNP peut dans un premier temps être déterminée sur une petite population. Un tag SNP est considéré comme "représentatif" d'un autre SNP si les deux SNP sont suffisamment corrélés. Le problème de sélection de tag SNP le plus simple consiste à sélectionner un nombre minimum de tag SNP de façon à ce que tous les SNP soient représentés. Ceci est capturé par le fait que la mesure r 2 entre deux SNP est supérieure à un seuil θ (souvent fixé à θ = 0.8 [START_REF] Carlson | Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium[END_REF]). Nous considérons donc un graphe dans lequel chaque sommet est un SNP et où les arêtes sont pondérées par la mesure r 2 entre les SNP des sommets. Les arêtes dont le seuil est plus petit que θ sont supprimées. Le graphe filtré ainsi obtenu peut avoir plusieurs composantes connexes. Le problème TagSNP se réduit alors à un problème de couverture d'ensemble (set covering, NP-dur) sur chacune des composantes. Cette formulation simple du problème a été étudiée avec de bons résultats dans [START_REF] Choi | Efficient Genome Wide Tagging by Reduction to SAT[END_REF] via le compilateur c2d .

En pratique, le nombre de solutions optimales peut être très important et les outils spécialisés du domaines tel que FESTA [START_REF] Qin | An efficient comprehensive search algorithm for tagsnp selection using linkage disequilibrium criteria[END_REF], (en s'appuyant sur deux algo-rithmes incomplets), optimisent, en plus du nombre de tagsnp selection, des critères secondaires : Entre deux tag SNP, une mesure r 2 faible est préférée afin de maximiser la dispersion des tag SNP. Entre un non tag SNP et un de ses représentants, une mesure r 2 élevée est préférée afin de maximiser la représentativité de la sélection de tag SNP effectuée.

Pour un graphe connexe donné G = (V, E), nous construisons un WCSP binaire avec des coûts entiers capturant le problème TagSNP avec les critères secondaires précédents. Pour chaque SNP i, deux variables i s et i r sont introduites. i s est une variable booléenne indiquant si le SNP est sélectionné comme tag SNP ou non. Le domaine de i r est formé par l'ensemble des voisins de i complété avec i lui-même. Il indique le tag SNP qui est chargé de représenter i. Pour un SNP i, des fonctions de coût dures (avec des coûts nuls ou infinis) établissent le fait que i s ⇒ (i r = i). Des fonctions de coût dures similaires établissent (i r = j) ⇒ j s avec les SNP j voisins dans G. Une fonction de coût unaire sur chaque variable i s produit un coût élémentaire U si la variable est à vrai. Le WCSP résultant capture déjà le problème de couverture d'ensembles pur défini par le problème TagSNP.

Pour prendre en compte le critère de représentativité, une fonction de coût unaire est associée avec chaque variable i r . Si i r = i, elle génère un coût non nul égal à ⌊100. Ce problème est similaire à un problème de couverture d'ensembles (set covering) mais avec des coûts additionnels binaires (quadratiques). Ces critères sont ignorés par [START_REF] Choi | Efficient Genome Wide Tagging by Reduction to SAT[END_REF]. Dans cet article, c2d donne une représentation compacte de l'ensemble des solutions du problème de couverture simple, mais le nombre de solutions optimales est si grand (typiquement supérieur à des milliards) que l'application des critères secondaires à des solutions générées par c2d serait trop coûteuse. Comme le mentionnent les auteurs dans leur conclusion, une compilation directe des critères secondaire dans le d-DNNF ne semble pas immédiate. Elle nécessiterait une reformulation du problème sous forme MaxSAT.

Les instances considérées dérivent de données obtenues sur chromosome humain numéro 1, aimable-Fig. 3 -Temps de résolution global et nombre de problèmes résolus en faisant varier la taille maximale du séparateur s max . ment fournies par Steve Qin [START_REF] Qin | An efficient comprehensive search algorithm for tagsnp selection using linkage disequilibrium criteria[END_REF]. Deux valeurs de seuil, θ = 0.8 et 0.5 ont été essayées. Pour θ = 0.8, une valeur usuelle dans le domaine, 43251 composantes connexes ont été identifiées parmi lesquelles nous avons sélectionné les 82 plus grandes. Ces problèmes, qui incluent de 33 à 464 SNP, définissent des WCSP avec des tailles de domaine entre 15 et 224. Ces instances sont relativement faciles. Leur résolution à l'optimalité sélectionne 359 tag SNPs en 2h37' au lieu des 487 SNP sélectionnés en 3' par FESTA (en mode greedy), soit 21% d'amélioration. En mode hybride, FESTA sélectionne 370 tag SNP en 39h17' soit un modeste gain de 3% dans notre cas, mais avec une amélioration d'un facteur 15 en temps. Afin d'obtenir des problèmes plus difficiles, nous avons abaissé le seuil θ à 0.5. Ceci défini 19, 750 composantes connexes parmi lesquelles 516non triviales sont résolues par FESTA par approches incomplètes. Nous avons sélectionnées les 25 plus grandes. Ces instances contiennent de 171 à 777 SNP et ont une densité d'arête qui varie entre 6% et 37%. Elles définissent des instances WCSP dont la taille des domaines varie entre 30 et 266 et contenant de 8000 à 250, 000 fonctions de coûts. La décomposabilité de ces problèmes, estimée par le ratio entre la largeur d'arbre d'une décomposition fournie par MCS (s max = +∞) et le nombre de variables, varie de 14% à 23%.

Tous les problèmes ont été traités avec un majorant initial fourmi par FESTA (mode greedy). L'éxperimentation a été réalisé sur machine équipée de CPU à 2.8 Ghz et 32 GB de RAM. Pour mettre en valeur l'importance de l'utilisation d'une taille de séparateurs bornée (via s max), nous avons considéré des valeurs de s max allant de 0 (DFBB), 4, 8, 12, 24, 32 à +∞ pour les algorithmes BTD et RDS-BTD. Nous présentons le nombre de problèmes résolus dans une limite de temps de deux heures ainsi que le temps CPU global utilisé (une instance non résolue comptant pour deux heures). RDS présentant de mauvaises performances, les résultats correspondants ne sont pas présentés.

En utilisant s max = 4, notre implémentation améliore le taux de compression de FESTA-greedy par un rapport de 15% (en sélectionnant 2952 tag SNP au lieu de 3477 pour les 516-13 instances résolues). Notez que la différence en temps CPU entre BTD et RDS-BTD augmenterait si une plus grande limite de temps était utilisée. D'un point de vue pratique, le critère utilisé dans le problème TagSNP pourrait être raffinée encore en incluant des informations variées : informations d'annotation de séquences (e.g. préférant les tag SNP apparaissant dans les gènes), mesure entre triplets de SNP comme proposé dans [START_REF] Choi | Efficient Genome Wide Tagging by Reduction to SAT[END_REF] (SNP couverts par des paires de tag SNP). Les bonnes performances de RDS-BTD pourraient permettre de résoudre ces problèmes avec un seuil réaliste de θ = 0.8.

La Figure 4 représente, pour chaque instance (θ = 0.5) résolue au moins une fois lors des expérimentations précédentes, l'évolution individuelle du ratio largeur d'arbre de la décomposition sur taille du problème en fonction de s max . Le succès de la résolution (preuve d'optimalité obtenue dans le temps imparti) est matérialisé par un trait continu, à l'inverse les échecs sont représentés par des pointillés. L'unique résolution de l'instance "17034" (s max =4), est représentée par un carré gris.

Ainsi, on retrouve individuellement les 12 instances résolues pour s max = {4, 8}, mais il est intéréssant de noter que la nature des instances clôturées sont légèrement différentes. L'instance "17034" est résolue uniquement à s max =4, ce qui est compensé par l'instance "14359" , qui est résolue sur l'intervalle 8 et 12. Au total, 13 instances sont clôturées sur l'ensemble des 0 0,25 0,5 Pour la majorité des instances étudiées, reflétant la structure des problémes, les courbes montrent une zone de décroissance importante pour s max ∈ [0, 8], qui est sans doute à l'origine des bons résultats obtenus. La diminution de la largeur d'arbre est ensuite plus faible. Elle atteint progressivement (s max > 12), un plateau de pente faible, qui tends asymptotiquement vers le ratio associé à la décomposition complète du problème. Cette zone des courbes est souvent associée à un échec dans les expérimentations. Ainsi par exemple, l'instance 15757 est résolue pour des valeurs de s max de 4, 8, 12 et 24 avec respectivement des temps de 514, 7, 299 et 3810 secondes. Sur le plan de la décomposition, le ratio de largeur d'arbre passe de 0, 63 pour s max =4 à 0, 30 pour s max = 8 et s max = 12 pour enfin avoisiner 0, 2 à s max = 24. La résolution de l'instance est optimale à s max = 8. Le cas de cette instance n'est pas isolé. Comme le montre la Figure 3, la plupart des instances résolues présentent une valeur s max optimale pour la résolution. Cette situation correspond, probablement, à un bon compromis entre gains issus de la décomposition et pertes liées à une diminution dans la liberté de l'ordre de choix des variables.

Conclusion

L'exploitation pratique de décompositions arborescentes pour résoudre des problèmes d'optimisation combinatoire qui ont une structure n'est pas toujours immédiate. Les problèmes d'optimisation définissent de façon explicite un critère global qui doit être optimisé sur l'ensemble de l'instance. En résolvant des sous-problèmes conditionnellement indépendants, les algorithmes exploitant une décomposition arborescente des problèmes perdent la vision globale sur le critère en exploitant des bornes locales assez faibles. En fournissant des minorants forts pour chacun des sous-problèmes, l'approche des poupées russes permet d'injecter une information plus globale dans chaque résolution de sous-problème au travers d'un majorant initial renforcé, évitant ainsi nombre de résolution inutiles et menant à une efficacité accrue.

Au delà, nos expérimentations montrent que, même sur des problèmes ayant une structure forte, il est souvent profitable et parfois indispensable de restreindre la décomposition en bornant la taille des séparateurs. La théorie nous indique que la taille des séparateurs influe sur la complexité spatiale d'algorithmes tels que BTD ou RDS-BTD, mais même lorsque la taille des séparateurs n'est pas restreinte, aucun des instances considérées dans nos tests n'a pu épuiser la mémoire disponible. En pratique, l'amélioration en efficacité est d'abord explicable par la liberté supplémentaire dans l'ordonnancement des variables rendue possible par la fusion de clusters. Cette observation est cohérente avec les conclusions de [START_REF] Jégou | Dynamic management of heuristics for solving structured CSPs[END_REF]. On notera aussi que le nombre d'instanciations possibles d'un séparateur croît exponentiellement avec sa taille. Plus le séparateur est grand, et plus la probabilité qu'un minorant mémorisé serve à nouveau devient faible : la mémorisation est sans doute surtout utile dans les séparateurs de petite taille.

Concernant notre algorithme, la synergie entre RDS et BTD pourrait être améliorée en autorisant BTD à mémoriser des minorants associés à des instanciations partielles des séparateurs. Cela permettrait de réduire encore les recherches redondantes entre itérations successives de RDS-BTD et serait également profitable dans une stratégie d'approfondissement itératif (iterative deepening) comme cela a été proposé dans [START_REF] Cabon | Anytime Lower Bounds for Constraint Optimization Problems[END_REF].

Dans nos tests, le seuil s max a été appliqué de façon uniforme à toutes les instances. Il reste à étudier à quel point un ajustement de ce seuil par instance, en prenant en compte la taille des séparateurs existants dans le problème et les variations de largeur d'arbre qu'ils peuvent induire, pourrait améliorer les performances de l'algorithme.

 w S : ℓ(S) → [0, m]. L'ensemble des coûts possibles est [0, m] où m ∈ {1, . . . , +∞} représente un coût intolérable. Les coûts sont combinés par l'addition bornée ⊕, définie par a⊕b = min{m, a+b}, et comparés entre eux via ≥. Notez que le coût intolérable m peut être fini ou infini et qu'un coût b peut être soustrait d'un coût a plus large en utilisant l'opération ⊖ où a ⊖ b est égal à (a -b) si a = m . Sinon, il est égal à m.

Fig. 1 -Exemple 1

 11 Fig. 1 -Le graphe d'un WCSP et une décomposition arborescente.

4

 4 étant donné qu'aucun minorant n'a encore été enregistré. Ensuite, le sous-problème P 2 /{(4, a)} et P 4 /{(4, a)} sont résolus de façon indépendante et les solutions optimales correspondantes sont mémorisées dans LB P2/{(4,a)} = 1, LB P4/{(4,a)} = 2, Opt P2/{(4,a)} = Opt P4/{(4,a)} = vrai (aucun solution n'étant connue, aucun majorant n'est défini). Une première affectation complète de coût w 1 ∅ ⊕ LB P2/{(4,a)} ⊕ LB P4/{(4,a)} = 5 est obtenue.

Fig. 2 -Exemple 3 3 , P rds 2 , P rds 5 , P rds 4 et P rds 1 = 3 ,= 1 2 ⊕ LB P rds 4 = 2

 233254131242 Fig. 2 -Résolution récursive des sous-problèmes relaxés issus de la Figure 1 par RDS-BTD.

Algorithm 1 :/∅) ; 1 Soit

 11 RDS-BTD algorithmeFunction RDS-BTD(P rds e) : [0, +∞] foreach C f ∈ Sons(Ce) do RDS-BTD(P rds f) ; cube := cub1 -lb(P/∅) + lb(P rds e A l'affectation de Se à des valeurs totalement 2 supportées; LB rds Pe := BTD(P rds e , A, Ve, cube) ; 3 foreach C f descendant de Ce t.q. S f ∩ Se = ∅ do Fixer à faux les Opt P f /A enregistrés, pour tout A ∈ ℓ(S f) ; return LB rds Pe ; de plus, nous restreignons l'algorithme à l'utilisation d'une décomposition arborescente spécifique (C, T) telle que |C| = n, ∀e ∈ [1, n], C e = {1, . . . , e}, et ∀e ∈ [2, n], Père(C e) = C e-1 , alors BTD-RDS se réduit à RDS.

 ⌋. Pour capturer la dispersion entre tag SNPs i et j, une fonction de coût binaire entre les booléens i s et j s est introduite. Elle produit un coût de ⌊100.

 ⌋ lorsque i s = j s = vrai. Le WCSP ainsi obtenu capture simultanément les critères de dispersion et de représentativité. Afin de garder à ces critères leur caractère secondaire, nous utilisons simplement une valeur de coût U (le coût de sélection d'un SNP) suffisamment grande. En pratique, supérieur à la somme des critère secondaire et primaire dans l'instance considérée.

 Ce∈C C e = X) et toutes les fonctions de coût (∀w S ∈ W, ∃C e ∈ C t.q. S ⊂ C e). De plus, si une variable i apparaît dans deux clusters C e et C g , i doit aussi apparaître dans tout cluster C f sur l'unique chemin reliant C e et C g dans T . est noté Père(C e) (resp. Fils(C e)). Le séparateur de C e est l'ensemble S e = C e ∩ Père(C e). Les variables propres d'un cluster C e est l'ensemble V e = C e \ S e .

	3 Décompositions arborescentes et algo-
	rithme DFBB
	Une décomposition arborescente d'un WCSP
	connexe est définie par un arbre (C, T). Chaque élé-
	ment C e de l'ensemble C = {C 1 , . . . , C k } des som-
	mets de l'arbre est appelé un "cluster". Il est formé
	d'un sous-ensemble de variables (C e ⊂ X). T est
	un ensemble d'arêtes définissant un graphe acyclique
	connexe (un arbre) sur C. L'ensemble des clusters
	C doit couvrir toutes les variables (Pour un WCSP donné, nous considérons une décom-
	position arborescente enracinée (C, T) définie par une
	racine notée C 1 . Dans T , le père (resp. les fils) d'un
	cluster C e

 comme le sous-problème défini par les variables propres de C e ainsi que par celles de tous ses clusters descendants dans T et par les fonctions de coût impliquant uniquement des variables propres de ces clusters. P rds e n'a aucun fonction de coût impliquant une variable de S e , le séparateur avec son cluster père, et ainsi son coût optimal est un minorant de P e conditionné par n'importe quel affectation de S e . Ce coût optimal sera donc noté LB rds BTD et non par DFBB. Ceci permet d'exploiter la décomposition et la mémorisation de minorants effectuée dans BTD, offrant ainsi une complexité asymptotique améliorée. Le minorant exploité peut alors s'appuyer sur les minorants LB rds

	Nous définissons P rds	1	= P 1 .
	déjà cal-culés sur des clusters déjà explorés, sur les mi-Pe
	norants fournis par la cohérence locale et sur les
	minorants enregistrés par BTD 1 . Le minorant cor-
	respondant à l'affectation courante A est main-
	tenant défini de façon récursive par lb(P e /A) = w e ∅ ⊕ C P f),
	qui est évidemment plus fort.		
	Dans BTD, la mémorisation n'est effectuée que
	lorsque les séparateurs sont complètement affectés alors que P rds e ne contient pas les variables du sé-
	parateur S e . Nous affectons donc S e avant de résoudre P rds en utilisant les valeurs totalement supportées e (full support) fournies par EDAC [10] 2 de chaque va-
	riable comme des valeurs temporaires utilisées unique-
	ment pour la mémorisation. Une approche alternative
	consisterait à mémoriser les minorants d'affectations
	partielles mais ceci nécessiterait un mécanisme de mé-
	morisation complexe, à considérer dans des travaux
	futurs.		

e Pe Chaque sous-problème P rds e est résolu par f ∈Fils(Ce) max(lb(P f /A), LB P f /A f , LB rds

 si ce n'est pour le fait qu'il exploite le minorant RDS amélioré défini ci-dessus. Nous faisons l'hypothèse que la résolution de P rds e avec une affectation initiale A du séparateur S e et un majorant initial cub e obtenu par BTD est efféctuéé par l'appel à BTD(P rds

	RDS-BTD appelle BTD pour résoudre chaque sous-problème P rds e (ligne 3). Un majorant initial pour P rds e est déduit du majorant global et des minorants
	RDS disponibles (ligne 1). Comme expliqué ci-dessus,
	les variables de S e sont affectées à leurs valeurs to-
	talement supportées à la ligne 2 . L'appel initial est
	simplement RDS-BTD(P). Il suppose que le problème P rds 1 = P est déjà localement cohérent et retourne
	son coût optimal. Notez que dès qu'une solution de P rds e le même coût optimal que lb(P rds e /∅)	ayant =
	f C f ∈Fils(Ce) LB P rds	est trouvée, la recherche
	s"arrête.	

e

, A, V e , cub e).

https ://mulcyber.toulouse.inra.fr/projects/toulbar2 version 0.8.

Acknowledgments Ce travail a été partiellement financé par l'Agence Nationale de la Recherche (projet STALDECOPT).

Références