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Synchronous Games, Simulations and λ-calculus

We refine a model for linear logic based on two well-known ingredients: games and simulations. We have already shown that usual simulation relations form a sound notion of morphism between games; and that we can interpret all linear logic in this way. One particularly interesting point is that we interpret multiplicative connectives by synchronous operations on games. We refine this work by giving computational contents to our simulation relations. To achieve that, we need to restrict to intuitionistic linear logic. This allows to work in a constructive setting, thus keeping a computational content to the proofs. We then extend it by showing how to interpret some of the additional structure of the exponentials. To be more precise, we first give a denotational model for the typed λ-calculus; and then give a denotational model for the differential λcalculus of Ehrhard and Regnier. Both this models are proved correct constructively.

Introduction

Transition systems and simulation relations are well known tools in computer science. More recent is the use of games to give models for different programming languages [1,[START_REF] Hyland | On full abstraction for PCF: I, II and III[END_REF]2], or as an interesting tool for the study of other programming notions [START_REF] Sansom Abramsky | Applying game semantics to compositional software modelling and verification[END_REF]. We have devised in [START_REF] Hyvernat | Synchronous games, deadlocks and linear logic[END_REF] a denotational model of linear logic based on those two ideas. Basically, a formula was interpreted by an alternating transition system (called an interaction system) and a proof was interpreted by a safety property for this interaction system. Those concepts which were primarily developed to model imperative programming and interfaces turned out to be a rather interesting games model: a formula is interpreted by a game (the interaction systems), and a proof by a "non-loosing strategy" (the safety property).

Part of the interest is that the notion of safety property is very simple: it is only a subset of the set of states. However, in terms of games, the associated strategy (whose existence is guaranteed by the condition satisfied by the subset of states) is usually not computable. We will show that it is possible to overcome this problem by restricting to intuitionistic linear logic. More precisely, we will model typed λ-calculus (seen as a subsystem of intuitionistic linear logic) within a constructive setting. The model for full intuitionistic linear logic (ILL) can easily be derived the present work and the additive connectives defined in [START_REF] Hyvernat | Synchronous games, deadlocks and linear logic[END_REF].

The structure of safety properties is in fact richer than the structure of λterms. In particular, safety properties are closed under unions. Since there is no sound notion of "logical sum" of proofs, this doesn't reflect a logical property. However, it is important in programming since it can be used to interpret non-determinism. The differential λ-calculus of Ehrhard and Regnier ( [START_REF] Ehrhard | The differential lambda calculus[END_REF]) is an extension to the λ-calculus, which has a notion of non deterministic sum. We show how to interpret this additional structure.

1 Interaction Systems

The Category of Interaction Systems

We briefly recall the important definitions. For more motivations, we refer to [START_REF] Hancock | Programming as applied basic topology[END_REF] and [START_REF] Hyvernat | Synchronous games, deadlocks and linear logic[END_REF]. Definition 1. Let S be a set (of states); an interaction system on S is given by the following data:

for each s ∈ S, a set A(s) of possible actions; -for each a ∈ A(s), a set D(s, a) of possible reactions to a; -for each d ∈ D(s, a), a new state n(s, a, d) ∈ S.

We usually write s[a/d] instead of n(s, a, d).

Following standard practise within computer science, we distinguish the two "characters" by calling them the Angel (choosing actions, hence the A) and the Demon (choosing reactions, hence the D). Depending on the authors' background, other names could be Player and Opponent, Eloise and Abelard, Alice and Bob, Master and Slave, Client and Server, System and Environment, etc.

One of the original goals for interaction systems (Hancock) was to represent real-life programming interfaces. Here is for example the interface of a stack of booleans:

-S = List(B); -A( ) = {Push(b) | b ∈ B} ∪ {Pop}; -    D( , Push(b)) = { * } D([], Pop) = {error} D(b : s, Pop) = { * } -    n(s, Push(b)) = b : s n([], Pop, error) = [] n(b : s, Pop) = s
This gives in full details the specification of the stack interface. This is more precise than classical interfaces which are usually given by a collection of types: compare with this poor description of stacks:

-Pop : B -Push : B → () which doesn't specify what the command actually do; but only tells how they can be used.

The notion of morphism between such interaction systems is an extension of the usual notion of simulation relation: Definition 2. If w 1 and w 2 are two interaction systems on S 1 and S 2 respectively; a relation r ⊆ S 1 × S 2 is called a simulation if:

(s 1 , s 2 ) ∈ r ⇒ ∀a 1 ∈ A 1 (s 1 ) ∃a 2 ∈ A 2 (s 2 ) ∀d 2 ∈ D 2 (s 2 , a 2 ) ∃d 1 ∈ D 1 (s 1 , a 1 ) s 1 [a 1 /d 1 ], s 2 [a 2 /d 2 ] ∈ r .
This definition is very similar to the usual definition of simulation relation between labelled transition systems, but adds one layer of quantifiers to deal with reactions. That (s 1 , s 2 ) ∈ r means that "s 2 simulates s 1 ". By extension, if a 2 is a witness to the first existential quantifier, we say that "a 2 simulates a 1 ". Note that the empty relation is always a simulation. In practise, to prevent this degenerate case, we would add a notion of initial state(s) and require that initial states are related through the simulation.

To continue on the previous example, programming a stack interface amounts to implementing the stack commands using a lower level interface (arrays and pointer for examples). If we interpret the quantifiers constructively, this amounts to providing a (constructive) proof that a non-empty relation is a simulation from this lower level interaction system to stacks. (See [START_REF] Hancock | Programming as applied basic topology[END_REF] for a more detailed description of programming in terms of interaction systems.)

Recall that the composition of two relations is given by:

(s 1 , s 3 ) ∈ r 2 • r 1 ⇔ (∃s 2 ) (s 1 , s 2 ) ∈ r 1 and (s 2 , s 3 ) ∈ r 2
It should be obvious that the composition of two simulations is a simulation and that the equality relation is a simulation from any w to itself. Thus, we can put: Definition 3. We call Int the category of interaction systems with simulations.

Note that everything has a computational content: the composition of two simulations is just given by the composition of the two "algorithms" simulating w 3 by w 2 and w 2 by w 1 ; and that the algorithm for the identity from w to w is simply the "copycat" strategy.

Notation

Before diving in the structure of interaction systems, let's detail some of the notation.

-An element of the indexed cartesian product a∈A D(a) is given by a function f taking any a ∈ A to an f (a) in D(a). When the set D(a) doesn't depend on a, it amounts to a function f : A → D.

-An element of the indexed disjoint sum a∈A D(a) is given by a pair (a, d) where a ∈ A and d ∈ D(a). When the set D(a) doesn't depend on a, this is simply the cartesian product A × D. -We write List(S) for the set of "lists" over set S. A list is simply a tuple (s 1 , s 2 , . . . s n ) of elements of S. The empty list is denoted ().

-The collection M f (S) of finite multisets over S is the quotient of List(S) by permutations. We write [s 1 , . . . s n ] for the equivalence class containing (s 1 , . . . s n ). We write "+" for the sum of multisets. It simply corresponds to concatenation on lists.

Concerning the product and sum operators, it should be noted that they have a computational content if one works in a constructive setting: an element of a∈A D(a) is an algorithm with input a ∈ A and output f (a) ∈ D(a); and an element of a∈A D(a) is simply a pair as above. This is in fact the basis of dependent type theory frameworks like Martin-Löf's type theory or the calculus of construction. Remark: even if it was an important motivation for this work, we do not insist too much on the "constructive mathematics" part. Readers familiar with constructive frameworks should easily see that everything makes computational sense; and classical readers can skip the comments about computational content.

Constructions

We now define the connectives of multiplicative exponential linear logic. With those, making Int into a denotational model of intuitionistic multiplicative exponential linear logic more or less amounts to showing that it is symmetric monoidal closed, with a well behaved comonad.

Constant. A very simple, yet important interaction system is "skip", the interaction system without interaction. Following the linear logic convention, we call it ⊥: Definition 4. Define ⊥ (or skip) to be the following interaction system on the Singleton set { * }:

A ⊥ ( * ) = { * } D ⊥ ( * , * ) = { * } n ⊥ ( * , * , * ) = { * } .
Depending on the context, this interaction system is also denoted by 1.

Note that it is very different from the two following interaction systems (on the same set of states) which respectively deadlock the Angel and the Demon:

A a ( * ) = ∅ A d ( * ) = { * } D a ( * , ) = D d ( * , * ) = ∅ n a ( * , , ) = n d ( * , * , ) = .
Those two systems play an important rôle in the general theory of interaction systems (the first one is usually called abort, while the second one is usually called magic) but they do not appear in the model presented below.

Synchronous Product. There is an obvious product construction reminiscent of the synchronous product found in SCCS (synchronous calculus of communicating systems, [START_REF] Milner | Calculi for synchrony and asynchrony[END_REF]):

Definition 5. Suppose w 1 and w 2 are interaction systems on S 1 and S 2 . Define the interaction system w 1 ⊗ w 2 on S 1 × S 2 as follows:

A w1⊗w2 (s 1 , s 2 ) = A 1 (s 1 ) × A 2 (s 2 ) D w1⊗w2 (s 1 , s 2 ), (a 1 , a 2 ) = D 1 (s 1 , a 1 ) × D 2 (s 2 , a 2 ) n w1⊗w2 (s 1 , s 2 ), (a 1 , a 2 ), (d 1 , d 2 ) = s 1 [a 1 /d 1 ], s 2 [a 2 /d 2 ] .
This is the synchronous parallel composition of w 1 and w 2 : the Angel and the Demon exchange pairs of actions/reactions. For any sensible notion of morphism, skip should be a neutral element for this product. It is indeed the case, for the following reason: the components of w ⊗ skip and w are isomorphic by dropping the second (trivial) coordinate:

w ⊗ 1 w S × { * } S A (s, * ) = A(s) × { * } A(s) D (s, * ), (a, * ) = D(s, a) × { * } D(s, a) n (s, * ), (a, * ), (d, * ) = s[a/d], * s[a/d]
This implies trivially that {((s, * ), s) | s ∈ S} is an isomorphism. For similar reasons, this product is transitive and commutative.

Lemma 1. " ⊗ " is a commutative tensor product in the category Int. Its action on morphisms is given by:

(s 1 , s ′ 1 ), (s 2 , s ′ 2 ) ∈ r ⊗ r ′ ⇔ (s 1 , s 2 ) ∈ r and (s ′ 1 , s ′ 2 ) ∈ r ′ Checking that r ⊗ r ′ is indeed a simulation is easy.
Note that not every isomorphism (in the category Int) is of this form: is is quite simple to find isomorphic interaction systems with non-isomorphic components. 3Linear Arrow. The definition of the interaction system w 1 ⊸ w 2 is not as obvious as the definition of the tensor (⊗): Definition 6. If w 1 and w 2 are interaction systems on S 1 and S 2 , define the interaction system w 1 ⊸ w 2 on S 1 × S 2 as follows:

A (s 1 , s 2 ) = f ∈A1(s1)→A2(S2) a1∈A1(s1) D 2 s 2 , f (a 1 ) → D 1 (s 1 , a 1 ) D (s 1 , s 2 ), (f, G) = a1∈A1(s1) D 2 s 2 , f (a 1 ) n (s 1 , s 2 ), (f, G), (a 1 , d 2 ) = s 1 [a 1 /G a1 (d 2 )] , s 2 [f (a 1 )/d 2 ] .
It may seem difficult to get some intuition about this interaction system; but it is a posteriori quite natural: (see Proposition 1) -An action in state (s 1 , s 2 ) is given by:

(1) a function f (the index for the element of the disjoint sum) translating actions from s 1 into actions from s 2 ;

(2) for any action a 1 , a function G a1 translating reactions to f (a 1 ) into reactions to a 1 . -A reaction to such a "translating mechanism" is given by:

(1) an action a 1 in A 1 (s 1 ) (which we want to simulate);

( It thus looks like the interaction system w 1 ⊸ w 2 is related to simulations from w 1 to w 2 . It is indeed the case:

Proposition 1. In Int, " ⊗ " is left adjoint to " ⊸ ".
Proof. The proof is not really difficult, but is quite painful to write (or read).

Here is an attempt. Note that the following form of the axiom of choice is constructively valid:

4 AC : ∀a ∈ A ∃d ∈ D(a) ϕ(a, d) ⇔ ∃f ∈ a∈A D(a) ∀a ∈ A ϕ a, f (a) 
When the domain D(a) for the existential quantifier doesn't depend on a ∈ A, we can simplify it into:

AC : ∀a ∈ A ∃d ∈ D ϕ(a, d) ⇔ ∃f ∈ A → D ∀a ∈ A ϕ a, f (a) 
In the sequel, the part of the formula being manipulated will be written in bold. That r is a simulation from w 1 ⊗ w 2 to w 3 takes the form5 

(s 1 , s 2 , s 3 ) ∈ r ⇒ ∀a 1 ∈ A 1 (s 1 ) ∀a 2 ∈ A 2 (s 2 ) ∃a 3 ∈ A 3 (s 3 ) ∀d 3 ∈ D 3 (s 3 , a 3 ) ∃d 1 ∈ D 1 (s 1 , a 1 ) ∃d 2 ∈ D 2 (s 2 , a 2 ) s 1 [a 1 /d 1 ], s 2 [a 2 /d 2 ], s 3 [a 3 /d 3 ] ∈ r .
Using AC on the ∀a 2 ∃a 3 , we obtain:

(s 1 , s 2 , s 3 ) ∈ r ⇒ ∀a 1 ∈ A 1 (s 1 ) ∃f ∈ A 2 (s 2 ) → A 3 (s 3 ) ∀a 2 ∈ A 2 (s 2 ) ∀d 3 ∈ D 3 (s 3 , f (a 2 )) ∃d 1 ∈ D 1 (s 1 , a 1 ) ∃d 2 ∈ D 2 (s 2 , a 2 ) s 1 [a 1 /d 1 ], s 2 [a 2 /d 2 ], s 3 [f (a 2 )/d 3 ] ∈ r .
We can now apply AC on ∀d 3 ∃d 2 :

(s 1 , s 2 , s 3 ) ∈ r ⇒ ∀a 1 ∈ A 1 (s 1 ) ∃f ∈ A 2 (s 2 ) → A 3 (s 3 ) ∀a 2 ∈ A 2 (s 2 ) ∃g ∈ D 3 (s 3 , f (a 2 )) → D 2 (s 2 , a 2 ) ∀d 3 ∈ D 3 (s 3 , f (a 2 )) ∃d 1 ∈ D 1 (s 1 , d 1 ) s 1 [a 1 /d 1 ], s 2 [a 2 /g(d 3 )], s 3 [f (a 2 )/d 3 ] ∈ r
and apply AC one more time on ∀a 2 ∃g to obtain:

(s 1 , s 2 , s 3 ) ∈ r ⇒ ∀a 1 ∈ A 1 (s 1 ) ∃f ∈ A 2 (s 2 ) → A 3 (s 3 ) ∃G ∈ a2∈A2(s2) D 3 (s 3 , f (a 2 )) → D 2 (s 2 , a 2 ) ∀a 2 ∈ A 2 (s 2 ) ∀d 3 ∈ D 3 (s 3 , f (a 2 )) ∃d 1 ∈ D 1 (s 1 , d 1 ) s 1 [a 1 /d 1 ], s 2 [a 2 /G a2 (d 3 )], s 3 [f (a 2 )/d 3 ] ∈ r which is equivalent to (s 1 , s 2 , s 3 ) ∈ r ⇒ ∀a 1 ∈ A 1 (s 1 ) ∃(f, G) ∈ f ∈A2(s2)→A3(s3) a2∈A2(s2) D 3 (s 3 , f (a 2 )) → D 2 (s 2 , a 2 ) ∀(a 2 , d 3 ) ∈ A2(s2) D 3 (s 3 , f (a 2 )) ∃d 1 ∈ D 1 (s 1 , d 1 ) s 1 [a 1 /d 1 ], s 2 [a 2 /G a2 (d 3 )], s 3 [f (a 2 )/d 3 ] ∈ r
By definition, this means that r is a simulation from w 1 to w 2 ⊸ w 3 .

Once more, all this formal manipulation keeps the computational content of the simulations. (Because AC is constructively valid.) ⊓ ⊔

The notion of safety property from [START_REF] Hyvernat | Synchronous games, deadlocks and linear logic[END_REF] corresponds to simulations from 1 to w, or equivalently, subsets x of S such that:

s ∈ x ⇒ ∃a ∈ A(s) ∀d ∈ D(s, a) s[a/d] ∈ x .
The analogy with strategies should be obvious: if x is a safety property, and s ∈ x then the Angel has a strategy to avoid deadlocks, starting from s.

Multithreading. We now come to the last connective needed to interpret the λ-calculus. Its computational interpretation is related to the notion of multithreading, i.e. the possibility to run several instances of a program in parallel. Let's start by defining synchronous multithreading in the most obvious way: Definition 7. If w is an interaction system on S, define L(w), the multithreaded version of w to be the interaction system on List(S) with:

L.A (s 1 , . . . s n ) = A(s 1 ) × . . . A(s n ) L.D (s 1 , . . . s n ), (a 1 , . . . a n ) = D(s 1 , a 1 ) × . . . D(s n , d n ) L.n (s 1 , . . . s n ), (a 1 , . . . a n ), (d 1 , . . . d n ) = s 1 [a 1 /d 1 ], . . . s n [a n /d n ] .
This interaction system is just an "n-ary" version of the synchronous product. To get the abstract properties we want, we need to "quotient" multithreading by permutations. Just like multisets are list modulo permutation, so is !w the multithreaded L(w) modulo permutations. This definition is possible because L(w) is "compatible" with permutations: if σ is a permutation, we have

σ • (s 1 , . . . s n ) (a 1 , . . . a n )/(d 1 , . . . d n ) = σ • (s 1 , . . . s n ) [σ • (a 1 , . . . a n )/σ • (d 1 , . . . d n )] .
The final definition is: Definition 8. If w is an interaction system on S, define L(w), define !w to be the following interaction system on M f (S):

!A(µ) = s∈µ L.A(s) !D µ, (s, a) = L.D(s, a) !n µ, (s, a), d = S • L.n(s, a, d) .

Unfolded, it gives:

an action in state µ (a multiset) is given by an element s of the equivalence class µ (a list) together with an element a in L.A(s) (a list of actions); -a reaction is given by a list of reactions d in L.D(s, a); -the next state is the equivalence class containing the list s[a/d] (the orbit of s[a/d] under the action of the group of permutations).

This operation enjoys a very strong algebraic property:

Proposition 2. " ! " is a comonad in Int.
Proof. We need to find two operations:

ε w : !w → w defined as ε w = [s], s | s ∈ S ; -and δ w : !!w → !w defined as the graph of the "concat" function:

δ w = [µ i ] i∈I , i∈I µ i | ∀i ∈ I µ i ∈ M f (S)
For any w, those operations are indeed simulations: for ε w , it is quite obvious, and for δ w , it is quite painful to write. Let's only give an example from which the general case can easily be inferred:

1. we have ([[s 1 , s 2 , s 3 ], [t 1 ], []], [s 1 , s 2 , s 3 , t 1 ]) ∈ δ w 2. for any command ((a 1 , a 2 , a 3 ), (b 1 ), ()) in state [[s 1 , s 2 , s 3 ], [t 1 ], []],
we need to find an action in [s 1 , s 2 , s 3 , t 1 ]: simply take (a 1 , a 2 , a 3 , b 1 ); 3. for any reaction (d 1 , d 2 , d 3 , e 1 ) to this action, we need to find a reaction to the original command, i.e. to ((a 1 , a 2 , a 3 ), (b 1 )()): take ((d 1 , d 2 , d 3 ), (e 1 ), ()); 4. the next states are respectively

-[[n(s 1 , a 1 , d 1 ), n(s 2 , a 2 , d 2 ), n(s 3 , a 3 , d 3 )], [n(t 1 , b 1 , e 1 )], []] -and [n(s 1 , a 1 , d 1 ), n(s 2 , a 2 , d 2 ), n(s 3 , a 3 , d 3 ), n(t 1 , b 1 , e 1 )
]. They are indeed related through δ w .

To be really precise, one would need to manipulate lists of states (representative of the multisets); but this only makes the proof even less readable.

Checking that the appropriate diagrams commute is immediate. It only involves the underlying sets and relations, and not the interaction systems or simulation conditions. (In fact , finite multisets form a comonad in the category of sets and relations...) ⊓ ⊔

Interpreting the λ-Calculus

We now have all the ingredients to give a denotational model for the typed λ-calculus: a type T will be interpreted by an interaction system T * ; and a judgement "x 1 : T 1 , . . . x n : T n ⊢ t : T " will be interpreted by simulation from

!T * 2. Γ ⊢ t : ω → ω ′ Γ ⊢ u : ω Γ ⊢ (t)u : ω ′ ; 3. Γ, x : ω ⊢ t : ω ′ Γ ⊢ λx.t : ω → ω ′ .
We follow Krivine's notation for the application and write "(t)u" for the application of t to u.

Interpretation of Types

We assume a set of type variables ("propositional variables"): X, . . . Nothing depend on the valuation we give to those type variables, so that we are almost interpreting Π1 λ-calculus. 6For a valuation ρ from type variables to interaction systems, the interpretation of types is defined in the usual way: Definition 9. Let ω be a type. Define the interpretation ω * of ω as:

-X * = ρ(X); -(ω → ω ′ ) * = !ω * ⊸ ω ′ * .

Interpretation of Terms

If ω is a type, write |ω| for the set of states of its interpretation:

-|X i | = S i (set of states of ρ(X i )); -|ω → ω ′ | = M f |ω| × |ω ′ |.
A valuation is a way to interpret typed variables from the context:

Definition 10. If Γ = x 1 : ω 1 , . . . x n : ω n is a context, an environment for Γ is a tuple γ in M f |ω 1 | × . . . M f |ω n |.
To simplify notation, we may write the tuple γ = (µ 1 , . . . µ n ) as "x 1 := µ 1 , . . . x n := µ n ". We may also write γ(x) for the projection of γ on the appropriate coordinate. Sum of tuples of multisets is defined pointwise.

We now interpret judgements: if we can type Γ ⊢ t : ω ′ and if γ is an environment for Γ , the interpretation [[t]] γ of term t in environment γ is a subset of |ω| defined as follows: Definition 11. We define [[t]] γ by induction on t:

1. if we have Γ ⊢ x : ω with x : ω in Γ , then [[x]] γ = {s} if γ(x) = [s] and γ(y) = [] whenever x = y ∅ otherwise ; 2. if we have Γ ⊢ t : ω → ω ′ Γ ⊢ u : ω Γ ⊢ (t)u : ω ′ , then s ∈ [[(t)u]] γ iff (µ, s) ∈ [[t]] γ0 for some µ = [s 1 , . . . s n ] ∈ M f |ω| s.t. s i ∈ [[u]
] γi for all i = 1, . . . n and γ = γ 0 + γ 1 + . . . γ n ;

3. if we have Γ, x :

ω ⊢ t : ω ′ Γ ⊢ λx.t : ω → ω ′ , then [[λx.t]] γ = {(µ, s) | µ ∈ M f |ω|, s ∈ [[t]] γ,x:=µ }.
It is immediate to check that this definition is well formed.

If Γ = x 1 : ω 1 , . . . x n : ω n , write !Γ for !ω * 1 ⊗ . . . !ω n ; similarly, we omit the superscript * and write ω for ω * . The interpretation of terms is correct in the following sense:

Proposition 3. Suppose that Γ ⊢ t : ω ′ , then the relation " ∈ [[t]] " is a simulation relation from !Γ to ω ′ . In other words, if s ∈ [[t]] γ , then s (in ω ′ ) simulates γ (in !Γ ).
This is quite surprising because the interpretation of t doesn't depend on the interaction systems used to interpret the types but only the underlying set of states. 71.

Γ ⊢ 0 : ω and Γ ⊢ t : ω Γ ⊢ u : ω Γ ⊢ t + u : ω ; 2. Γ ⊢ t : ω → ω ′ Γ ⊢ u : ω Γ ⊢ D t • u : ω → ω ′ .
The intuitive meaning is that "D t • u" is the result of (non-deterministically) replacing exactly one occurrence of the first variable of t by u. We thus obtain a sum of terms, depending on which occurrence was replaced. This gives a notion of differential substitution (or linear substitution) which yields a differentialreduction. The rules governing this reduction are more complex than usual β-reduction rules. We refer to [START_REF] Ehrhard | The differential lambda calculus[END_REF] for a detailed description. We extend the interpretation of terms in the following way:

Definition 12. Define the interpretation of a typed differential λ-term by induction on the type inference:

1. if we have Γ ⊢ 0 : ω , then we put

[[0]] γ = ∅; 2. if we have Γ ⊢ t : ω Γ ⊢ u : ω Γ ⊢ t + u : ω , then we put [[t + u]] γ = [[t]] γ ∪ [[u]] γ ; 3. if we have Γ ⊢ t : ω → ω ′ Γ ⊢ u : ω Γ ⊢ D t • u : ω → ω ′ , then we put (µ, s ′ ) ∈ [[D t • u]] γ iff (µ + [s], s ′ ) ∈ [[t]] γ1 for some s ∈ [[u]] γ2 s.t. γ = γ 1 + γ 2 .
Proposition 3 extends as well:

Proposition 5. Suppose that Γ ⊢ t : ω ′ where Γ is a context and t a differential λ-term. The relation " ∈

[[t]] " is a simulation relation from !Γ to ω ′ .
Proof. The proof for the sum and the 0 are contained in proposition 2.

For differentiation, suppose we have (µ, s

′ ) ∈ [[D t • u]] γ , i.e. (µ + [s], s ′ ) ∈ [[t]] γ1 for some s ∈ [[u]] γ2 , with γ = γ 1 + γ 2 . We need to show that (µ, s ′ ) (in ω → ω ′ ) simulates γ (in !Γ ). Since γ = γ 1 + γ 2 , it is enough to show that we can simulate (γ 1 , γ 2 ) (in !Γ ⊗ !Γ ).
By proposition 1, this is equivalent to showing that s ′ (in ω ′ ) simulates (γ 1 , γ 2 , µ)

(in !Γ ⊗ !Γ ⊗ !ω).
Let a γ1 ∈ !A Γ (γ 1 ), a γ2 ∈ !A Γ (γ 2 ) and a µ ∈ !A ω (µ); we need to find an action in A ω ′ (s ′ ) to simulate (a γ1 , a γ2 , a µ ):

(1) by induction hypothesis, we know that s (in ω) simulates γ 2 (in !Γ ); so that we can find an action a ∈ A ω (s) simulating a γ2 ;

We thus obtain reactions d γ1 , d γ2 and d µ as desired. That the resulting next states are still related is quite obvious...

⊓ ⊔

We now need to check that the interpretation is invariant by β-reduction and differential reduction. Proposition 6. For all differential terms t and u and environment γ, we have: Just like for Proposition 4, the proof is quite easy but tedious. The interested reader can find it at http://iml.univ-mrs.fr/∼hyvernat/academics.html.

Conclusion

Technically speaking, this work is not very different from [START_REF] Hyvernat | Synchronous games, deadlocks and linear logic[END_REF], which is itself quite close to [START_REF] Hyvernat | Predicate transformers and linear logic: yet another denotational model[END_REF]. The main reasons for producing it are:

first, it shows that we can give a computational content to the notion of simulation if we do not try to interpret all of linear logic; -second, it shows that some of the additional structure of interaction systems and simulation does have a logical significance. We showed that by interpreting the differential λ-calculus.

Even if we haven't done it formally, it is quite easy to extend the model to full intuitionistic linear logic while keeping the computational content of simulations.

To define the additive, we use the definition of ⊕ from [START_REF] Hyvernat | Synchronous games, deadlocks and linear logic[END_REF].

It is in principle possible to formalise all the above in a proof assistant (Agda [START_REF]The Agda proof assistant[END_REF] or Coq [START_REF]The Coq proof assistant[END_REF] come to mind).9 From such a system, one could extract the simulations. For example, a term of type T → T ′ would give an algorithm simulating many synchronous occurrences of T by a single occurrence of T ′ .

  [[(λx.t)u]] γ = [[t[u/x]]] γ [[D(λx.t) • u]] γ = [[λx . (∂t/∂x) • u]] γ

  2) and a reaction d 2 in D 2 (s 2 , f (a 1 )) (which we want to translate back). -Given such a reaction, we can simulate a 1 by a 2 ∈ A 2 (s 2 ) obtained by applying f to a 1 ; and translate back d 2 into d 1 ∈ D 1 (s 1 , a 1 ) by applying G a1 to d 2 . The next state is just the pair of states s 1 [a 1 /d 1 ] and s 2 [a 2 /d 2 ].

In the finite case, one can duplicate a command a into a1 and a2 to obtain sets of commands of different cardinality.

This form of the axiom of choice is provable in Martin-Löf's type theory or in the calculus of construction...

modulo associativity (S1 × S2) × S3 ≃ S1 × (S2 × S3) ≃ S1 × S2 × S3...

⊗ . . . !T * n to T * .

2.1 Typing rulesThe typing rules for the simply typed λ-calculus are given below:1.Γ ⊢ x : ω if x : ω appears in Γ ;

System-F in which all the quantifiers appear at the beginning of the term. To get an idea on how to get a real model of system-F , refer to[START_REF] Hyvernat | Predicate transformers and linear logic: second order[END_REF].

The interpretation is called the relational interpretation: it can be defined in the category of sets and relations...

One needs to be careful to be able to deal with the notion of equivalence classes used in the definition of !w. The idea is to use interaction systems on "setoids", where the equivalence relation is a simulation...

Proof. We work by induction on the structure of the type inference. -

(b) we need to find an action in A ω ′ (s) simulating (a 1 , a 2 , a 3 ):

(1) by induction hypothesis,

Thus, we can find an action a ∈ A ω ′ (s) simulating (a 2 ), (b 1 , b 2 ) . By composing the above two simulations on the right ((b 1 , b 2 ) simulates (a 1 , a 3 )), we thus obtain that a simulates (a 1 , a 2 , a 3 ). We now need to translate the reactions back: let d ∈ D ω ′ (s, a), (3) by induction, we can translate d into a reaction (d 2 ), (e 1 , e 2 ) to (a 2 ), (b 1 , b 2 ) ; (2) we can translate e 2 into a reaction () to b 2 ;

(1) and finally we can translate e 1 into a reaction (d 1 , d 3 ) to (a 1 , a 3 ). Thus, we obtain reactions

The new states we get from those actions/reactions are: s[a/d] on one side; and

] on the other side. They are indeed related because:

3. Abstraction: this is immediate. Suppose (µ, s) ∈ [[λx.t]] γ ; we need to show that (µ, s) (in ω → ω ′ ) simulates γ (in !Γ ). By proposition 1, this is equivalent to showing that s (in ω ′ ) simulates (γ, µ) (in !Γ ⊗ !w). This is exactly the induction hypothesis.

⊓ ⊔

To summarise all this, here is a tentative rewording of the above: if Γ ⊢ t : ω,

(1) each type represent a process;

(2) each process in the context can be run in parallel multiple times;

(3) the environment γ represents the initial states for the context;

(4) if s ∈ [[t]] γ then s can be used as an initial state to simulate γ;

(5) the algorithm for the simulation is contained in t.

To finish the justification that we have a denotational model, we now need to check that the interpretation is invariant by β-reduction. Proposition 4. For all terms t and u and environment γ, we have

The proof works by induction and is neither really difficult nor very interesting. It can be found on http://iml.univ-mrs.fr/∼hyvernat/academics.html.

Interpreting the Differential λ-calculus

Simulation relations from w to w ′ enjoy the additional property that they form a complete sup-lattice: Lemma 2. The empty relation is always a simulation from any w to w ′ ; and if (r i ) i∈I is a family of simulations from w to w ′ , then i∈I r i is also a simulation from w to w ′ .

The proof is immediate... Unfortunately, this doesn't reflect any property of λ-terms. The reason is that (1) not every type is inhabited, and (2) we do not see a priori how to take the union of two terms. For example, what is the meaning of λxλy.x ∪ λxλy.y in the type X → X → X? 8 Ehrhard and Regnier's differential λ-calculus ( [START_REF] Ehrhard | The differential lambda calculus[END_REF]) extends the λ-calculus by adding a notion of differentiation of λ-terms. One consequence is that we need to have a notion of sum of arbitrary terms, interpreted as a non-deterministic choice. It is not the right place to go into the details of the differential λ-calculus and we refer to [START_REF] Ehrhard | The differential lambda calculus[END_REF] for motivations and a complete description.

In the typed case, we have the following typing rules: It is however difficult to apply this to obtain real-life simulations. The problem is that we only get "purely logical" simulations. Simulations of interest for application rely heavily on the different interaction systems used. One way to get more interesting simulations (from a practical point of view) might be to use constant interaction systems (booleans, natural numbers, or more practical ones like stacks, memory cells, etc..) as ground types, together with specific simulations (the values true and false, successor function, or more practical simulations) as inhabitant of specific types.

In pretty much the same way as [START_REF] Hyvernat | Synchronous games, deadlocks and linear logic[END_REF] makes Int into a denotational model for classical linear logic, we can make interaction systems into a denotational model for "classical differential linear logic": differential interaction nets [START_REF] Ehrhard | Differential interaction nets[END_REF]. This system doesn't make much sense logically speaking, but seems to enjoy relationship with process calculi. This is an encouraging direction of research.