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Homogenization of accelerated Frenkel-Kontorova

models with n types of particles

N. Forcadel1, C. Imbert1, R. Monneau2

May 25, 2009

Abstract

We consider systems of ODEs that describe the dynamics of particles. Each particle satisfies a Newton
law (including the acceleration term) where the force is created by the interactions with the other particles
and with a periodic potential. The presence of a damping term allows the system to be monotone. Our
study takes into account the fact that the particles can be different.

After a proper hyperbolic rescaling, we show that the solutions to this system of ODEs converge to
the solution of a macroscopic homogenized Hamilton-Jacobi equation.

AMS Classification: 35B27, 35F20, 45K05, 47G20, 49L25, 35B10.
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1 Introduction

The goal of this paper is to show homogenization results for the dynamics of accelerated Frenkel-Kontorova
type systems with n types of particles. In this introduction, we start with the simplest accelerated Frenkel-
Kontorova model where there is only one type of particle (see Eq. (1.2)). We then explain how to deal with
n types of particles (see Eq. (1.6)). We finally present the general case, namely systems of ODEs of the
following form (for a fixed m ∈ N)

(1.1) m0
d2Ui

dτ2
+
dUi

dτ
= Fi(τ, Ui−m, . . . , Ui+m) .

where Ui(τ) denotes the position of the particle i ∈ Z at the time τ . Here, m0 is the mass of the particle
and Fi is the force acting on the particle i, which will be precised later. Remark the presence of the friction
term dUi

dτ
on the left hand side of the equation. This term makes the dynamics overdamped and allow to see

this system as a monotone system where the mass m0 is choose small enough. Recall that the case of fully
overdamped dynamics, i.e. for m0 = 0, has already been treated in [9] (for only one type of particles).

An important assumption is that this system is monotone. See below for details and precise assumptions.
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1.1 The classical overdamped Frenkel-Kontorova model

The classical Frenkel-Kontorova model describes a chain of classical particles evolving in a one dimensional
space, coupled with their neighbours and subjected to a periodic potential. If τ denotes time and Ui(τ)
denotes the position of the particle i ∈ Z, one of the simplest FK models is given by the following dynamics

(1.2) m0
d2Ui

dτ2
+
dUi

dτ
= Ui+1 − 2Ui + Ui−1 + sin (2πUi) + L

where m0 denotes the mass of the particle, L is a constant driving force which can make the whole “train
of particles” move and the term sin (2πUi) describes the force created by a periodic potential whose period
is assumed to be 1. Notice that in the previous equation, we set to one physical constants in front of the
elastic and the exterior forces (friction and periodic potential). The goal of our work is to say what is the
macroscopic behaviour of the solution U of (1.2) as the number of particles per length unit goes to infinity.
As mentioned above, the particular case where m0 = 0 is referred to as the fully overdamped one and is
studied in [9].

We would like next to give the flavour of the results we obtain in this paper. In order to do so, let us
assume that at initial time, particles satisfy

Ui(0) = ε−1u0(iε)

dUi

dτ
(0) = 0

for some ε > 0 and some Lipschitz continuous function u0(x) which satisfies the following assumption

Initial gradient bounded from above and below

(1.3) 0 < 1/K0 ≤ (u0)x ≤ K0 on R

for some fixed K0 > 0.

Such an assumption can be interpreted by saying that at initial time, the number of particles per length unit
lies in (K−1

0 ε−1,K0ε
−1).

It is then natural to ask what is the macroscopic behaviour of the solution U of (1.2) as ε goes to zero,
i.e. as the number of particles per length unit goes to infinity. To this end, we define the following function
which describes the rescaled positions of the particles

(1.4) uε(t, x) = εU⌊ε−1x⌋(ε
−1t)

where ⌊·⌋ denotes the floor integer part. One of our main results states that the limiting dynamics as ε goes
to 0 of (1.2) is determined by a first order Hamilton-Jacobi equation of the form

(1.5)

{

u0
t = F (u0

x) for (t, x) ∈ (0,+∞) × R,
u0(0, x) = u0(x) for x ∈ R

where F is a continuous function to be determined. More precisely, we have the following homogenization
result

Theorem 1.1 (Homogenization of the accelerated FK model). There exists a critical value mc
0 such

that for all m0 ∈]0,mc
0] and all L ∈ R, there exists a continuous function F : R → R such that, under

assumption (1.3), the function uε converges locally uniformly towards the unique viscosity solution u0 of
(1.5).

Remark 1.2. The critical mass mc
0 is made precise in Assumption (A3) below.
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1.2 Example of systems with n types of particles

We now present the case of system with n types of particles. Let us start with the typical problem we have
in mind. Let n ∈ N\ {0} be some integer and let us consider a sequence of real numbers (θi)i∈Z such that

θi+n = θi > 0 for all i ∈ Z .

It is then natural to consider the generalized FK model with n different types of particles that stay ordered
on the real line. Then, instead of satisfying (1.2), we can assume that Ui satisfies for τ ∈ (0,+∞) and i ∈ Z

(1.6) m0
d2Ui

d2τ
+
dUi

dτ
= θi+1(Ui+1 − Ui) − θi(Ui − Ui−1) + sin (2πUi) + L

Such a model is sketched on figure 1.

i−1 i i+1 i+2

periodic potential

Figure 1: The FK model with n = 2 type of particles (and of springs) and an interaction up to the m = 1
neighbours

For this model, we can prove the same kind of homogenization result as Theorem 1.1.

For all i ∈ Z, let us introduce the following function

Ξi(τ) = Ui(τ) + 2m0
dUi

dτ
(τ) .

The idea to introduce this function, which allows us to obtain a monotone system, is inspired of the work of
Baesens and MacKay [2] and of Hu, Qin and Zheng [10]. Here we will simplify the proof of the monotonicity
of the system.

Using, this new function, the system of ODEs (1.6) can be rewritten in the following form: for τ ∈ (0,+∞)
and i ∈ Z,







dUi

dτ
= 1

2m0
(Ξi − Ui)

dΞi

dτ
= 2θi+1(Ui+1 − Ui) − 2θi(Ui − Ui−1) + 2 sin(2πUi) + 2L+ 1

2m0
(Ui − Ξi) .

It is convenient to introduce the following notation

α0 =
1

2m0
.

Remark 1.3. It would be also possible to consider more generally: Ξi(τ) = Ui(τ) + 1
α

dUi

dτ
(τ) with 1

α
> m0.

In order to simplify here the presentation, we choose α = 1/(2m0). Moreover, for the classical Frenkel-
Kontorova model (1.2), the choice α = 1/(2m0) is optimal in the sense that the critical value mc

0 for which
the system is monotone is the best we can get.
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1.3 General systems with n types of particles

More generally, we would like to study the generalized Frenkel-Kontorova model (1.1) with n types of
particles. In order to do so, let us consider a general sequence of functions v = (vj(y))j∈Z satisfying

vj+n(y) = vj(y + 1) .

For m ∈ N, we set
[v]j,m(y) = (vj−m(y), . . . , vj+m(y)) .

We are going to study a function

(u, ξ) = ((uj(τ, y))j∈Z, (ξj(τ, y))j∈Z)

satisfying the following system of equations: for all (τ, y) ∈ (0,+∞) × R and all j ∈ Z,

(1.7)























{

(uj)τ = α0(ξj − uj)
(ξj)τ = 2Fj(τ, [u(τ, ·)]j,m) + α0(uj − ξj) ,

{

uj+n(τ, y) = uj(τ, y + 1)
ξj+n(τ, y) = ξj(τ, y + 1) .

This system is referred to as the generalized Frenkel-Kontorova (FK for short) model. It is satisfied in
the viscosity sense (see Definition 2.1). Moreover, we will consider viscosity solutions which are possibly
discontinuous.

Let us now make precise the assumptions we make on the functions Fj : R × R
2m+1 → R that maps

(τ, V ) to Fj(τ, V ). It is convenient to write V ∈ R
2m+1 as (V−m, . . . , Vm).

(A1) (Regularity)
{

Fj is continuous ,
Fj is Lipschitz continuous in V uniformly in τ and j .

(A2) (Monotonicity in Vi, i 6= 0)

Fj(τ, V−m, ..., Vm) is non-decreasing in Vi for i 6= 0 .

(A3) (Monotonicity in V0)

α0 + 2
∂Fj

∂V0
≥ 0 for all j ∈ Z .

Keeping in mind the notation we chose above (α0 = (2m0)
−1 ), this assumption can be interpreted as follows:

the mass has to be small in comparison with the variations of the nonlinearity, which means that the system
is sufficiently overdamped. This assumption guarantees that 2Fj(τ, V )+α0V0 is non-decreasing in V0 for all
j ∈ Z.

(A4) (Periodicity)
{

Fj(τ, V−m + 1, ..., Vm + 1) = Fj(τ, V−m, ..., Vm) ,
Fj(τ + 1, V ) = Fj(τ, V ) .

(A5) (Periodicity of the type of particles)

Fj+n = Fj for all j ∈ Z .
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When n = 1, we explained in [9] that the system of ODEs can be embedded into a single partial differential
equation (more precisely, in a single ordinary differential equation with a real parameter x). Here, taking
into account the “n-periodicity” of the indices j, it can be embedded into n coupled systems of equations.

The next assumption allows to guarantee that the ordering property of the particles, i.e. uj ≤ uj+1, is
preserved for all time.

(A6) (Ordering) For all (V−m, . . . , Vm, Vm+1) ∈ R
2m+2 such that Vi+1 ≥ Vi for all 1 ≤ |i| ≤ m, we have

2Fj+1(τ, V−m+1, . . . , Vm+1) + α0V1 ≥ 2Fj(τ, V−m, . . . , Vm) + α0V0 .

Remark 1.4. If, for all j ∈ {1, . . . , n−1}, we have Fj+1 = Fj then assumption (A6) is a direct consequence
of assumptions (A2) and (A3).

Example 1. We see that assumptions (A1)-(A5) are in particular satisfied for the FK system (1.6) with n
types of particles (θn+j = θj), m = 1 and Fj(τ, V−1, V0, V1) = θj+1(V1 − V0)− θj(V0 − V−1) + sin (2πV0) +L
for α0 ≥ 2(θj + θj+1) + 4π. To get (A6) we have to assume furthemore that α0 ≥ 4θj + 4π.

We next rescale the generalized FK model and set for ε > 0:























uε
j(t, x) = εuj

(

t

ε
,
x

ε

)

ξε
j (t, x) = εξj

(

t

ε
,
x

ε

)

Precisely, the function (uε, ξε) =
(

(

uε
j(t, x)

)

j∈Z
,
(

ξε
j (t, x)

)

j∈Z

)

satisfies the following problem for all

j ∈ Z, t > 0, x ∈ R,

(1.8)





















































(uε
j)t = α0

ξε
j−uε

j

ε

(ξε
j )t = 2Fj

(

t
ε
,
[

uε(t,·)
ε

]

j,m

)

+ α0
uε

j−ξε
j

ε

{

uε
j+n(t, x) = uε

j(t, x+ ε)
ξε
j+n(t, x) = ξε

j (t, x+ ε)

We assume the following initial conditions

(1.9)

{

uε
j(0, x) = u0

(

x+ jε
n

)

ξε
j (0, x) = u0

(

x+ jε
n

)

+ ε
α0
v0
(

x+ jε
n

)

where v0 is a bounded function. In the sequel, we denote ξε
0 = u0 + ε

α0
v0. Finally, we assume that u0 and

ξε
0 satisfy

(A0) (Gradient bound from below) There exist K0 > 0 and M0 > 0 such that

0 < 1/K0 ≤ (u0)x ≤ K0 on R ,

0 < 1/K0 ≤ (ξε
0)x ≤ K0 on R ,

‖u0 − ξε
0‖∞ ≤M0ε .

Then we have the following homogenization result
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Theorem 1.5 (Homogenization of systems with n types of particles). Assume that (Fj)j satisfies
(A1)-(A6), and assume that the initial data u0, ξ

ε
0 satisfy (A0). Consider the solution ((uε

j)j∈Z, (ξ
ε
j )j∈Z) of

(1.8)-(1.9). Then, there exists a continuous function F : R 7→ R such that, for all integer j ∈ Z, the functions
uε

j and ξε
j converge uniformly on compact sets of (0,+∞) × R to the unique viscosity solution u0 of (1.5).

Remark 1.6. The fact that we obtain, at the limit, just one equation to describe the evolution of the system
can seem surprising. In fact, this essentially comes from assumption (A6) and the definition of ξε

j . Indeed,
it could be shown that assumption (A6) implies the order uε

j+1 ≥ uε
j and ξε

j+1 ≥ ξε
j . Then, the system can

be essentially sketched by just two equations (one for the evolution of the u and one for the ξ). But by
microscopic definition of ξε

j , we have ξε
j = uε

j + O(ε) and so just one equation is sufficient to describe the
macroscopic evolution of all the system.

Remark 1.7. In the case m0 = 0, i.e. α0 = +∞, and uε ≡ ξε in (1.8), Theorem 1.5 still holds. Indeed, this
is a special case that is contained in our analysis.

We will explain in the next subsection how the non-linearity F̄ , known as the effective Hamiltonian, is
determined. We will see that this has to do with the existence of solutions of (1.8), (1.9) with a special form.
More precisely, the solutions are constructed thanks to functions known as hull functions.

1.4 Hull functions

In this subsection, we introduce the notion of hull function for system (1.7). More precisely, we look for
particular functions ((hj(τ, z))j∈Z, (gj(τ, z))j∈Z such that (uj(τ, y) = hj(τ, py+λτ), ξj(τ, y) = gj(τ, py+λτ))
is a solution of (1.7) on Ω = (−∞,+∞) × R = R

2. Here is a precise definition.

Definition 1.8 (Hull function for systems of n types of particles).
Given (Fj)j satisfying (A1)-(A6), p ∈ (0,+∞) and a number λ ∈ R, we say that a family of functions
((hj)j , (gj)j) is a hull function for (1.7) if it satisfies for all (τ, z) ∈ R

2, j ∈ Z

(1.10)















































(hj)τ + λ(hj)z = α0(gj − hj)

hj(τ + 1, z) = hj(τ, z)
hj(τ, z + 1) = hj(τ, z) + 1
hj+n(τ, z) = hj(τ, z + p)
hj+1(τ, z) ≥ hj(τ, z)
(hj)z(τ, z) ≥ 0
∃C s.t. |hj(τ, z) − z| ≤ C















































(gj)τ + λ(gj)z = 2Fj(τ, [h(τ, ·)]j,m(z)) + α0(hj − gj)

gj(τ + 1, z) = gj(τ, z)
gj(τ, z + 1) = gj(τ, z) + 1
gj+n(τ, z) = gj(τ, z + p)
gj+1(τ, z) ≥ gj(τ, z)
(gj)z(τ, z) ≥ 0
∃C s.t. |gj(τ, z) − z| ≤ C .

In the case where (Fj)j do not depend on τ , we also require that the hull function ((hj)j , (gj)j) are independent
on τ and we denote it by ((hj(z))j , (gj(z))j).

Remark 1.9. The last line of (1.10) implies in particular that εhj(τ,
z
ε
) → z and εgj(τ,

z
ε
) → z as ε→ 0.

Given p > 0, the following theorem explains how the effective Hamiltonian F (p) is determined by an
existence/non-existence result of hull functions as λ ∈ R varies.

Theorem 1.10 (Effective Hamiltonian and hull function). Given (Fj)j satisfying (A1)-(A6) and p ∈
(0,+∞), there exists a unique real number λ for which there exists a hull function ((hj)j , (gj)j) (depending
on p) satisfying (1.10). Moreover the real number λ = F (p), seen as a function of p, is continuous on
(0,+∞).

1.5 Qualitative properties of the effective Hamiltonian

We have moreover the following result
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Theorem 1.11 (Qualitative properties of F). Let (Fj)j satisfying (A1)-(A6). For any constant L ∈ R,
let F (L, p) denote the effective Hamiltonian given in Theorem 1.10 for p ∈ (0,+∞), associated with (Fj)j

replaced by (L + Fj)j .
Then (L, p) 7→ F (L, p) is continuous and we have the following properties

(i) (Bound) we have
|F (L, p) − L| ≤ Cp .

(ii) (Monotonicity in L)
F (L, p) is non-decreasing in L .

1.6 Organization of the article

In Section 2, we give some useful results concerning viscosity solutions for systems. In Section 3, we prove
the convergence result assuming the existence of hull functions. The construction of hull functions is given
in Sections 4 and 5. Finally, Section 6 is devoted to the proof of the qualitative properties of the effective
Hamiltonian.

1.7 Notation

Given r,R > 0, t ∈ R and x ∈ R, Qr,R(t, x) denotes the following neighbourhood of (t, x)

Qr,R(t, x) = (t− r, t+ r) × (x−R, x+R) .

For V = (V1, . . . , VN ) ∈ R
N , |V |∞ denotes maxj |Vj |. Given a family of function (vj(·))j∈Z and two

integers j,m ∈ Z, [v]j,m denotes the function (vj−m(·), . . . , vj+m(·)).

2 Viscosity solutions

This section is devoted to the definition of viscosity solutions for systems of equations such as (1.7), (1.8)
and (1.10). In order to construct hull functions when proving Theorem 1.10, we will also need to consider
a perturbation of (1.7) with linear plus bounded initial data. For all these reasons, we define a viscosity
solution for a generic equation whose Hamiltonian (Gj)j satisfies proper assumptions.

Before making precise assumptions, definitions and fundamental results we will need later (such as sta-
bility, comparison principle, existence), we refer the reader to the user’s guide of Crandall, Ishii, Lions [5]
and the book of Barles [3] for an introduction to viscosity solutions and [4, 18, 14, 15] and references therein
for results concerning viscosity solutions for systems of weakly coupled partial differential equations.

2.1 Main assumptions and definitions

For 0 < T ≤ +∞, consider the following Cauchy problem (for general non-linearities (Gj)j): for j ∈ Z, τ > 0
and y ∈ R,

(2.1)























{

(uj)τ = α0(ξj − uj)
(ξj)τ = Gj(τ, [u(τ, ·)]j,m, ξj , py − ξj(τ, y) − infy′∈R (ξj(τ, y

′) − py′) , (ξj)y)

{

uj+n(τ, y) = uj(τ, y + 1)
ξj+n(τ, y) = ξj(τ, y + 1)

submitted to the initial conditions

(2.2)

{

uj(0, y) = u0(y + j
n
) := u0,j(y)

ξj(0, y) = ξ0(y + j
n
) := ξ0,j(y) .
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Example 2. The most important example we have in mind is the following one

Gj(τ, V−m, · · · , Vm, r, a, q) = 2Fj(τ, V ) + α0(V0 − r) + δ(a0 + a)q+

for some constants δ ≥ 0, a0, a, q ∈ R and where Fj appears in (1.7),(1.8), (1.10).

We make the following assumptions on (Gj).

(A1’) (Regularity)

(i) Gj is continuous

(ii) For all R > 0, there exists L0 > 0 such that for all τ, V,W, r, s, a, q1, q2, j, with a ∈ [−R,R], we
have

|Gj(τ, V, r, a, q1) −Gj(τ,W, s, a, q2)| ≤ L0|V −W |∞ + L0|r − s| + L0|q1 − q2| .

(iii) There exists L1 > 0 such that for all V, a, b, τ, r, q,

|Gj(τ, V, r, a, q) −Gj(τ, V, r, b, q)| ≤ L1|a− b||q| .

(A2’) (Monotonicity in Vi, i 6= 0)

Gj(τ, V−m, ..., Vm, r, a, q) is non-decreasing in Vi for i 6= 0.

(A3’) (Monotonicity in a and V0)

Gj(τ, V−m, ..., Vm, r, a, q) is non-decreasing in a and in V0.

(A4’) (Periodicity) For all (τ, V, r, a, q) ∈ R × R
2m+1 × R × R × R and j ∈ {1, . . . , n}

{

Gj(τ, V−m + 1, ..., Vm + 1, r + 1, a, q) = Gj(τ, V−m, ..., Vm, r, a, q) ,
Gj(τ + 1, V, r, a, q) = Gj(τ, V, r, a, q) .

(A5’) (Periodicity of the type of particles)

Gj+n = Gj for all j ∈ Z .

(A6’) (Ordering) For all (V−m, . . . , Vm, Vm+1) ∈ R
2m+2 such that ∀i, Vi+1 ≥ Vi, we have

Gj+1(τ, V−m+1, . . . , Vm+1, r, a, q) ≥ Gj(τ, V−m, . . . , Vm, r, a, q) .

In view of (2.1), it is clear that, if Gj effectively depends on the variable a, solutions must be such that
the infimum of ξj(τ, y)− p · y is finite for all time τ . In this case, we will only consider solutions ξj satisfying
for some C0(T ) > 0: for all τ ∈ [0, T ) and all y, y′ ∈ R

(2.3) |ξj(τ, y + y′) − ξj(τ, y) − py′| ≤ C0 .

When T = +∞, we may assume that (2.3) holds true for all time T0 > 0 for a family of constants C0 > 0.
Since we have to solve a Cauchy problem, we have to assume that the initial datum satisfies the assumption

(A0’) (Initial condition)

(u0, ξ0) satisfies (A0) (with ε = 1); it also satisfies (2.3) if Gj depends on a for some j.
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Finally, we recall the definition of the upper and lower semi-continuous envelopes, u∗ and u∗, of a locally
bounded function u.

u∗(τ, y) = lim sup
(t,x)→(τ,y)

u(t, x) and u∗(τ, y) = lim inf
(t,x)→(τ,y)

u(t, x) .

We can now define viscosity solutions for (2.1).

Definition 2.1 (Viscosity solutions). Let T > 0 and u0 : R → R and ξ0 : R → R be such that (A0’) is
satisfied. Let uj : R

+ × R → R and ξj : R
+ × R → R be locally bounded. We denote by Ω = (0, T ]× R.

– The function ((uj)j , (ξj)j) is a subsolution (resp. a supersolution) of (2.1) on Ω if (2.3) holds true
for ξj in the case where Gj depends on a,

∀j, n, ∀(τ, y), uj+n(τ, y) = uj(τ, y + 1), ξj+n(τ, y) = ξj(τ, y + 1)

and for all j ∈ {1, . . . , n}, uj and ξj are upper semi-continuous (resp. lower semi-continuous), and for
all (τ, y) ∈ Ω and all test function φ ∈ C1(Ω) such that uj − φ attains a local maximum (resp. a local
minimum) at the point (τ, y), then we have

(2.4) φτ (τ, y) ≤ α0(ξj(τ, y) − uj(τ, y)) (resp. ≥)

and for all (τ, y) ∈ Ω and all test function φ ∈ C1(Ω) such that ξj − φ attains a local maximum (resp.
a local minimum) at the point (τ, y), then we have

(2.5) φτ (τ, y) ≤ Gj(τ, [u(τ, ·)]j,m(y), ξj(τ, y), inf
y′∈R

(ξj(τ, y
′) − py′) + py − ξj(τ, u), φy(τ, y))

(resp. ≥).

– The function ((uj)j , (ξj)j) is a subsolution (resp. supersolution) of (2.1),(2.2) if ((uj)j , (ξj)j) is a
subsolution (resp. supersolution) on Ω and if it satisfies moreover for all y ∈ R, j ∈ {1, . . . , n}

uj(0, y) ≤ u0(y +
j

n
) (resp. ≥) ,

ξj(0, y) ≤ ξ0(y +
j

n
) (resp. ≥) .

– A function ((uj)j , (ξj)j) is a viscosity solution of (2.1) (resp. of (2.1),(2.2)) if ((u∗j )j , (ξ
∗
j )j) is a

subsolution and (((uj)∗)j , ((ξj)∗)j) is a supersolution of (2.1) (resp. of (2.1),(2.2)).

Sub- and supersolutions satisfy the following comparison principle which is a key property of the equation.

Proposition 2.2 (Comparison principle).
Assume (A0’) and that (Gj)j satisfies (A1’)-(A5’). Let (uj , ξj) (resp. (vj , ζj)) be a subsolution (resp. a
supersolution) of (2.1), (2.2) such that (2.3) holds true for ξj and ζj in the case where Gj depends on a.
We also assume that there exists a constant K > 0 such that for all j ∈ {1, . . . , n} and (t, x) ∈ [0, T ] × R,
we have:

(2.6) uj(t, x) ≤ u0,j(x) +K(1 + t), ξj(t, x) ≤ ξ0,j(x) +K(1 + t)

(resp.− vj(t, x) ≤ −u0,j(x) +K(1 + t), −ζj(t, x) ≤ −ξ0,j(x) +K(1 + t))

If
uj(0, x) ≤ vj(0, x) and ξj(0, x) ≤ ζj(0, x) for all j ∈ Z, x ∈ R ,

then
uj(t, x) ≤ vj(t, x) and ξj(t, x) ≤ ζj(t, x) for all j ∈ Z, (t, x) ∈ [0, T ]× R .
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Remark 2.3. Even if it was not specified in [9], the Lipschitz continuity in q of Gj is necessary to obtain a
general comparison principle.

Proof. In view of assumption (A1’)(i) and using the change of variable ūj(t, x) = e−λtuj(t, x) and ξ̄j(t, x) =
e−λtξj(t, x), it is classical that without loss of generality, we can assume that for all r ≥ s

(2.7) Gj(τ, V, r, a, q) −Gj(τ, V, s, a, q) ≤ −L′(r − s)

for L′ ≥ L0 > 0.
We define

M = sup
(t,x)∈(0,T )×R

max
j∈{1,...,n}

max (uj(t, x) − vj(t, x), ξj(t, x) − ζj(t, x)) .

The proof is decomposed in several steps.
Step 1: The test function
We argue by contradiction by assuming that M > 0. Classically, we duplicate the space variable by consid-
ering for ε, α and η “small” positive parameters, the functions

ϕ(t, x, y, j) = uj(t, x) − vj(t, y) − eAt |x− y|2

2ε
− α|x|2 −

η

T − t

φ(t, x, y, j) = ξj(t, x) − ζj(t, y) − eAt |x− y|2

2ε
− α|x|2 −

η

T − t

where A is a positive constant which will be chosen later. We also consider

Ψ(t, x, y, j) = max(ϕ(t, x, y, j), φ(t, x, y, j)),

Using inequalities (2.6) and assumption (A0’), we get

uj(t, x) − vj(t, y) ≤ u0,j(x) − u0,j(y) + 2K(1 + T ) ≤ K0|x− y| + 2K(1 + T )

and
ξj(t, x) − ζj(t, y) ≤ K0|x− y| + 2K(1 + T )

We then deduce that
lim

|x|,|y|→∞
ϕ(t, x, y, j) = −∞ = lim

|x|,|y|→∞
φ(t, x, y, j) ,

Using also the fact that ϕ and φ are u.s.c, we deduce that Ψ reaches its maximum at some point (t̄, x̄, ȳ, j̄).
Let us assume that Ψ(t̄, x̄, ȳ, j̄) = φ(t̄, x̄, ȳ, j̄) (the other case being similar and even simpler). We first

remark that for α and η small enough, we have

Ψ(t̄, x̄, ȳ, j̄) = Mε,α,η ≥
M

2
> 0 .

In particular,
ξj̄(t̄, x̄) − ζj̄(t̄, ȳ) > 0 .

Step 2: Viscosity inequalities for t̄ > 0
By duplicating the time variable and passing to the limit [5, 3], we classically get that there are real numbers
a, b, p̄ ∈ R such that

a− b =
η

(T − t̄)2
+AeAt̄ |x̄− ȳ|2

2ε
, p̄ = eAt̄ x̄− ȳ

ε
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and

a ≤ Gj̄(t̄, [u(t̄, ·)]j̄,m(x̄), ξj̄(t̄, x̄), inf(ξj̄(t̄, y
′) − py′) + px̄− ξj̄(t̄, x̄), p̄+ 2αx̄)

b ≥ Gj̄(t̄, [v(t̄, ·)]j̄,m(ȳ), ζj̄(t̄, ȳ), inf(ζj̄(t̄, y
′) − py′) + pȳ − ζj̄(t̄, ȳ), p̄).

Subtracting the two above inequalities, we get

η

T 2
+AeAt̄ |x̄− ȳ|2

2ε
≤Gj̄(t̄, [u(t̄, ·)]j̄,m(x̄), ξj̄(t̄, x̄), inf(ξj̄(t̄, y

′) − py′) + px̄− ξj̄(t̄, x̄), p̄+ 2αx̄)

−Gj̄(t̄, [v(t̄, ·)]j̄,m(ȳ), ζj̄(t̄, ȳ), inf(ζj̄(t̄, y
′) − py′) + pȳ − ζj̄(t̄, ȳ), p̄)(2.8)

Step 3: Estimate on uk(t̄, x̄) − vk(t̄, ȳ)
If k ∈ {1, . . . , n}, by the inequality ϕ(t̄, x̄, ȳ, k) ≤ φ(t̄, x̄, ȳ, j̄), we directly get that

uk(t̄, x̄) − vk(t̄, ȳ) ≤ ξj̄(t̄, x̄) − ζj̄(t̄, ȳ) .

If k 6∈ {1, . . . , n}, let us define lk ∈ Z such that k − lkn = k̃ ∈ {1, . . . , n}. By periodicity, we then have

uk(t̄, x̄) − vk(t̄, ȳ) =uk̃+lkn(t̄, x̄) − vk̃+lkn(t̄, ȳ)

=uk̃(t̄, x̄+ lk) − vk̃(t̄, ȳ + lk)

≤ξj̄(t̄, x̄) − ζj̄(t̄, ȳ) − α(|x̄|2 − |x̄+ lk|
2)

where we have used the inequality ϕ(t̄, x̄+ lk, ȳ+ lk, k̃) ≤ φ(t̄, x̄, ȳ, j̄) for the last line. So, for all k ∈ Z (and
in particular for k ∈ {j̄ −m, . . . , j̄ +m}), we finally deduce that

(2.9) uk(t̄, x̄) − vk(t̄, ȳ) ≤ ξj̄(t̄, x̄) − ζj̄(t̄, ȳ) + α
∣

∣|x̄|2 − |x̄+ lk|
2
∣

∣ .

Step 4: Estimate on the right hand side of (2.8)
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We now want to estimate the right hand side of (2.8). We have

Gj̄

(

t̄, [u(t̄, ·)]j̄,m(x̄), ξj̄(t̄, x̄), inf(ξj̄(t̄, y
′) − py′) + px̄− ξj̄(t̄, x̄), p̄+ 2αx̄

)

−Gj̄

(

t̄, [v(t̄, ·)]j̄,m(ȳ), ζj̄(t̄, ȳ), inf(ζj̄(t̄, y
′) − py′) + pȳ − ζj̄(t̄, ȳ), p̄

)

≤Gj̄

(

t̄,
[

v(t̄, ·) + ξj̄(t̄, x̄) − ζj̄(t̄, ȳ) + α
∣

∣|x̄|2 − |x̄+ l·|
2
∣

∣

]

j̄,m
(ȳ), ξj̄(t̄, x̄),

inf(ξj̄(t̄, y
′) − py′) + px̄− ξj̄(t̄, x̄), p̄+ 2αx̄

)

−Gj̄

(

t̄, [v(t̄, ·)]j̄,m(ȳ), ζj̄(t̄, ȳ), inf(ζj̄(t̄, y
′) − py′) + pȳ − ζj̄(t̄, ȳ), p̄

)

≤L0(ξj̄(t̄, x̄) − ζj̄(t̄, ȳ)) + L0α max
k∈{j̄−m,...,j̄+m}

∣

∣|x̄|2 − |x̄+ lk|
2
∣

∣

+Gj̄

(

t̄, [v(t̄, ·)]j̄,m(ȳ), ξj̄(t̄, x̄), inf(ξj̄(t̄, y
′) − py′) + px̄− ξj̄(t̄, x̄), p̄+ 2αx̄

)

(2.10)

−Gj̄

(

t̄, [v(t̄, ·)]j̄,m(ȳ), ζj̄(t̄, ȳ), inf(ζj̄(t̄, y
′) − py′) + pȳ − ζj̄(t̄, ȳ), p̄

)

≤L0(ξj̄(t̄, x̄) − ζj̄(t̄, ȳ)) + L0α max
k∈{j̄−m,...,j̄+m}

∣

∣|x̄|2 − |x̄+ lk|
2
∣

∣− L′(ξj̄(t̄, x̄) − ζj̄(t̄, ȳ))

+Gj̄

(

t̄, [v(t̄, ·)]j̄,m(ȳ), ζj̄(t̄, ȳ), inf(ξj̄(t̄, y
′) − py′) + px̄− ξj̄(t̄, x̄), p̄+ 2αx̄

)

−Gj̄

(

t̄, [v(t̄, ·)]j̄,m(ȳ), ζj̄(t̄, ȳ), inf(ζj̄(t̄, y
′) − py′) + pȳ − ζj̄(t̄, ȳ), p̄

)

≤Lα max
k∈{j̄−m,...,j̄+m}

(2|lkx̄| + l2k)

+ L1

(

inf(ξj̄(t̄, y
′) − py′) + px̄− ξj̄(t̄, x̄) − inf(ζj̄(t̄, y

′) − py′) − pȳ + ζj̄(t̄, ȳ)
)

|p̄|

+Gj̄

(

t̄, [v(t̄, ·)]j̄,m(ȳ), ζj̄(t̄, ȳ), inf(ξj̄(t̄, y
′) − py′) + pȳ − ξj̄(t̄, x̄), p̄+ 2αx̄

)

−Gj̄

(

t̄, [v(t̄, ·)]j̄,m(ȳ), ζj̄(t̄, ȳ), inf(ξj̄(t̄, y
′) − py′) + pȳ − ξj̄(t̄, x̄), p̄

)

where we have used (2.9) for the first inequality, assumption (A1’)(ii) for the second one, (2.7) for the third
one and assumption (A1’)(iii) for the last one.

Using the fact that α|x̄| → 0 as α→ 0, we deduce that

2mLαmax
k

(2|lkx̄| + l2k)

+Gj̄

(

t̄, [v(t̄, ·)]j̄,m(ȳ), ζj̄(t̄, ȳ), inf(ξj̄(t̄, y
′) − py′) + pȳ − ξj̄(t̄, x̄), p̄+ 2αx̄

)

−Gj̄

(

t̄, [v(t̄, ·)]j̄,m(ȳ), ζj̄(t̄, ȳ), inf(ξj̄(t̄, y
′) − py′) + pȳ − ξj̄(t̄, ȳ), p̄

)

=oα(1)

where we have used (2.3) to bound inf(ξj̄(t̄, y
′) − py′) + pȳ − ξj̄(t̄, ȳ) uniformly in a.

Step 5: Passing to the limit
Using the fact that φ(t̄, z, z, j̄) ≤ φ(t̄, x̄, ȳ, j̄), we deduce that

ξj̄(t̄, z) − ξj̄(t̄, x̄) ≤ ζj̄(t̄, z) − ζj̄(t̄, ȳ) + α|z|2.
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Combining this with the previous step, we get

η

T 2
+AeAt̄ |x̄− ȳ|2

2ε

≤oα(1) + L1

(

inf(ζj̄(t̄, y
′) − py′ − ζj̄(t̄, ȳ) + α|y′|2) − inf(ζj̄(t̄, y

′) − py′ − ζj̄(t̄, ȳ))
)

|p̄| + p(x̄− ȳ)|p̄|

≤oα(1) + L1

(

inf(ζj̄(t̄, y
′) − py′ + α|y′|2) − inf(ζj̄(t̄, y

′) − py′)
)

|p̄| + peAt̄ |x̄− ȳ|2

ε
(2.11)

Choosing A = 2p, we finally get

η

T 2
≤ oα(1) +

(

inf(ζj̄(t̄, y
′) − py′ + α|y′|2) − inf(ζj̄(t̄, y

′) − py′)
)

|p̄|.

Using the fact that for p̄ = O(1) when α → 0 (in fact the O(1) depends on ε which is fixed) and using
classical arguments about inf convolution, we get that

(

inf(ζj̄(t̄, y
′) − py′ + α|y′|2) − inf(ζj̄(t̄, y

′) − py′)
)

|p̄| = oα(1)

and so
η

T 2
≤ oα(1)

which is a contradiction for α small enough.

Step 6: Case t̄ = 0
We assume that there exists a sequence εn → 0 such that t̄ = 0. In this case, we have

0 <
M

2
≤Mεn,α,η ≤ ξ0(x̄) − ξ0(ȳ) −

|x̄− ȳ|2

2εn

− α|x|2 ≤ ξ0(x̄) − ξ0(ȳ) ≤ ‖Dξ0‖L∞ |x̄− ȳ| .

Using the fact that |x̄− ȳ| → 0 as εn → 0 yields a contradiction.

Let us now give a comparison principle on bounded sets. To this end, for a given point (τ0, y0) ∈ (0, T )×R

and for all r,R > 0, let us set

Qr,R = (τ0 − r, τ0 + r) × (y0 −R, y0 +R).

We then have the following result which proof is similar to the one of Proposition 2.2

Proposition 2.4 (Comparison principle on bounded sets).
Assume (A1’)-(A5’) and that Gj(τ, V, r, a, q) does not depend on the variable a for each j. Assume that
((uj)j , (ξj)j) is a subsolution (resp. ((vj)j , (ζ)j) a supersolution) of (2.1) on the open set Qr,R ⊂ (0, T )×R.
Assume also that for all j ∈ {1, . . . , n}

uj ≤ vj and ξj ≤ ζj on (Qr,R+m\Qr,R).

Then uj ≤ vj and ξj ≤ ζj on Qr,R for j ∈ {1, . . . , n}.

We now turn to the question of the existence. Classically, we need to construct barriers for (2.1). In view
of Assumptions (A1’)(ii) and (A4’), for K0 given in (A0), the following quantity

(2.12) G = sup
τ∈R, |q|≤K0, j∈{1,...,n}

|Gj(τ, 0, 0, 0, q)|

is finite. Let us also denote L2 := L1K0. Hence, for all τ, a, b, r ∈ R, V ∈ R
2m+1, q ∈ [−K0,K0] and

j ∈ {1, . . . , n},

(2.13) |Gj(τ, V, r, a, q) −Gj(τ, V, r, b, q)| ≤ L2|a− b|.

Then we have the following lemma:
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Lemma 2.5 (Existence of barriers). Assume (A0’)-(A5’). There exists a constant C > 0 such that

((u+
j (τ, y))j , (ξ

+
j (τ, y))j) = ((u0(y +

j

n
) +K1τ)j , (ξ0(y +

j

n
) +K1τ)j)

and

((u−j (τ, y))j , (ξ
−
j (τ, y))j) = ((u0(y +

j

n
) −K1τ)j , (ξ0(y +

j

n
) −K1τ)j)

are respectively super and sub-solution of (2.1), (2.2) for all T > 0. Moreover, we can choose

(2.14) K1 = max
(

L2C0 + L0

(

2 +K0
m

n
+M0

)

+G,α0M0

)

where C0 and M0 are given in (A0’).

Proof. We prove that ((u+
j (τ, y))j , (ξ

+
j (τ, y))j) is a supersolution of (2.1), (2.2). In view of (A0) with ε = 1,

we have for all j ∈ {1, . . . , n}

α0(ξ
+
j (τ, y) − u+

j (τ, y)) = α0(u0(y +
j

n
) − ξ0(y +

j

n
)) ≤ α0M0 ≤ K1

and

Gj

(

τ, [u+(τ, ·)]j,m(y), ξ+j (τ, y), inf
y′∈R

(

ξ+j (τ, y′) − py′
)

+ py − ξ+j (τ, y), (ξ+j )y(τ, y)

)

=Gj

(

τ, [u+(τ, ·) − ⌊u+
j (τ, y)⌋]j,m(y), ξ+j (τ, y) − ⌊u+

j (τ, y)⌋,

inf
y′∈R

(

ξ0(y
′ +

j

n
) − py′

)

+ py − ξ0(y +
j

n
), (ξ0)y(y +

j

n
)

)

≤L2C0 + L0 + L0 +Gj

(

τ, [u+(τ, ·) − u+
j (τ, y)]j,m(y), ξ+j (τ, y) − u+

j (τ, y), 0, (ξ0)y(y +
j

n
)

)

≤L2C0 + L0 + L0 + L0K0
m

n
+ L0M0 +Gj

(

τ, 0, . . . 0, 0, 0, (ξ0)y(y +
j

n
)

)

≤L2C0 + 2L0 + L0K0
m

n
+ L0M0 +G

where we have used the periodicity assumption (A4’) for the second line, assumptions (A0’) and (A1’)(ii)
for the third line, the fact that |u0(y + j+k

n
) − u0(y + j

n
)| ≤ K0

m
n

for |k| ≤ m and assumption (A0’) for the

forth line and |(ξ+j )y | ≤ K0 for the last line.
When Gj(τ, V, r, a, q) is independent on a, we can simply choose L2 = 0. This ends the proof of the

Lemma.

By applying Perron’s method together with the comparison principle, we immediately get from the
existence of barriers the following result:

Theorem 2.6 (Existence and uniqueness for (2.1)). Assume (A0’)-(A5’). Then there exists a unique
solution ((uj)j , (ξj)j) of (2.1), (2.2). Moreover the functions uj , ξj are continuous.

We now claim that particles are ordered.

Proposition 2.7 (Ordering of the particles). Assume (A0’) and that (Gj)j satisfies (A1’)-(A6’). Let
(uj , ξj) be a solution of (2.1)-(2.2) such that (2.3) holds true for ξj if Gj depends on a. Assume also that uj

are Lipschitz continuous in space (Lu denotes the constant of Lipschitz). Then uj and ξj are non-decreasing
with respect to j.
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Proof of Proposition 2.7. The idea of the proof is to define (vj , ζj) = (uj+1, ξj+1). In particular, we have

(vj(0, y), ζj(0, y)) ≥ (uj(0, y), ξj(0, y)).

Moreover, ((vj)j , (ζj)j) is a solution of















































{

(vj)τ = α0(ζj − vj),
(ζj)τ = Gj+1(τ, [v(τ, ·)]j,m, ζj , infy′∈R (ζj(τ, y

′) − py′) + py − ζj(τ, y), (ζj)y),

{

vj+n(τ, y) = vj(τ, y + 1),
ζj+n(τ, y) = ζj(τ, y + 1)

{

vj(0, y) = u0(y + j
n
),

ζj(0, y) = ξ0(y + j
n
)

Now the goal is to obtain uj ≤ vj and ξj ≤ ζj . The arguments are essentially the same as those used in
the proof of the comparison principle. The main difference is that (2.8) is replaced by

η

T 2
+AeAt̄ |x̄− ȳ|2

2ε
≤Gj̄(t̄, [u(t̄, ·)]j̄,m(x̄), ξj̄(t̄, x̄), inf(ξj̄(t̄, y

′) − py′) + px̄− ξj̄(t̄, x̄), p̄+ 2αx̄)

−Gj̄+1(t̄, [v(t̄, ·)]j̄,m(ȳ), ζj̄(t̄, ȳ), inf(ζj̄(t̄, y
′) − py′) + pȳ − ζj̄(t̄, ȳ), p̄)

≤Gj̄(t̄, [u(t̄, ·)]j̄,m(ȳ), ξj̄(t̄, x̄), inf(ξj̄(t̄, y
′) − py′) + px̄− ξj̄(t̄, x̄), p̄+ 2αx̄)

−Gj̄+1(t̄, [v(t̄, ·)]j̄,m(ȳ), ζj̄(t̄, ȳ), inf(ζj̄(t̄, y
′) − py′) + pȳ − ζj̄(t̄, ȳ), p̄) + L0Lu|x̄− ȳ|

where we have used the Lipschitz continuity of u and assumption (A1’).
To obtain the contradiction, we have to estimate the right hand side of this inequality. First, using step

3 of the proof of the comparison principle (and with the same notation), we can define

δ = ξj̄(t̄, x̄) − ζj̄(t̄, ȳ) + Lu|x̄− ȳ| + α max
k∈{j̄−m,...,j̄+m}

(2|lkx̄| + l2k) ≥ 0

such that for k ∈ {j̄ −m, . . . , j̄ +m},

(2.15) uk(t̄, ȳ) − vk(t̄, ȳ) ≤ δ.

We now can compute

Gj̄(t̄, [u(t̄, ·)]j̄,m(ȳ), ξj̄(t̄, x̄), inf(ξj̄(t̄, y
′) − py′) + px̄− ξj̄(t̄, x̄), p̄+ 2αx̄)

−Gj̄+1(t̄, [v(t̄, ·)]j̄,m(ȳ), ζj̄(t̄, ȳ), inf(ζj̄(t̄, y
′) − py′) + pȳ − ζj̄(t̄, ȳ), p̄) + L0Lu|x̄− ȳ|

≤Gj̄(t̄, (uj̄+k(t̄, ȳ) + (m+ k)δ)k=−m,...,m, ξj̄(t̄, x̄), inf(ξj̄(t̄, y
′) − py′) + px̄− ξj̄(t̄, x̄), p̄+ 2αx̄)

−Gj̄+1(t̄, (vj̄+k(t̄, ȳ) + (m+ k + 1)δ)k=−m,...,m, ζj̄(t̄, ȳ), inf(ζj̄(t̄, y
′) − py′) + pȳ − ζj̄(t̄, ȳ), p̄)

+ L0(2m+ 1)δ + L0Lu|x̄− ȳ|

where we have used the monotonicity assumption (A2’)-(A3’) and the regularity (A1’). Now we can use
assumption (A6’). Indeed, we have for all k ∈ {−m,m− 1}

vj̄+k(t̄, ȳ) + (m+ k + 1)δ = uj̄+k+1(t̄, ȳ) + (m+ k + 1)δ

and for k ∈ {−m,m}
vj̄+k(t̄, ȳ) + (m+ k + 1)δ − uj̄+k(t̄, ȳ) + (m+ k)δ ≥ 0
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where we have used (2.15). This implies that

Gj̄(t̄, [u(t̄, ·)]j̄,m(ȳ), ξj̄(t̄, x̄), inf(ξj̄(t̄, y
′) − py′) + px̄− ξj̄(t̄, x̄), p̄+ 2αx̄)

≤Gj̄+1(t̄, (vj̄+k(t̄, ȳ) + (m+ k + 1)δ)k=−m,...,m, ξj̄(t̄, x̄), inf(ξj̄(t̄, y
′) − py′) + px̄− ξj̄(t̄, x̄), p̄+ 2αx̄)

Now, to obtain the contradiction, it suffices to follow the computation from the third inequality of (2.10)
(choose L′ ≥ (2m+ 1)L0 in (2.7)) to obtain

η

T 2
≤ oα(1) + 2(m+ 1)L0Lu|x̄− ȳ|

which is absurd for α and ε small enough (since |x̄− ȳ| → 0 as ε→ 0)

3 Convergence

This section is devoted to the proof of the main homogenization result (Theorem 1.5). The proof relies
on the existence of hull functions (Theorem 1.10) and qualitative properties of the effective Hamiltonian
(Theorem 1.11). As a matter of fact, we will use the existence of Lipschitz continuous sub- and super-hull
functions (see Proposition 5.2). All these results are proved in the next sections.

We start with some preliminary results. The following result is a straightforward corollary of Lemma 2.5
and the comparison principle by a change of variables.

Lemma 3.1 (Barriers uniform in ε). Assume (A0)-(A5). Then there is a constant C > 0, such that for
all ε > 0, the solution ((uε

j)j , (ξ
ε
j )) of (1.8), (1.9) satisfies for all t > 0 and x ∈ R

|uε
j(t, x) − u0(x+

jε

n
)| ≤ Ct and |ξε

j (t, x) − ξε
0(x+

jε

n
)| ≤ Ct.

We also have the following preliminary lemma.

Lemma 3.2 (ε-bounds on the gradient). Assume (A0)-(A5). Then the solution ((uε)j , (ξ
ε
j )j) of (1.8),

(1.9) satisfies for all t > 0, x ∈ R, z > 0 and j ∈ Z

(3.1) ε

⌊

z

εK0

⌋

≤ uε
j(t, x+ z) − uε

j(t, x) ≤ ε

⌈

zK0

ε

⌉

and

ε

⌊

z

εK0

⌋

≤ ξε
j (t, x+ z) − ξε

j (t, x) ≤ ε

⌈

zK0

ε

⌉

.

Remark 3.3. In particular we obtain that functions uε
j(t, x) and ξε

j (t, x) are non-decreasing in x.

Proof of Lemma 3.2. We prove the bound from below (the proof is similar for the bound from above). We
first remark that (A0) implies that the initial condition satisfies for all j ∈ Z

(3.2) uε
j(0, x+ z) = u0(x + z +

jε

n
) ≥ u0(x+

jε

n
) + z/K0 ≥ uε

j(0, x) + kε with k =

⌊

z

εK0

⌋

and
ξε
j (0, x+ z) ≥ ξε

j (0, x) + kε .

From (A4), we know that for ε = 1, the equation is invariant by addition of integers to solutions. After
rescaling it, Equation (1.8) is invariant by addition of constants of the form kε, k ∈ Z. For this reason the
solution of (1.8) associated with initial data ((uε

j(0, x) + kε)j , (ξ
ε
j (0, x) + kε)j) is ((uε

j + kε)j , (ξ
ε
j + kε)j).

Similarly the equation is invariant by translations. Therefore the solution with initial data ((uε
j(0, x +
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z))j , (ξ
ε
j (0, x + z)j) is ((uε

j(t, x + z))j , (ξ
ε
j (t, x + z))j). Finally, from (3.2) and the comparison principle

(Proposition 2.2), we get

uε
j(t, x+ z) ≥ uε

j(t, x) + kε and ξε
j (t, x+ z) ≥ ξε

j (t, x) + kε

which proves the bound from below. This ends the proof of the lemma.

We now turn to the proof of Theorem 1.5.

Proof of Theorem 1.5. We only have to prove the result for all j ∈ {1, . . . , n}. Indeed, using the fact that
uε

j+n(t, x) = uε
j(t, x+ ε) and ξε

j+n(t, x) = ξε
j (t, x+ ε), we will get the complete result.

For all j ∈ {1, . . . , n}, we introduce the following half-relaxed limits

uj = lim sup
ε→0

∗uε
j , ξj = lim sup

ε→0

∗ξε
j

uj = lim inf
ε→0 ∗

uε
j , ξ

j
= lim inf

ε→0 ∗
ξε
j .

These functions are well defined thanks to Lemma 3.1. We then define

v = max
j∈{1,...,n}

max(uj , ξj), v = min
j∈{1,...,n}

min(uj , ξj
) .

We get from Lemmata 3.1 and 3.2 that both functions w = v, v satisfy for all t > 0, x, x′ ∈ R (recall that
ξε
0 → u0 as ε→ 0)

|w(t, x) − u0(x)| ≤ Ct ,

K−1
0 |x− x′| ≤ w(t, x) − w(t, x′) ≤ K0|x− x′| .(3.3)

We are going to prove that v is a subsolution of (1.5). Similarly, we can prove that v is a supersolution of
the same equation. Therefore, from the comparison principle for (1.5), we get that u0 ≤ v ≤ v ≤ u0. And
then v = v = u0, which shows the expected convergence of the full sequence uε

j and ξε
j towards u0 for all

j ∈ {1, . . . , n}.

We now prove in several steps that v is a subsolution of (1.5). We classically argue by contradiction:
then there exists (t, x) ∈ (0,+∞) × R and a test function φ ∈ C1 such that

(3.4)















v(t, x) = φ(t, x)
v ≤ φ on Qr,2r(t, x), with r > 0
v ≤ φ− 2η on Qr,2r(t, x) \Qr,r(t, x), with η > 0

φt(t, x) = F (φx(t, x)) + θ, with θ > 0

Let p denote φx(t, x). From (3.3), we get

(3.5) 0 < 1/K0 ≤ p ≤ K0 .

Combining Theorems 1.10 and 1.11, we get the existence of a hull function ((hi)i, (gi)i) associated with p
such that

λ = F (p) +
θ

2
= F (L, p) with L > 0 .

Indeed, we know from these results that the effective Hamiltonian is non-decreasing in L, continuous and
goes to ±∞ as L→ ±∞.

We now apply the perturbed test function method introduced by Evans [7] in terms here of hull functions
instead of correctors. Precisely, let us consider the following twisted perturbed test functions for i ∈ {1, . . . , n}

φε
i (t, x) = εhi

(

t

ε
,
φ(t, x)

ε

)

, ψε
i (t, x) = εgi

(

t

ε
,
φ(t, x)

ε

)

.
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We then define the family of perturbed test functions (φε
i )i∈Z, ((ψ

ε
i )i∈Z) by using the following relation

φε
i+kn(t, x) = φε

i (t, x + εk), ψε
i+kn(t, x) = ψε

i (t, x+ εk).

Here the test functions are twisted in the same way as in [12]. In order to get a contradiction, we first
assume that the functions hi and gi are C1 and continuous in z uniformly in τ ∈ R, i ∈ {1, . . . , n}. In
view of the third line of (1.10), we see that this implies that hi and gi are uniformly continuous in z
(uniformly in τ ∈ R, i ∈ {1, . . . , n}). For simplicity, and since we will construct approximate hull functions
with such a regularity, we even assume that hi and gi are globally Lipschitz continuous in z (uniformly in
τ ∈ R, i ∈ {1, . . . , n}). We will next see how to treat the general case.

Case 1: hi and gi are C1 and globally Lipschitz continuous in z

Step 1.1: ((φε
i )i, (ψ

ε
i )i) is a supersolution of (1.8) in a neighbourhood of (t, x)

When hi and gi are C1, it is sufficient to check directly the supersolution property of (φε
i , ψ

ε
i ) for (t, x) ∈

Qr,r(t, x). We begin by the equation satisfied by φε
i . We have, with τ = t/ε and z = φ(t, x)/ε,

(φε
i )t =(hi)τ (τ, z) + (hi)z(τ, z)φt(t, x)

=(φt(t, x) − λ)(hi)z(τ, z) + α0(gi(τ, z) − hi(τ, z))

=(φt(t, x) − φt(t, x) +
θ

2
)(hi)z(τ, z) +

α0

ε
(ψε

i (τ, z) − φε
i (τ, z))

≥
α0

ε
(ψε

i (τ, z) − φε
i (τ, z))(3.6)

where we have used the equation satisfied by hi to get the second line and the non-negativity of hz , the fact
that θ > 0 and the fact that φ is C1, to get the last line on Qr,r(t, x) for r > 0 small enough.

We now turn to equation satisfied by ψi. With the same notation, we have

(ψε
i )t(t, x) − 2Fi

(

τ,

[

φε(t, ·)

ε

]

i,m

(x)

)

−
α0

ε
(φε

i − ψε
i )(3.7)

=(gi)τ (τ, z) + φt(t, x)(gi)z(τ, z) − 2Fi

(

τ,

[

φε(t, ·)

ε

]

i,m

(x)

)

− α0(hi(τ, z) − gi(τ, z))

=(φt(t, x) − λ) (gi)z(τ, z) + 2L+ 2

(

Fi

(

τ, [h(τ, ·)]i,m (z)
)

− Fi

(

τ,

[

φε(t, ·)

ε

]

i,m

(x)

))

≥(φt(t, x) − λ) (gi)z(τ, z) + 2L− 2LF

∣

∣

∣

∣

∣

[h(τ, ·)]i,m (z) −

[

φε(t, ·)

ε

]

i,m

(x)

∣

∣

∣

∣

∣

∞

where we have used that Equation (1.10) is satisfied by (gi)i to get the third line and (A1) to get the fourth
one; here, LF denotes the maximum of the Lipschitz constant of Fi (for i ∈ {1, . . . , n}) with respect to V
for the norm | · |∞ on R

2m+1.
Let us next estimate, for i ∈ {1, . . . , n}, j ∈ {−m, . . . ,m} and ε > 0,

Ii,j = hi+j(τ, z) −
φε

i+j(t, x)

ε

If i+ j ∈ {1, . . . , n}, then, by definition of φi+j , we have

Ii,j = hi+j

(

t

ε
,
φ(t, x)

ε

)

−
φε

i+j(t, x)

ε
= 0.
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If i+ j 6∈ {1, . . . , n}, let us define l such that 1 ≤ i+ j − ln ≤ n. We then have

Ii,j =hi+j−ln(τ, z + lp) −
φε

i+j−ln(t, x+ εl)

ε

=hi+j−ln

(

t

ε
,
φ(t, x)

ε
+ lp

)

− hi+j−ln

(

t

ε
,
φ(t, x+ εl)

ε

)

=hi+j−ln

(

t

ε
,
φ(t, x)

ε
+ lp

)

− hi+j−ln

(

t

ε
,
φ(t, x)

ε
+ lp+ or(1)

)

where or(1) only depends on the modulus of continuity of φx on Qr,r(t, x) (for ε small enough such that
εl ≤ r with l uniformly bounded and then (t, x + εl) ∈ Qr,2r(t, x)). Hence, if hi are Lipschitz continuous
with respect to z uniformly in τ and i, we conclude that we can choose ε small enough so that

(3.8) L− LF

∣

∣

∣

∣

∣

[h(τ, ·)]i,m (z) −

[

φε(t, ·)

ε

]

i,m

(x)

∣

∣

∣

∣

∣

∞

≥ 0 .

Combining (3.7) and (3.8), we obtain

(ψε
i )t(t, x) − 2Fi

(

τ,

[

φε(t, x)

ε

]

i,m

(x)

)

+
α0

ε
(φε

i − ψε
i ) ≥ (φt(t, x) − λ) (gi)z(τ, z)

≥

(

θ

2
+ φt(t, x) − φt(t, x)

)

(gi)z(τ, z)

=

(

θ

2
+ or(1)

)

(gi)z(τ, z) ≥ 0 .

We used the non-negativity of (gi)z , the fact that θ > 0 and again the fact that φ is C1, to get the result
on Qr,r(t, x) for r > 0 small enough. Therefore, when the hi and gi are C1 and Lipschitz continuous on z
uniformly in τ and i, ((φε

i )i, (ψ
ε
i )i) is a viscosity supersolution of (1.8) on Qr,r(t, x).

Step 1.2: getting the contradiction
By construction (see Remark 1.9), we have φε

i → φ and ψε
i → φ as ε→ 0 for all i ∈ {1, . . . , n}, and therefore

from the fact that uj ≤ v̄ ≤ φ− 2η on Qr,2r(t, x) \Qr,r(t, x) (see (3.4)), we get for ε small enough

uε
i ≤ φε

i − η ≤ φε
i − εkε on Qr,2r(t, x) \Qr,r(t, x)

with the integer
kε = ⌊η/ε⌋ .

In the same way, we have

ξε
i ≤ ψε

i − η ≤ ψε
i − εkε on Qr,2r(t, x) \Qr,r(t, x) .

Therefore, for mε ≤ r, we can apply the comparison principle on bounded sets to get

(3.9) uε
i ≤ φε

i − εkε, ξε
i ≤ ψε

i − εkε on Qr,r(t, x) .

Passing to the limit as ε goes to zero, we get

ui ≤ φ− η, ξi ≤ φ− η on Qr,r(t, x)

which implies that
v ≤ φ− η on Qr,r(t, x).
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This gives a contradiction with v(t, x) = φ(t, x) in (3.4). Therefore v is a subsolution of (1.5) on (0,+∞)×R

and we get that uε
j and ξε

j converges locally uniformly to u0 for j ∈ {1, . . . , n}. This ends the proof of the
theorem.

Case 2: general case for h
In the general case, we can not check by a direct computation that ((φε

i )i, (ψ
ε
i )i) is a supersolution on

Qr,r(t, x). The difficulty is due to the fact that the hi and the gi may not be Lipschitz continuous in the
variable z.

This kind of difficulties was overcomed in [12] by using Lipschitz super-hull functions, i.e. functions satis-
fying (1.10) with ≥ instead of = in the first line. Indeed, it is clear from the previous computations that it is
enough to conclude. In [12], such regular super-hull functions (as a matter of fact, regular super-correctors)
were built as exact solutions of an approximate Hamilton-Jacobi equation. Moreover this Lipschitz contin-
uous hull function is a supersolution for the exact Hamiltonian with a slightly bigger λ.

Here we conclude using a similar result, namely Proposition 5.2. Notice that in Proposition 5.2 hi and
gi are only Lipschitz continuous and not C1. This is not a restriction, because the result of Step 1.1 can be
checked in the viscosity sense using test function (see [7] for further details). Comparing with [12], notice
that we do not have to introduce an additional dimension because here p > 0 (see (3.5)). This ends the
proof of the theorem.

4 Ergodicity and construction of hull functions

In this section, we first study the ergodicity of the equation (2.1) by studying the associated Cauchy problem
(Subsection 4.1). We then construct hull functions (Subsection 4.2).

4.1 Ergodicity

In this subsection, we study the Cauchy problem associated with (2.1) with

(4.1) Gj(τ, V, r, a, q) = Gδ
j(τ, V, r, a, q) = 2Fj(τ, V ) + α0(V0 − r) + δ(a0 + a)q+

with δ ≥ 0, a0 ∈ R and with initial data y 7→ py. We prove that there exists a real number λ (called the
“slope in time” or “rotation number”) such that the solution (uj, ξj) stays at a finite distance of the linear
function λτ + py. We also estimate this distance and give qualitative properties of the solution.

We begin by a regularity result concerning the solution of (2.1). Using (A1), we know that there exists
a constant LF > 0 such that for all V,W ∈ R

2m+1, τ ∈ R,

(4.2) |Fj(τ, V +W ) − Fj(τ, V )| ≤ LF |W |∞

with |W |∞ = maxk=−m,...,m |Wk|.
We have the following regularity result

Proposition 4.1 (Bound on the gradient). Assume (A1)-(A5) and p > 0. Let δ > 0, a0 ∈ R and
(uj , ξj)j be the solution of (2.1), (2.2) with Gj = Gδ

j defined by (4.1) and u0(y) = py. Assume that (2.3)
holds true for ξj. Then (uj , ξj)j satisfies

(4.3) 0 ≤ (uj)y ≤ p+
2LF

δ
and 0 ≤ (ξj)y ≤ p+

2LF

δ
.

Proof. We first show that uj and ξj are non-decreasing with respect to y. Since the equation (2.1) is invariant
by translations in y and using the fact that for all b ≥ 0, we have

u0(y + b+
j

n
) ≥ u0(y +

j

n
) .
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we deduce from the comparison principle that

uj(τ, y + b) ≥ uj(τ, y) and ξj(τ, y + b) ≥ ξj(τ, y)

which shows that uj and ξj are non-decreasing in y.

We now explain how to get the Lipschitz estimate. We would like to prove that M ≤ 0 where

M = sup
τ∈(0,T ),x,y∈R,j∈{1,...,n}

max

{

uj(τ, x) − uj(τ, y) − L|x− y| −
η

T − τ
− α|x|2,

ξj(τ, x) − ξj(τ, y) − L|x− y| −
η

T − τ
− α|x|2

}

as soon as L > p+ 2LF

δ
> 0 for any η, α > 0. We argue by contradiction by assuming that M > 0 for such

an L. We next exhibit a contradiction. The supremum defining M is attained since ξj satisfies (2.3) and uj

can be explicitly computed.

Case 1. Assume that the supremum is attained for the function uj at τ ∈ [0, T ), j ∈ {1, . . . , n}, x, y ∈ R.
Since we have by assumption M > 0, this implies that τ > 0, x 6= y. Hence we can obtain the two following
viscosity inequalities (by doubling the time variable and passing to the limit)

a ≤ α0(ξj(τ, x) − uj(τ, x))

b ≥ α0(ξj(τ, y) − uj(τ, y))

with a− b = η
(T−τ)2 . Subtracting these inequalities, we obtain

η

(T − τ)2
≤ α0([ξj(τ, x) − ξj(τ, y)] − [uj(τ, x) − uj(τ, y)]) ≤ 0 .

We thus get η ≤ 0 which is a contradiction in Case 1.

Case 2. Assume next that the supremum is attained for the function ξj . By using the same notation and
by arguing similarly, we obtain the following inequality

η

(T − τ)2
≤ 2Fj(τ, uj−m(τ, x), . . . , uj+m(τ, x)) − 2Fj(τ, uj−m(τ, y), . . . , uj+m(τ, y))

+α0([uj(τ, x) − uj(τ, y)] − [ξj(τ, x) − ξj(τ, y)])

+δ[p(x− y) − (ξj(τ, x) − ξj(τ, y))]Lsign+ (x − y) + 2αδ(a0 + C0)|x|

where sign+ is the Heaviside function and where we have used assumptions (2.3). We now use

– the fact that the supremum is attained for the function ξj

– the fact that ξj(τ, x) > ξj(τ, y) implies that x > y (remember that we already proved that ξj is
non-decreasing with respect to y)

– Assumption (4.2)

– the fact that αδ(a0 + C0)(x)
+ = oα(1)

in order to get from the previous inequality the following one

η

(T − τ)2
≤ 2LF sup

l∈{−m,...,m}

|uj+l(τ, x) − uj+l(τ, y)| + δpL|x− y| − Lδ(ξj(τ, x) − ξj(τ, y)) + oα(1) .
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Using the same computation as the one of the proof of Proposition 2.2 Step 3, we get

sup
l∈{−m,...,m}

|uj+l(τ, x) − uj+l(τ, y)| ≤ |ξj(τ, x) − ξj(τ, y)| + Cα(1 + |x|)

where C is a constant. Since Cα(1 + |x|) = oα(1) and M > 0, we finally deduce that

η

T 2
≤ 2LF |ξj(τ, x) − ξj(τ, y)| + δp(ξj(τ, x) − ξj(τ, y)) − Lδ(ξj(τ, x) − ξj(τ, y)) + oα(1)

For α small enough, it is now sufficient to use once again that ξj(τ, x) > ξj(τ, y) and the fact that L > p+ 2LF

δ

in order to get the desired contradiction in Case 2. The proof is now complete.

We now claim that particles are ordered.

Proposition 4.2 (Ordering of the particles). Assume (A0’), (A1)-(A6) and let δ ≥ 0, a0 ∈ R and
(uδ

j , ξ
δ
j )j be the solution of (2.1), (2.2) with Gj = Gδ

j defined by (4.1). Assume that (2.3) holds true for ξj
if δ > 0. Then uδ

j and ξδ
j are non-decreasing with respect to j.

Proof. If δ > 0, the results is a straightforward consequence of Propositions 2.7 and 4.1. If δ = 0, the result
is obtained by stability of viscosity solution (i.e. uδ

j → u0
j and ξδ

j → ξ0j as δ → 0).

Proposition 4.3 (Ergodicity). Let 0 ≤ δ ≤ 1 and a0 ∈ R. Assume (A0)-(A6) and let (uj , ξj)j be a
solution of (2.1), (2.2) with Gj defined in (4.1) and with initial data u0(y) = ξ0(y) = py with some p > 0.
Then there exists λ ∈ R such that for all (τ, y) ∈ [0,+∞) × R, j ∈ {1, . . . , n}

(4.4) |uj(τ, y) − py − λτ | ≤ C3 and |ξj(τ, y) − py − λτ | ≤ C3

and

(4.5) |λ| ≤ C4

where

C3 = 14 +
6C4

α0
+ 6p+ 2K1

C4 =
1

2

(

2LF (2 + p(m+ n)) + 2 sup
τ
F (τ, 0, . . . , 0) + (p+ 2LF )(a0 + C0)

)

(4.6)

(where a0 is chosen equal to zero for δ = 0). Moreover we have for all τ ≥ 0, y, y′ ∈ R, j ∈ {1, . . . , n}

(4.7)















uj(τ, y + 1/p) = uj(τ, y) + 1
(uj)y(τ, y) ≥ 0
|uj(τ, y + y′) − uj(τ, y) − py′| ≤ 1
uj+1(τ, y) ≥ uj(τ, y)















ξj(τ, y + 1/p) = ξj(τ, y) + 1
(ξj)y(τ, y) ≥ 0
|ξj(τ, y + y′) − ξj(τ, y) − py′| ≤ 1
ξj+1(τ, y) ≥ ξj(τ, y) .

In order to prove Proposition 4.3, we will need the following Lemma:

Lemma 4.4. Consider Λ : R
+ → R a continuous function which is sub-additive, that is to say: for all

t, s ≥ 0,
Λ(t+ s) ≤ Λ(t) + Λ(s) .

Then Λ(t)
t

has a limit l as t→ +∞ and

l = inf
t>0

Λ(t)

t
.
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Proof of Proposition 4.3. We perform the proof in three steps. We first recall that the fact that uj and ξj
are non-decreasing in y and j follows from Proposition 4.1 and Proposition 4.2.

Step 1: control of the space oscillations. We are going to prove the following estimate.

Lemma 4.5. For all τ > 0, all y, y′ ∈ R and all j ∈ {1, . . . , n},

(4.8) |uj(τ, y + y′) − uj(τ, y) − py′| ≤ 1 and |ξj(τ, y + y′) − ξj(τ, y) − py′| ≤ 1 .

Proof. We have
uj(0, y + 1/p) = ξj(0, y + 1/p) = ξj(0, y) + 1 = uj(0, y) + 1 .

Therefore from the comparison principle and from the integer periodicity of the Hamiltonian (see (A3’)), we
get that

uj(τ, y + 1/p) = uj(τ, y) + 1 and ξj(τ, y + 1/p) = ξj(τ, y) + 1 .

Since uj(τ, y) is non-decreasing in y, we deduce that for all b ∈ [0, 1/p]

0 ≤ uj(τ, b) − uj(τ, 0) ≤ 1

Let now y ∈ R, that we write py = k + a with k ∈ Z and a ∈ [0, 1). Then we have

uj(τ, y) − uj(τ, 0) = k + uj(τ, a/p) − uj(τ, 0)

which implies, for some b ∈ [0, 1/p),

uj(τ, y) − uj(τ, 0) − py = −a+ uj(τ, b) − uj(τ, 0)

and then for all τ > 0 and all y ∈ R,

|uj(τ, y) − uj(τ, 0) − py| ≤ 1 .

In the same way, we get
|ξj(τ, y) − ξj(τ, 0) − py| ≤ 1 .

Finally, we obtain (4.8) by using the invariance by translations in y of the problem.

Step 2: estimate on |uj(τ, y) − ξj(τ, y)|.

Lemma 4.6. For all j ∈ {1, . . . , n} and 0 ≤ δ ≤ 1,

(4.9) ‖uj − ξj‖L∞ ≤
C4

α0

where

C4 =
1

2

(

2LF (2 + p(m+ n)) + 2 sup
τ
F (τ, 0, . . . , 0) + (p+ 2LF )(a0 + C0)

)

(where a0 is chosen equal to zero for δ = 0)

Proof. We recall that ((uj), (ξj)) is solution of

(4.10)

{

(uj)τ = α0(ξj − uj)
(ξj)τ ≤ 2Fj(τ, [uj(τ, ·)]j,m) + α0(uj − ξj) + δ(a0 + C0)((ξj)y)+

where we have used (2.3). Using Proposition 4.1, we deduce that (for δ ≤ 1)

(4.11) δ(a0 + C0)((ξj)y)+ ≤ (p+ 2LF )(a0 + C0).
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We now want to bound Fj(τ, [uj(τ, ·)]j,m). We have

Fj(τ, [uj(τ, ·)]j,m(y)) =Fj(τ, [uj(τ, ·) − ⌊uj(τ, y)⌋]j,m(y))

≤LF + Fj(τ, [uj(τ, ·) − uj(τ, y)]j,m(y))

≤LF + LF sup
k∈{−m,...,m}

|uj+k(τ, y) − uj(τ, y)| + sup
τ
F (τ, 0, . . . 0)(4.12)

where we have used the periodicity assumption (A4) for the first line, the Lipschitz regularity of F for the
second and third one. Moreover for all i ∈ {1, . . . , n}, k ∈ {0, . . .m} , we have that

0 ≤ ui+k(τ, y) − ui(τ, y) =u
i+k−⌈ k

n⌉n
(τ, y +

⌈

k

n

⌉

n) − ui(τ, y)

≤ui(τ, y +

⌈

k

n

⌉

n) − ui(τ, y)

≤1 + p

⌈

k

n

⌉

n

≤1 + p(m+ n)(4.13)

where we have used the periodicity of ui for the first line, the monotonicity in i of ui for the second one and
the control of the oscillation (4.8) for the third one. We then deduce that

Fj(τ, [uj(τ, ·)]j,m(y)) ≤ LF (2 + p(m+ n)) + sup
τ
F (τ, 0, . . . 0).

Combining this with (4.10) and (4.11), we deduce that

{

(uj)τ ≥ α0(ξj − uj)
(ξj)τ ≤ 2C4 + α0(uj − ξj)

We now define for all j ∈ Z vj = ξj − uj. Classical arguments in viscosity solution show that

(vj)τ ≤ 2(C4 − α0vj).

We then deduce that

vj ≤
C4

α0
.

Using the same arguments with super-solution for ξj , we get the desired result.

Step 3: control of the time oscillations.
We now explain how to control the time oscillations. The proof is inspired of [12]. Let us introduce the
following continuous functions defined for T > 0

λu
+(T ) = sup

j∈{1,...,n}

sup
τ≥0

uj(τ + T, 0)− uj(τ, 0)

T

λu
−(T ) = inf

j∈{1,...,n}
inf
τ≥0

uj(τ + T, 0)− uj(τ, 0)

T

and

λξ
+(T ) = sup

j∈{1,...,n}

sup
τ≥0

ξj(τ + T, 0)− ξj(τ, 0)

T

λξ
−(T ) = inf

j∈{1,...,n}
inf
τ≥0

ξj(τ + T, 0)− ξj(τ, 0)

T
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and
λ+(T ) = sup(λu

+(T ), λξ
+(T )) and λ−(T ) = inf(λu

−(T ), λξ
−(T )).

In particular, these functions satisfy −∞ ≤ λ−(T ) ≤ λ+(T ) ≤ +∞.

The goal is to prove that λ+(T ) and λ−(T ) have a common limit as T → ∞. We would like to apply
Lemma 4.4.

In view of the definition of λu
+ and λξ

+, we see that T 7→ Tλu
+(T ) and T 7→ Tλξ

+(T ) are sub-additive.

Analogously, T 7→ −Tλu
−(T ) and T 7→ −Tλξ

−(T ) are also sub-additive. Hence, if we can prove that these

quantities λu
±(T ), λξ

±(T ) are finite, we will know that they converge. We will then have to prove that the
limit of λ+ and λ− are the same.

We first prove that λ± are finite.
Step 3.1: first control on the time oscillations

Lemma 4.7. For all T > 0,

(4.14) −K1 −
C1

T
≤ λ−(T ) ≤ λ+(T ) ≤ K1 +

C1

T

where C1 = C4

α0
+ 3 + p and K1 is defined in (2.14).

Proof. Consider j ∈ {1, . . . , n}. Using the control of the space oscillations (4.8), we get that

uj(τ, y) ≥ ⌊∆⌋ + py − 1 and ξj(τ, y) ≥ ⌊∆⌋ + py − 1

where
∆ = inf

j∈{1,...,n}
inf(uj(τ, 0), ξj(τ, 0)) .

Recalling (from Lemma 2.5) that ⌊∆⌋+py+ pj
n
−1−K1t is a subsolution and using the comparison principle

on the time interval [τ, τ + t), we deduce that

(4.15) uj(τ + t, y) ≥ ⌊∆⌋ + py +
pj

n
− 1 −K1t and ξj(τ + t, y) ≥ ⌊∆⌋ + py +

pj

n
− 1 −K1t

We now want to estimate ∆ from below. Let us assume that the infimum in ∆ is reached for the index
j̄ ∈ {1, . . . , n}. Then j̄ ≥ j − n since j ∈ {1, . . . , n}. We then deduce that

⌊∆⌋ ≥∆ − 1

≥uj̄(τ, 0) −
C4

α0
− 1

≥uj−n(τ, 0) −
C4

α0
− 1

≥uj(τ,−1) −
C4

α0
− 1

≥uj(τ, 0) −
C4

α0
− 2 − p

where we have used (4.9) for the second line, the fact that (uj)j is non-decreasing in j for the third line, the
periodicity of uj for the fourth line and (4.8) for the last one. In the same way, we get that

⌊∆⌋ ≥ ξj(τ, 0) −
C4

α0
− 2 − p.

Injecting this in (4.15), we get that

(4.16) uj(τ + t, y) ≥ uj(τ, 0) −
C4

α0
− 3 − p+ py −K1t
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and

ξj(τ + t, y) ≥ ξj(τ, 0) −
C4

α0
− 3 − p+ py −K1t.

In the same way, we also get

(4.17) uj(τ + t, y) ≤ uj(τ, 0) +
C4

α0
+ 3 + p+ py +K1t

and

ξj(τ + t, y) ≤ ξj(τ, 0) +
C4

α0
+ 3 + p+ py +K1t.

Taking y = 0, we finally get (4.14)

Step 3.2: Refined control on the time oscillations
We now estimate λ+ − λ− in order to prove that they have the same limit.

Lemma 4.8. For all T > 0,

|λ+(T ) − λ−(T )| ≤
C2

T

where C2 = 7 + 4C4

α0
+ 4p+ 2C1 + 2K1.

Proof. By definition of λ±(T ), for all ε > 0, there exists τ± ≥ 0 and v± ∈ {u1, . . . un, ξ1, . . . ξn} such that

∣

∣

∣

∣

λ±(T ) −
v±(τ± + T, 0)− v±(τ±, 0)

T

∣

∣

∣

∣

≤ ε.

Consider j ∈ {1, . . . , n}. We choose β ∈ [0, 1) such that τ+ − τ− − β = k ∈ Z and we set

∆u
j = uj(τ

+, 0) − uj(τ
− + β, 0), ∆ξ

j = ξj(τ
+, 0) − ξj(τ

− + β, 0)

and
∆ = sup

j∈{1,...,n}

sup(∆u
j ,∆

ξ
j).

Using (4.8), we get that

uj(τ
+, y) ≤ uj(τ

− + β, y) + 2 + ⌈∆⌉ and ξj(τ
+, y) ≤ ξj(τ

− + β, y) + 2 + ⌈∆⌉ .

Using the comparison principle, we then deduce that

(4.18) uj(τ
+ + T, y) ≤ uj(τ

− + β + T, y) + 2 + ⌈∆⌉ and ξj(τ
+ + T, y) ≤ ξj(τ

− + β + T, y) + 2 + ⌈∆⌉.

We now want to estimate ⌈∆⌉ from above. Let us assume that the maximum in ∆ is reached for the index
j̄. We then have for all j ∈ {1, . . . , n}

⌈∆⌉ ≤uj̄(τ
+, 0) − uj̄(τ

− + β, 0) +
2C4

α0
+ 1

≤uj+n(τ+, 0) − uj−n(τ− + β, 0) +
2C4

α0
+ 1

≤uj(τ
+, 1) − uj(τ

− + β,−1) +
2C4

α0
+ 1

≤uj(τ
+, 0) − uj(τ

− + β, 0) +
2C4

α0
+ 3 + 2p
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where we have used (4.9) for the first line, the fact that (uj)j is non-decreasing in j for the second line, the
periodicity of uj for the third line and (4.8) for the last one. In the same way, we also get

⌈∆⌉ ≤ ξj(τ
+, 0) − ξj(τ

− + β, 0) +
2C4

α0
+ 3 + 2p

Injecting this in (4.18), we get

uj(τ
+ + T, y) ≤ uj(τ

− + β + T, y) + 5 +
2C4

α0
+ 2p+ ∆u

j

and

ξj(τ
+ + T, y) ≤ ξj(τ

− + β + T, y) + 5 +
2C4

α0
+ 2p+ ∆ξ

j

Taking y = 0 and using (4.16) (with τ = τ− and t = β) and (4.17) (with τ = τ− + T and t = β), we get

uj(τ
+ + T, 0)− uj(τ

+, 0) ≤ uj(τ
− + T, 0) − uj(τ

−, 0) + 5 +
2C4

α0
+ 2p+ 2C1 + 2K1 .

In the same way, we get

ξj(τ
+ + T, 0)− ξj(τ

+, 0) ≤ ξj(τ
− + T, 0) − ξj(τ

−, 0) + 5 +
2C4

α0
+ 2p+ 2C1 + 2K1 .

Using also (4.9), (4.8) and the fact that (uj)j and (ξj)j are non-decreasing in j, we finally get

v+(τ+ + T, 0)− v+(τ+, 0) ≤ v−(τ− + T, 0)− v−(τ−, 0) + C2 .

The comparison of uj and ξj makes appear the additional constant 2C4/α0, and the comparison between uj

and uk creates an additional constant 2 + 2p (like in the bound on ⌈∆⌉ above). This explains the value of
the new constant C2.

This implies that
Tλ+(T ) ≤ Tλ−(T ) + 2ε+ C2 .

Since this is true for all ε > 0, the proof of the lemma is complete.

Step 3.3: Conclusion
We now can conclude that limT→+∞ λ±(T ) are equal. If λ denotes the common limit, we also have, by
Lemma 4.4, that for every T > 0,

λ−(T ) ≤ λ ≤ λ+(T ).

Moreover, by Lemma 4.8, we have

λ+(T ) ≤ λ−(T ) +
C2

T
and so

λ−(T ) ≤ λ ≤ λ−(T ) +
C2

T

We finally deduce (using a similar argument for λ+) that

|λ±(T ) − λ| ≤
C2

T
.

Combining this estimate and (4.8), we get with T = τ

|uj(τ, y) − uj(0, 0) − py − λτ | ≤ C2 + 1

and
|ξj(τ, y) − ξj(0, 0) − py − λτ | ≤ C2 + 1 .

This finally implies (4.4) with C3 = C2 + 1.
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4.2 Construction of hull functions for general Hamiltonians

In this subsection, we construct hull functions for a general Hamiltonian Gj . As we shall see, this is a
straightforward consequence of the construction of time-space periodic solutions of (4.19); see Proposition 4.9
and Corollary 4.10 below. We will then prove that the time slope we constructed in Proposition 4.3 is unique
and that the map p 7→ λ is continuous; see Proposition 4.11 below.

Given p > 0, we consider the equation in R × R

(4.19)























{

(uj)τ = α0(ξj − uj)
(ξj)τ = Gj(τ, [u(τ, ·)]j,m, ξj , infy′∈R (uj(τ, y

′) − py′) + py − uj(τ, y), (uj)y)

{

uj+n(τ, y) = uj(τ, y + 1)
ξj+n(τ, y) = ξj(τ, y + 1) ,

where Gj = Gδ
j is given in (4.1) for δ ≥ 0. Then we have the following result

Proposition 4.9. (Existence of time-space periodic solutions of (4.19))
Let 0 ≤ δ ≤ 1, a0 ∈ R and p > 0. Assume (A1)-(A6). Then there exist functions ((u∞j )j , (ξ

∞
j )j solving

(4.19) on R × R and a real number λ ∈ R satisfying for all τ, y ∈ R, j ∈ {1, . . . , n}

|u∞j (τ, y) − py − λτ | ≤ 2⌈C3⌉(4.20)

|ξ∞j (τ, y) − py − λτ | ≤ 2⌈C3⌉ .

Moreover ((u∞j )j , (ξ
∞
j )j) satisfies for j ∈ {1, . . . , n}

(4.21)















u∞j (τ, y + 1/p) = u∞j (τ, y) + 1
u∞j (τ + 1, y) = u∞j (τ, y + λ/p)
(u∞j )y(τ, y) ≥ 0
uj+1(τ, y) ≥ uj(τ, y) .















ξ∞j (τ, y + 1/p) = ξ∞j (τ, y) + 1
ξ∞j (τ + 1, y) = ξ∞j (τ, y + λ/p)
(ξ∞j )y(τ, y) ≥ 0
ξj+1(τ, y) ≥ ξj(τ, y) .

Eventually, when the Hamiltonians Gj are independent on τ , we can choose u∞j and ξ∞j independent on τ .

By considering for all τ, z ∈ R

(4.22)

{

hj(τ, z) = u∞j (τ, (z − λτ)/p) if j ∈ {1, . . . , n}
hj+n(τ, z) = hj(τ, z + p) otherwise

and for all τ, z ∈ R,

(4.23)

{

gj(τ, z) = ξ∞j (τ, (z − λτ)/p) if j ∈ {1, . . . , n}
gj+n(τ, z) = gj(τ, z + p) otherwise

we immediately get the following corollary

Corollary 4.10. (Existence of hull functions)
Assume (A1)-(A6). There exists a hull function ((hj)j , (gj)j) in the sense of Definition 1.8 satisfying

|hj(τ, z) − z| ≤ 2⌈C3⌉

and
|gj(τ, z) − z| ≤ 2⌈C3⌉

We now turn to the proof of Proposition 4.9.
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Proof of Proposition 4.9. The proof is performed in three steps. In the first one, we construct sub- and
supersolutions of (4.19) in R × R with good translation invariance properties (see the first two lines of
(4.21)). We next apply Perron’s method in order to get a (possibly discontinuous) solution satisfying the
same properties. Finally, in step 3, we prove that if the functions Gj do not depend on τ , then we can
construct a solution in such a way that it does not depend on τ either.

Step 1: global sub- and supersolution
By Proposition 4.3, we know that the solution (uj , ξj) of (2.1), (2.2) with initial data u0(y) = py = ξ0(y)
satisfies on [0,+∞) × R

(4.24)















(uj)y ≥ 0,
|uj(τ, y) − py − λτ | ≤ C3,
|uj(τ, y + y′) − uj(τ, y) − py′| ≤ 1
uj+1(τ, y) ≥ uj(τ, y)















(ξj)y ≥ 0,
|ξj(τ, y) − py − λτ | ≤ C3,
|ξj(τ, y + y′) − ξj(τ, y) − py′| ≤ 1
ξj+1(τ, y) ≥ ξj(τ, y) .

We first construct a subsolution and a supersolution of (4.19) for τ ∈ R (and not only τ ≥ 0) that also
satisfy the first two lines of (4.21), i.e. satisfy for all k, l ∈ Z,

(4.25) U(τ + k, y) = U(τ, y + λ
k

p
) and U(τ, y +

l

p
) = U(τ, y) + l .

To do so, we consider the sequence, for m ∈ N and j ∈ {1, . . . , n},

um
j (τ, y) = uj(τ +m, y) − λm, ξm

j (τ, y) = ξj(τ +m, y) − λm

and consider
uj = lim sup

m→+∞

∗um
j , ξj = lim sup

m→+∞

∗ξm
j

uj = lim inf
m→+∞∗

um
j , ξ

j
= lim inf

m→+∞∗
ξm
j .

We first remark that thanks to (4.4), all these semi-limits are finite. We also remark that for all k, l ∈ Z,

(uj(τ + k, y − kλ/p+ l/p) − l, ξj(τ + k, y − kλ/p+ l/p)− l)

is a subsolution of (2.1). A similar remark can be done for the supersolutions (uj , ξj
)j .

Now a way to construct subsolution (resp. a supersolution) of (2.1) satisfying (4.25) is to consider

(4.26)

{

u∞j (τ, y) = supk,l∈Z
(uj(τ + k, y − kλ/p+ l/p)− l) ,

ξ
∞

j (τ, y) = supk,l∈Z

(

ξj(τ + k, y − kλ/p+ l/p)− l
)

and

(4.27)



resp.







u∞j (τ, y) = infk,l∈Z

(

uj(τ + k, y − kλ/p+ l/p)− l
)

,

ξ∞
j

(τ, y) = infk,l∈Z

(

ξ
j
(τ + k, y − kλ/p+ l/p) − l

)

.





Notice that u∞j , u∞j , ξ
∞

j and ξ∞
j

satisfy moreover (4.24) on R × R. Therefore we have in particular

u∞j ≤ u∞j + 2⌈C3⌉ and ξ
∞

j ≤ ξ∞
j

+ 2⌈C3⌉ .

Step 2: existence by Perron’s method

29



Applying Perron’s method we see that the lowest supersolution ((u∞j )j , (ξ
∞
j )j) lying above ((u∞j )j , (ξ

∞

j )j)
is a (possibly discontinuous) solution of (4.24) on R × R and satisfies

u∞j ≤ u∞j ≤ u∞j + 2⌈C3⌉ and ξ
∞

j ≤ ξ∞j ≤ ξ∞
j

+ 2⌈C3⌉ .

We next prove that u∞ satisfies (4.21). For j ∈ {1, . . . , n}, let us consider

(4.28) ũ∞j (τ, y) =

(

inf
k,l∈Z

(

u∞j (τ + k, y − kλ/p+ l/p)− l
)

)

∗

ξ̃∞j (τ, y) =

(

inf
k,l∈Z

(

ξ∞j (τ + k, y − kλ/p+ l/p)− l
)

)

∗

By construction the family ((ũ∞j )j , (ξ̃
∞
j )j) is a supersolution of (2.1) and is again above the subsolution

((u∞j )j , (ξ
∞

j )j). Therefore from the definition of ((u∞j )j , (ξ
∞
j )j), we deduce that

ũ∞j = u∞j and ξ̃∞j = ξ∞j

which implies that u∞j and ξ∞j satisfy (4.25), i.e the first two equalities of (4.21).
Similarly, we can consider, for j ∈ {1, . . . , n}

û∞j (τ, y) =

(

inf
b∈[0,+∞)

u∞j (τ, y + b)

)

∗

ξ̂∞j (τ, y) =

(

inf
b∈[0,+∞)

ξ∞j (τ, y + b)

)

∗

which is again supersolution above the subsolution ((u∞j )j , (ξ
∞

j )j). Therefore

û∞j = u∞j and ξ̂∞j = ξ∞j

which implies that u∞j and ξ∞j are non-decreasing in y, i.e. the third line of (4.21) is satisfied.
Let us now prove that u∞j and ξ∞j are non-decreasing in j. We consider, for j ∈ {1, . . . , n}

ǔ∞j (τ, y) =

(

inf
k≥0

u∞j+k(τ, y)

)

∗

=

(

inf
0≤k<n

u∞j+k(τ, y)

)

∗

ξ̌∞j (τ, y) =

(

inf
k≥0

ξ∞j+k(τ, y)

)

∗

=

(

inf
0≤k<n

ξ∞j+k(τ, y)

)

∗

.

The fact that this is a supersolution uses assuption (A6). Indeed, let us assume that the infimum for uj is
reached for the index ku and that the infimum for ξj is reached for the index kξ. Then, formally, on one
hand we have

(ǔ∞j )τ (τ, y) =α0(ξ
∞
j+ku

(τ, y) − u∞j+ku
(τ, y))

≥α0(ξ
∞
j+kξ

(τ, y) − u∞j+ku
(τ, y))

≥α0(ξ̌
∞
j (τ, y) − ǔ∞j (τ, y))

where we have used the fact that ξ∞j+ku
(τ, y) ≥ ξ∞j+kξ

(τ, y). On the other hand, we have

(ξ̌∞j )τ (τ, y) =Gj+kξ
(τ, [u∞(τ, ·)]j+kξ

(y), ξ∞j+kξ
(τ, y), inf

y′

(ξ∞j+kξ
(τ, y′) − py′) + py − ξ∞j+kξ

(τ, y), (ξ∞j+kξ
)y)

≥Gj+kξ
(τ, [ǔ∞(τ, ·)]j+kξ

(y), ξ̌∞j (τ, y), inf
y′

(ξ̌∞j (τ, y′) − py′) + py − ξ̌∞j (τ, y), (ξ̌∞j )y)

≥Gj+kξ−1(τ, [ǔ
∞(τ, ·)]j+kξ−1(y), ξ̌

∞
j (τ, y), inf

y′

(ξ̌∞j (τ, y′) − py′) + py − ξ̌∞j (τ, y), (ξ̌∞j )y)

≥ . . .

≥Gj(τ, [ǔ
∞(τ, ·)]j(y), ξ̌

∞
j (τ, y), inf

y′

(ξ̌∞j (τ, y′) − py′) + py − ξ̌∞j (τ, y), (ξ̌∞j )y)
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where we have used the fact that u∞j+kξ+k ≥ ǔ∞j+kξ+k and ξ∞j+kξ
(τ, y′) ≥ ξ̌∞j (τ, y′) joint to the monotonicity

assumption of G in the variable Vi and a for the first inequality and assumtion (A6) joint to the fact that
ǔ∞j is non-decreasing in j (by construction) for the other inequalities.

We then conclude that (ǔ∞j , ξ̌
∞
j ) is again supersolution above the subsolution ((u∞j )j , (ξ

∞

j )j). Therefore

u∞j = ǔ∞j and ξ∞j = ξ̌∞j

which implies that u∞j and ξ∞j are non-decreasing in j, i.e. the forth line of (4.21) is satisfied.
Finally, the function ((u∞j − ⌈C3⌉)j , (ξ

∞
j − ⌈C3⌉)j) still satisfies (4.21) and also (4.20).

Step 3: Further properties when the Gj are independent on τ
When the Gj do not depend on τ , we can apply Steps 1 and 2 with k ∈ Z in (4.26), (4.27) and (4.28) replaced
with k ∈ R. This implies that the hull function ((hj)j , (gj)j) does not depend on τ . This ends the proof of
the proposition.

Proposition 4.11 (Definition and continuity of the effective Hamiltonian).
Consider p > 0 and assume (A1)-(A6). Then

– there exists a unique real number λ ∈ R such that there exists a solution ((u∞j )j , (ξ
∞
j )j) of (4.19) on

R × R such that there exists C > 0,

(4.29) |hj(0, z)− z| ≤ C, and |gj(0, z) − z| ≤ C,

where the hj and the gj are defined in (4.22) and (4.23); Moreover, we can choose C = 2⌈C3⌉ with C3

given in (4.6).

– if λ is seen as a function G of p (λ = G(p)), then this function G : (0,+∞) → R is continuous.

The proof is quite classical. However, we give it in Appendix for the reader’s convenience. We can now
prove Theorem 1.10.

Proof of Theorem 1.10. Just apply Proposition 4.11 with G = F .

5 Construction of Lipschitz continuous approximate hull functions

When proving the convergence Theorem 1.5, we explained that, on the one hand, it is necessary to deal with
hull functions (h, g) = ((hj(τ, z))j , (gj(τ, z))j) that are uniformly continuous in z (uniformly in τ and j) in
order to apply Evans’ perturbed test function method; on the other hand, given some p > 0, we also know
some Hamiltonian Fj , with effective Hamiltonian F (p), such that every corresponding hull function hj is
necessarily discontinuous in z (see [9]). Recall that a hull function (h, g) solves, with λ = F (p),

(5.1)

{

(hj)τ + λ(hj)z = α0(gj − hj)
(gj)τ + λ(gj)z = 2Fj(τ, [h(τ, ·)]j,m) + α0(hj − gj)

and
hj+n(τ, z) = hj(τ, z + p), gj+n(τ, z) = gj(τ, z + p) .

We overcome this difficulty as in [9] (see also [12]).

We build approximate Hamiltonians Gδ with corresponding effective Hamiltonians λδ = G
δ
(p), and

corresponding hull functions (hδ, gδ), such that







(hδ
j , g

δ
j ) is Lipschitz continuous wrt z uniformly in τ and j

G
δ
(p) → F (p) as δ → 0

(hδ, gδ) is a sub-/super-solution of (5.1).
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We will show that it is enough to choose for δ ≥ 0

(5.2) Gδ
j(τ, V, r, a, q) = 2Fj(τ, V ) + α0(V0 − r) + δ(a0 + a)q+

with a0 ∈ R (in fact, we will consider a0 = ±1).

We have the following variant of Corollary 4.10

Proposition 5.1 (Existence of Lipschitz continuous approximate hull functions).
Assume (A1)-(A3). Given p > 0, 0 < δ ≤ 1 and a0 ∈ R, then there exists a family of Lipschitz continuous
functions ((hj)j , (gj)j) satisfying for j ∈ {1, . . . , n}

(5.3)















hj(τ, z + 1) = hj(τ, z) + 1
hj(τ + 1, z) = hj(τ, z)

0 ≤ (hj)z ≤ 1 + 2LF

pδ















gj(τ, z + 1) = gj(τ, z) + 1
gj(τ + 1, z) = gj(τ, z)

0 ≤ (gj)z ≤ 1 + 2LF

pδ

and there exists λ ∈ R such that

(5.4)





































(hj)τ + λ(hj)z = α0(gj − hj)
(gj)τ + λ(gj)z = 2Fj(τ, [h(τ, ·)]j,m) + α0(hj − gj)

+δp {a0 + infz′∈R (hj(τ, z
′) − z′) + z − hj(τ, z))} (hj)z

{

hj+n(τ, z) = hj(τ, z + p)
gj+n(τ, z) = gj(τ, z + p)

and for all τ, z, z′ ∈ R

(5.5) |hj(τ, z
′) − z′ + z − hj(τ, z)| ≤ 1 and |gj(τ, z

′) − z′ + z − gj(τ, z)| ≤ 1 .

Moreover there exists a constant C4 > 0 defined in (4.6) such that

(5.6) |λ| ≤ C4

and for all (τ, z) ∈ R × R,

(5.7) |h(τ, z) − z| ≤ C(C4, p, α0, δ|a0|p) ,

|g(τ, z) − z| ≤ C(C4, p, α0, δ|a0|p) .

Moreover, when the Fj do not depend on τ , we can choose the hull function ((hj)j , (gj)j) such that it does
not depend on τ either.

Proof of Proposition 5.1. The proof follow the construction made in Proposition 4.3 and Proposition 4.9.
The only difference is the proof of Proposition 4.9. Indeed, here we can use the Lipschitz continuity of
((uj), (ξj)) to get enough compacity to pass to the limit (so we do not have to use Perron’s method). The
Lipschitz continuity in space comes from Proposition 4.1. The Lipschitz continuity in time of the uj follows
from Lemma 4.6 and the equation satisfied by uj while the Lipschitz continuity in time of the ξj is obtained
in the same way, using the fact that we can bound the right hand side of the equation satisfied by ξj (use
the control of the space oscillation of u to bound F (t, [u(t, ·)]j,m(x)) as in (4.12)-(4.13) and Lemma 4.6 and
Proposition 4.1 to bound the other ones).

We finally have
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Proposition 5.2 (Sub- and super- Lipschitz continuous hull functions). We consider 0 < δ ≤ 1 and

the Lipschitz continuous hull function obtained in Proposition 5.1 for a0 = ±1, that we call ((hδ,±
j )j , (g

δ,±
j )j),

and the corresponding value λδ,± of the effective Hamiltonian. Then we have

(hδ,+
j )τ + λδ,+(hδ,+

j )z = α0(g
δ,+
j − hδ,+

j )

(gδ,+
j )τ + λδ,+(gδ,+

j )z ≥ 2Fj(τ, [h
δ,+(τ, ·)]j,m) + α0(h

δ,+
j − gδ,+

j )

and
λ ≤ λδ,+ → λ as δ → 0

and

(hδ,−
j )τ + λδ,−(hδ,−

j )z = α0(g
δ,−
j − hδ,−

j )

(gδ,−
j )τ + λδ,−(gδ,−

j )z ≥ 2Fj(τ, [h
δ,−(τ, ·)]j,m) + α0(h

δ,−
j − gδ,−

j )

and
λ ≥ λδ,− → λ as δ → 0

where λ = F (p).

Proof of Proposition 5.2. Inequalities ±λδ,± ≥ ±λ follow from the comparison principle. Remark that
bounds (5.6) and (5.7) on λδ,± and hδ,±

j are uniform as δ goes to zero. Hence the convergence λδ,± → λ
holds true as δ → 0. Indeed, it suffices to adapt Step 2 of the proof of Proposition 4.11.

6 Qualitative properties of the effective Hamiltonian

Proof of Theorem 1.11. We recall that we have hull functions ((hj)j , (gj)j) solutions of

{

(hj)τ + λ(hj)z = α0(gj − hj)
(gj)τ + λ(gj)z = 2L+ 2F (τ, [h(τ, ·)]j,m(z)) + α0(hj − gj)

with λ = F (L, p).
The continuity of the map (L, p) 7→ F (L, p) is easily proved as in step 2 of the proof of Proposition 4.11.
(i) Bound
This is a straightforward adaptation of the proof of (4.14).
(ii) Monotonicity in L
The monotonicity of the map L 7→ F (L, p) follows from the comparison principle on

((uj(τ, y) = hj(τ, λτ + py))j , (ξj(τ, y) = gj(τ, λτ + py))j

where ((hj)j , (gj)j) is the hull function and λ = F (L, p).

A Proof of Proposition 4.11

The proof is divided in two steps.
Step 1: Uniqueness of λ
Given some p ∈ (0,+∞), assume that there exist λ1, λ2 ∈ R with their corresponding hull functions
((h1

j )j , (g
1
j )j), ((h

2
j )j , (g

2
j )j). Then define for i = 1, 2, j ∈ {1, . . . , n}

ui
j(τ, y) = hi

j(τ, λiτ + py) and ξi
j(τ, y) = gi

j(τ, λiτ + py)
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which are both solutions of equation (2.1) on [0,+∞)×R. By Corollary 4.10, we know that hj and gj satisfy
(4.29). Then we have

u1
j(0, y) ≤ u2

j(0, y) + 2C and ξ1j (0, y) ≤ ξ2j (0, y) + 2C

which implies (from the comparison principle) for all (τ, y) × [0,+∞)× R

u1
j(τ, y) ≤ u2

j(τ, y) + 2C and ξ1j (τ, y) ≤ ξ2j (τ, y) + 2C .

Using the fact that hi
j(τ + 1, z) = hi

j(τ, z) and gi
j(τ + 1, z) = gi

j(τ, z), we deduce that for τ = k ∈ N and
y = 0 we have

h1
j(0, λ1k) ≤ h2

j(0, λ2k) + 2C and g1
j (0, λ1k) ≤ g2

j (0, λ2k) + 2C

which implies by (4.29)
λ1k ≤ λ2k + 4C .

Because this is true for any k ∈ N, we deduce that

λ1 ≤ λ2 .

The reverse inequality is obtained exchanging ((h1
j )j , (g

1
j )j) and ((h2

j )j , (g
2
j )j). We finally deduce that λ1 =

λ2, which proves the uniqueness of the real λ, that we call G(p).

Step 2: Continuity of the map p 7→ G(p)
Let us consider a sequence (pm)m such that pm → p > 0. Let λm = G(pm) and ((hm

j )j , (g
m
j )j) be the

corresponding hull functions. From Corollary 4.10, we can choose these hull functions such that for j ∈
{1, . . . , n}

|hm
j (τ, z) − z| ≤ 2⌈C3⌉, and |gm

j (τ, z) − z| ≤ 2⌈C3⌉

and we have
|λm| ≤ C4

where we recall that C4 is defined in (4.6). Remark that both C3 and C4 depends on pm, but can be bounded
for pm in a neighbourhood of p. We deduce in particular that there exists a constant C5 > 0 such that

|hm
j (τ, z) − z| ≤ C5, |gm

j (τ, z) − z| ≤ C5 and |λm| ≤ C5 .

Let us consider a limit λ∞ of (λm)m, and let us define

hj = lim sup
m→+∞

∗hm
j , and gj = lim sup

m→+∞

∗gm
j .

This family of functions ((hj)j , (gj)j) is such that the family

((uj(τ, y))j , (ξj(τ, y))j) = ((hj(τ, λ∞τ + py))j , (gj(τ, λ∞τ + py))j)

is a subsolution of (4.19) on R× R. On the other hand, if ((hj)j , (gj)j) denotes the hull function associated
with p and λ = G(p), then

((uj(τ, y))j , (ξj(τ, y))j) = ((hj(τ, λτ + py))j , (gj(τ, λτ + py))j)

is a solution of (4.19) on R × R. Finally, as in Step 1, we conclude that

λ∞ ≤ λ .

Similarly, considering
hj = lim inf

m→+∞
∗h

m
j and g

j
= lim inf

m→+∞
∗g

m
j

we can show that
λ∞ ≥ λ .

Therefore λ∞ = λ and this proves that G(pm) → G(p); the continuity of the map p 7→ G(p) follows and this
ends the proof of the proposition.

34



B An alternative proof of Proposition 4.1

In this section, we give an alternative proof of Proposition 4.1. We adapt here the method we used in [9]
and we provide complementary details.

B.1 Explanation of the estimate of Proposition 4.1

In this section, we formally explain how we derive the estimate obtained in Proposition 4.1.
We can adapt the corresponding proof from [9]. For all η ≥ 0, we consider the following Cauchy problem

(B.1)















































{

(uj)τ = α0(ξj − uj)
(ξj)τ = Gδ

j(τ, [u(τ, ·)]j,m, ξj(τ, y), infy′∈R (ξj(τ, y
′) − py′) + py − ξj(τ, y), (ξj)y) + η(ξj)yy

{

uj+n(τ, y) = uj(τ, y + 1)
ξj+n(τ, y) = ξj(τ, y + 1)

{

uj(0, y) = p
(

y + j
n

)

ξj(0, y) = p
(

y + j
n

)

where Gδ
j is given by

Gδ
j(τ, V, r, a, q) = 2Fj(τ, V ) + α0(V0 − r) + δ(a0 + a)q

(remark that this is not exactly the function given by (5.2)). It is convenient to introduce the modified
Hamiltonian

F̃i(τ, V−m, . . . , Vm) = 2Fi(τ, V−m, . . . , Vm) + α0V0

so that
Gδ

j(τ, V−m, . . . , Vm, r, a, q) = F̃j(τ, V−m, . . . , Vm) − α0r + δ(a0 + a)q .

Hence, the Lipschitz constant of F̃j(τ, V ) with respect to V is K̃1 = 2LF + α0.
Case A: η > 0 and Fj ∈ C1 For η > 0, it is possible to show that there exists a unique solution ((uj)j , (ξj)j)
of (B.1) in (C2+α,1+α)2n for any α ∈ (0, 1). We will give the main idea of this existence result in the next
subsection.
Step 1: bound from below on the gradient
Then, if we define ζj = (ξj)y and vj = (uj)y, we can derive the previous equation in order to get the following
one

(B.2)















































(vj)τ = α0(ζj − vj)

(ζj)τ − η(ζj)yy = (F̃j)
′
V (τ, [u(τ, ·)]j,m(y)) · [v(τ, ·)]j,m(y) − α0ζj − δ(ζj − p)ζj

+δ (a0 + infy′∈R (ξj(τ, y
′) − py′) + py − ξj(τ, y)) (ζj)y

vj+n(τ, y) = vj(τ, y + 1)
ζj+n(τ, y) = ζj(τ, y + 1)

vj(0, y) = ζj(0, y) = p .

Let us now define

mv(τ) = inf
j∈{1,...,n}

inf
y∈R

vj(τ, y) and mζ(τ) = inf
j∈{1,...,n}

inf
y∈R

ζj(τ, y) .

Then we have in the viscosity sense:






(mv)τ ≥ α0(mζ −mv)

(mζ)τ ≥ L̃F min(0,mv) − α0mζ − δ(mζ − p)mζ

mv(0) = mζ(0) = p > 0
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where we have used the monotonicity assumptions (A2) and (A3) to get the term L̃F min(0,mv) with
L̃F = 2LF + α0. The fact that (0, 0) is a subsolution of this monotone system of ODEs implies that, for
j ∈ {1, . . . , n},

vj ≥ mv ≥ 0 and ζj ≥ mζ ≥ 0 .

In particular, we see that (u, ξ) is a solution of (B.1) with Gδ
j given by (5.2).

Step 2: bound from above on the gradient
Similarly we define

mζ(τ) = sup
j∈{1,...,n}

sup
y∈R

ζj(τ, y) and mv(τ) = sup
j∈{1,...,n}

sup
y∈R

vj(τ, y) .

Then we have in the viscosity sense







(mv)τ ≤ α0(mζ −mv)
(mζ)τ ≤ (2LF )mv + α0(mv −mζ) − δ(mζ − p)mζ

mv(0) = mζ(0) = p > 0

where we have used Step 1 to ensure that vj ≥ mv ≥ 0 for j ∈ {1, . . . , n}. The constant function (p +
(2LF )δ−1) (for both components) is a supersolution of the previous monotone system of ODEs. Hence, the
proof is complete in Case A.

Case B: η = 0 and F general
We can use an approximation argument as in [9]. This ends the proof of the proposition.

B.2 Proof of the existence of a regular solution of (B.1)

We just give the main idea.
It can be useful to remark that uj+l can be rewritten as follows: for all l ∈ {−m, . . . ,m},

(B.3) uj+l(τ, y) = p · (y + (j + l)/n)e−α0τ + α0

∫ τ

0

eα0(s−τ)ξj+l(s, y)ds .

We set vj(τ, y) = ξj(τ, y) − py. Then (vj)j is a solution of

(B.4)







(vj)t − η(vj)yy = F j(t, [v(τ, ·) + p·]j,m(y)) + δ (1 + infy′(v(τ, y′)) − v(τ, y)) (vy + p)
vj+n(τ, y) = vj(τ, y + 1) + p

vj(0, y) = p( j
n
)

where F j [τ, [ξ(τ, ·)]j,m(y)] = 2Fj(τ, [u(τ, ·)]j,m(y)) +α0uj(τ, y)− ξj(τ, y) with u given by (B.3) as a function
of the time integral of ξ. Since we attempt to get ξj(τ, y + 1

p
) = ξj(τ, y) + 1, we will look for functions vj

which are periodic of period 1
p
. The basic idea is to use a fixed point argument. First, we “regularize” the

right hand side of (B.4) by considering for some given K > 0

FK,j(τ, v) = T 0
K(F j(τ, [v(τ, ·) + p·]j,m(y))) + δ

(

1 + T 1
K(inf

y′

(v(τ, y′)) − v(τ, y))

)

(T 3
K(vy + p))

where T i
K ∈ C∞

b are truncature functions. In particular, FK,j(τ, ·) ∈ W 1,∞ uniformly in τ ∈ [0,+∞) and so
for all q > 1, there exists a solution w = (wj)j = A(v) ∈ W 2,1;q([0, T ]× [0, 1

p
)) of

(wj)t − η(wj)yy = FK,j(v)
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Now, we want to show that the operator A is a contraction. Let v1, v2 ∈ W 2,1;q([0, T ] × [0, 1
p
)). Standard

parabolic estimates show that

|Aj(v1) −Aj(v2)|W 2,1;q([0,T ]×[0, 1
p
))

≤C|FK,j(τ, v1) −FK,j(τ, v2)|Lq([0,T ]×[0, 1
p
))

≤C
(

|v2 − v1|Lq([0,T ]×[0, 1
p
)) + | inf(v2) − v2 − (inf(v1) − v1)|Lq([0,T ]×[0, 1

p
)) + |(v2 − v1)y |Lq([0,T ]×[0, 1

p
))

)

≤CT β|v2 − v1|W 2,1;q([0,T ]×[0, 1
p
))

for some β > 0 (see [17, 11]).

Sobolev embedding and parabolic regularity theory in Holder’s spaces implies the existence for T small

enough of a solution wj ∈ C2+α, 2+α
2 .

While we have smooth solutions below the truncature, we can applied the arguments of Subsection
B.1 and get estimates on the gradient of the solution which ensures that the solution is indeed below the
truncature. Finally, a posteriori, the truncature can be completely removed.
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