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Optimally adapted finite elements meshes

Jean-Marie Mirebeau

March 6, 2009

Abstract

Given a function f defined on a bounded domain Ω ⊂ IR2 and a number N > 0, we study
the properties of the triangulation TN that minimizes the distance between f and its interpolation
on the associated finite element space, over all triangulations of at most N elements. The error is
studied in the norm X = Lp for 1 ≤ p ≤ ∞ and we consider Lagrange finite elements of arbitrary
polynomial order m−1. We establish sharp asymptotic error estimates as N → +∞ when the optimal
anisotropic triangulation is used, improving on the results of [3, 4, 12, 10, 11, 9]. These estimates
involve invariant polynomials applied to the m-th order derivatives of f . In addition, our analysis
also provides with practical strategies for designing meshes such that the interpolation error satisfies
the optimal estimate up to a fixed multiplicative constant. We partially extend our results to higher
dimensions for finite elements on simplicial partitions of a domain Ω ⊂ IRd.

Key words anisotropic finite elements, adaptive meshes, interpolation, nonlinear approximation.
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1 Introduction.

1.1 Optimal mesh adaptation

In finite element approximation, a usual distinction is between uniform and adaptive methods. In the
latter, the elements defining the mesh may vary strongly in size and shape in order for a better adaptation
to the local features of the approximated function f . This naturally raises the objective of characterizing
and constructing an optimal mesh for a given function f .

Note that depending on the context, the function f may be fully known to us, either through an
explicit formula or a discrete sampling, or observed through noisy measurements, or implicitly defined as
the solution of a given partial differential equation.

In this paper, we assume that f is a function which is known to us, defined on a polygonal bounded
domain Ω ⊂ IR2. For a given conforming triangulation T of Ω, and an arbitrary but fixed integer m > 1,
we denote by Im,T the standard interpolation operator on the Lagrange finite elements of degree m− 1
space associated to T . Given a norm X of interest and a number N > 0, the objective of finding the
optimal mesh for f can be formulated as solving the optimization problem

min
#(T )≤N

∥f − Im,T f∥X , (1)

where the minimum is taken over all conforming triangulations of cardinality N . We denote by TN the
minimizer of the above problem.

Our first objective is to establish sharp asymptotic error estimates that precisely describe the behavior
of ∥f − Im,T f∥X as N → +∞. Estimates of that type were obtained in [12, 4] in the particular case of
linear finite elements (m− 1 = 1) and with the error measured in X = Lp. They have the form

lim sup
N→+∞

(
N min

#(T )≤N
∥f − Im,T f∥Lp

)
≤ C∥

√
|det(d2f)|∥Lτ ,

1
τ

=
1
p

+ 1, (2)

which reveals that the convergence rate is governed by the quantity
√
|det(d2f)|, which depends non-

linearly the Hessian d2f . This is heavily tied to the fact that we allow triangles with possibly highly
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anisotropic shape. In the present work, the polynomial order m − 1 is arbitrary and the quantities
governing the convergence rate will therefore depend nonlinearly on the m-th order derivative dmf .

Our second objective is to propose simple and practical ways of designing meshes which behave similar
to the optimal one, in the sense that they satisfy the sharp error estimate up to a fixed multiplicative
constant.

1.2 Main results and layout

We denote by IHm the space of homogeneous polynomials of degree m

IHm := Span{xkyl ; k + l = m}.

For any triangle T , we denote by Im,T the local interpolation operator acting from C0(T ) onto IPm−1 the
space of polynomials of total degree m− 1. This operator is defined by the conditions

Im,T v(γ) = v(γ),

for all point γ ∈ T with barycentric coordinates in the set {0, 1
m−1 ,

2
m−1 , · · · , 1}. We denote by

em,T (v)p := ∥v − Im,T v∥Lp(T )

the interpolation error measured in the norm Lp(T ). We also denote by

em,T (v)p := ∥v − Im,T v∥Lp =

(∑
T∈T

em,T (v)p
p

) 1
p

,

the global interpolation error for a given triangulation T , with the standard modification if p = ∞.
A key ingredient in this paper is a function defined by a shape optimization problem: for any fixed

1 ≤ p ≤ ∞ and for any π ∈ IHm, we define

Km,p(π) := inf
|T |=1

em,T (π)p. (3)

Here, the infimum is taken over all triangles of area |T | = 1. Note that from the homogeneity of π, we
find that

inf
|T |=A

em,T (π)p = Km,p(π)A
m
2 + 1

p . (4)

This optimization problem thus gives the shape of the triangles of a given area which is at best adapted
to the polynomial π in the sense of minimizing the interpolation error measured in Lp.

We refer to Km,p as the shape function. We discuss in §2 the main properties of this function.

Our asymptotic error estimate for the optimal triangulation is given by the following theorem.

Theorem 1.1 For any polygonal domain Ω ⊂ IR2, and any function f ∈ Cm(Ω), there exists a sequence
of triangulations (TN )N≥N0 , with #(TN ) = N such that

lim sup
N→∞

N
m
2 em,TN (f)p ≤

∥∥∥∥Km,p

(
dmf

m!

)∥∥∥∥
Lq(Ω)

,
1
q

:=
m

2
+

1
p

(5)

In the above estimate, the m-th derivative dmf is identified to an homogeneous polynomial in IHm:

dmf ∼
∑

k+l=m

∂mf

∂kx∂ly
xkyl.

In order to illustrate the sharpness of (5), we introduce a slight restriction on sequences of triangulations,
following an idea in [3]: a sequence (TN )N≥N0 of triangulations, such that #(TN ) = N , is said to be
admissible if

sup
T∈TN

diam(T ) ≤ CAN
−1/2. (6)

for some CA > 0 independent of N . The following theorem shows that the estimate (5) is cannot be
improved when we restrict our attention to admissible sequences. It also shows that this class is reasonably
large in the sense that (5) is ensured to hold up to small perturbation.
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Theorem 1.2 Let Ω ⊂ IR2 be a compact polygonal domain, and f ∈ Cm(Ω). Denote 1
q := m

2 + 1
p . For

all admissible sequences of triangulations (TN )N≥N0 , one has

lim inf
N→∞

N
m
2 em,TN (f)p ≥

∥∥∥∥Km,p

(
dmf

m!

)∥∥∥∥
Lq(Ω)

.

For all ε > 0, there exists an admissible sequence of triangulations (TN )N≥N0 , such that

lim sup
N→∞

N
m
2 em,TN (f)p ≤

∥∥∥∥Km,p

(
dmf

m!

)∥∥∥∥
Lq(Ω)

+ ε.

The proofs of both theorems are given in §3. These proofs reveal that the construction of the optimal
triangulation obeys two principles: (i) the triangulation should equidistribute the local approximation
error em,T (f)p between each triangle and (ii) the aspect ratio of a triangle T should be isotropic with
respect to a distorted metric induced by the local value of dmf on T (and therefore anisotropic in the
sense of the euclidean metric). Roughly speaking, the quantity ∥Km,p

(
dmf
m!

)
∥Lq(T ) controls the local

interpolation Lp-error estimate on a triangle T once this triangle is optimized with respect to the local
properties of f . This type of estimate differs from those obtained in [2] which hold for any T , optimized
or not, and involve the partial derivatives of f in a local coordinate system which is adapted to the shape
of T .

The proof of the upper estimates in Theorem 1.2 involves the construction of an optimal mesh based
on a patching strategy similar to [4]. However, inspection of the proof reveals that this construction
becomes effective as the number of triangles N becomes very large. Therefore it may not be useful in
practical applications.

A more practical approach consists in deriving the above mentioned distorted metric from the exact
or approximate data of dmf at each point x ∈ Ω. This means that to any π ∈ IHm, we want to associate a
symmetric positive definite matrix hπ ∈ S+

2 which describes the local metric in which a triangle T should
be isotropic when dmf is close to π on T . The global metric is then given at each point z by

h(z) = s(πz)hπz
, πz = dmf(z),

where s(πz) is a scalar factor which depends on the desired accuracy of the finite element approximation.
Once this metric has been properly identified, fast algorithms such as in [27, 26, 7] can be used in order
to design a near-optimal mesh based on it. Recently in [20, 6], several algorithms have been rigorously
proved to terminate and produce good quality meshes. Computing the map

π ∈ IHm 7→ hπ ∈ S+
2 , (7)

is therefore of key use in applications. This problem is well understood in the case of linear elements
(m = 2): the matrix hπ is then defined as the absolute value (in the sense of symmetric matrices) of the
matrix associated to the quadratic form π. In contrast, the exact form of this map in the case m ≥ 3 is
not well understood.

In this paper, we propose algebraic strategies for computing the map (7) for m = 3 which corresponds
to quadratic elements. These strategies have been implemented in an open-source Mathematica code:
www.ann.jussieu.fr/˜mirebeau. In a similar manner, we address the algebraic computation of the shape
function Km,p(π) from the coefficients of π ∈ IHm, when m ≥ 3. All these questions are addressed in §4,
5 and 6.

In §4, we discuss the particular case of linear (m = 2) and quadratic (m = 3) elements. In this case,
it is possible to obtain explicit formulas for Km,p(π) from the coefficients of π. In the case m = 2, this
formula is of the form

K2,p(ax2 + 2bxy + cy2) = σ
√
|b2 − ac|,

where the constant σ only depends of p and the sign of b2 − ac, and therefore the known estimate (2)
appears as a by-product of Theorem 1.1. The formula for m = 3 involves the discriminant of the third
order polynomial d3f . Our analysis also leads to an algebraic computation of the map (7). We want to
mention that a different strategy for the the construction of the distorted metric and the derivation of
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error estimate for finite element of arbitrary order was proposed in [9]. In this approach, the distorted
metric is obtained at a point z ∈ Ω by finding the largest ellipse contained in a level set of the polynomial
dmfz. This optimization problem has connexions with the one that defines the shape function in (3) as
we shall explain in §2. The approach proposed in the present work in the case m = 3 has the advantage
of avoiding the use of numerical optimization, the metric being directly derived from the coefficients of
dmf .

In §5, we address the case m > 3. In this case, explicit formulas for Km,p(π) seem out of reach.
However we can introduce explicit functions Km(π) which are polynomials in the coefficients of π, and
are equivalent to Km,p(π), leading therefore to similar asymptotic error estimates up to multiplicative
constants. At the current stage, we did not obtain a simple solution to the algebraic computation of the
map (7) in the case m > 3. The derivation of Km is based on the theory of invariant polynomials due to
Hilbert. Let us mention that this theory was also recently applied in [22] to image processing tasks such
as affine invariant edge detection and denoising.

We finally discuss in §6 the possible extension of our analysis to simplicial elements in higher dimension.
This extension is not straightforward except in the case of linear elements m = 2.

Acknowledgement
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2 The shape function

In this section, we establish several properties of the function Km,p which will be of key use in the sequel.
We assume that m ≥ 2 is an integer, and p ∈ [1,∞]. We equip the finite dimensional vector space IHm

with a norm ∥ · ∥ defined as the supremum of the coefficients

If π(x, y) =
m∑

i=0

aix
iym−i, then ∥π∥ = max

0≤i≤m
|ai| (8)

Our first result shows that the functionKm,p vanishes on a set of polynomials which has a simple algebraic
characterization.

Proposition 2.1 We denote by sm := ⌊m
2 ⌋ + 1 the smallest integer strictly larger than m/2. The

vanishing set of Km,p is the set of polynomials which have a generalized root of multiplicity at least sm:

Km,p(π) = 0 ⇔ π(x, y) = (αx+ βy)sm π̃, for some α, β ∈ IR and π̃ ∈ IHm−sm . (9)

Proof: We denote by Teq a fixed equilateral triangle of unit area, centered at 0.
We first assume that π(x, y) = (αx+ βy)sm π̃. Then there exists a rotation R ∈ O2 and π̂ ∈ Hm−sm

such that

π ◦R(x, y) = xsm π̂(x, y) = xsm

(
m−sm∑

i=0

aix
iym−sm−i

)
,

Therefore denoting by ϕε the linear transform ϕε(x, y) = R
(
εx, y

ε

)
we obtain

∥π ◦ ϕε∥ = max
i=0,··· ,m−sm

|ai|ε2sm−m+2i ≤ ε2sm−m∥π̂∥ → 0 as ε→ 0.

Consequently
em,ϕε(Teq)(π)p = em,Teq(π ◦ ϕε)p → 0 as ε→ 0.

Since |detϕε| = 1, the triangles ϕε(Teq) have unit area, and therefore Km,p(π) = 0.
Conversely, let π ∈ IHm\{0} be such that Km,p(π) = 0. Then there exists a sequence (Tn)n≥0 of

triangles with unit area such that em,Tn(π)p → 0. As already remarked in (19) the interpolation error is
invariant by translation so that we may assume that the barycenter of Tn is 0, and write Tn = ϕn(Teq),
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for some linear transform ϕn such that detϕn = 1. Since em,Teq(π)p is a norm on IHm, it follows that
π ◦ ϕn → 0.

The linear transform ϕn has a singular value decomposition

ϕn = Un ◦Dn ◦ Vn, where Un, Vn ∈ O2, and Dn =
(
εn 0
0 1/εn

)
, 0 < εn ≤ 1. (10)

Since the orthogonal group O2 is compact, there is a uniform constant C such that

∥π ◦ V ∥ ≤ C∥π∥, π ∈ IHm, V ∈ O2.

Therefore
∥π ◦ Un ◦Dn∥ = ∥π ◦ Un ◦Dn ◦ Vn ◦ V −1

n ∥ ≤ C∥π ◦ ϕn∥ → 0.

Equivalently, denoting by ai,n the coefficient of xiym−i in π ◦ Un, we find that ai,nε
2i−m
n tends to 0 as

n→ +∞. In the case where i < sm, this implies that ai,n tends to 0 as n→ +∞
Moreover, again by compactness of O2, we may assume, up to a subsequence, that Un converges to

some U ∈ O2. Denoting by ai the coefficient of xiym−i in π ◦U , we thus find that ai = 0 if i < sm. This
This implies that π ◦ U(x, y) = xsm π̂(x, y) which concludes the proof. ⋄

Remark 2.1 In the simple case m = 2, we infer from Proposition 2.1 that K2,p(π) = 0 if and only if π is
of the form π(x, y) = x2 up to a rotation, and therefore a one-dimensional function. For such a function,
the optimal aspect of a triangle T degenerates to a segment in the y direction, i.e. optimal triangles of
a fixed area tend to be infinitely long in one direction. This situation also holds when m > 2. Indeed,
we see in the second part in the proof of Proposition 2.1 that if π is a non-trivial polynomial such that
Km,p(π) = 0, then εn must tends to 0 as n → +∞. This shows that Tn = ϕn(T ) tends to be infinitely
flat in the direction Uey with ey = (0, 1). However, Km,p(π) = 0 does not any longer mean that π is a
polynomial of one variable.

Our next result shows that the function Km,p is homogeneous, and obeys an invariance property with
respect to linear change of variables.

Proposition 2.2 For all π ∈ IHm, λ ∈ IR and ϕ ∈ L(IR2),

Km,p(λπ) = |λ|Km,p(π) (11)

Km,p(π ◦ ϕ) = |detϕ|m/2Km,p(π) (12)

Proof: The homogeneity property (11) is a direct consequence of the definitions of Km,p. In order to
prove the invariance property (12), we define T̃ := ϕ(T )√

| det ϕ|
and π̃(z) := π(

√
|detϕ|z) = |detϕ|m/2π(z).

We now remark that the local interpolant Im,T commutes with linear change of variables in the sense
that, when ϕ is an invertible linear transform,

Im,T (v ◦ ϕ) = (Im,ϕ(T )v) ◦ ϕ, (13)

for all continuous function v and triangle T . Using this commutation formula we obtain

eT,m(π ◦ ϕ)p = |detϕ|−1/peϕ(T ),m(π)p

= eT̃ ,m(π̃)p

= |detϕ|m/2eT̃ ,m(π)p.

Since the map T 7→ T̃ is a bijection of the set of triangles onto itself, leaving the area invariant, we
obtain the relation (12) when ϕ is invertible. When detϕ = 0, the polynomial π ◦ ϕ can be written
(αx+ βy)m so that Km,p(P ◦ ϕ) = 0 by Proposition 2.1. ⋄

The functions Km,p is not necessarily continuous, but the following properties will be sufficient for
our purposes.
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Proposition 2.3 The function Km,p is upper semi-continuous in general, and continuous if m = 2 or
m is odd. Moreover the following property holds:

If πn → π and Km,p(πn) → 0 then Km,p(π) = 0. (14)

Proof: The upper semi-continuity property comes from the fact that the infimum of a family of upper
semi-continuous functions is an upper semi-continuous function. We apply this fact to the functions
π 7→ em,T (π)p indexed by triangles which are obviously continuous.

It will be shown in §4 that K2,p(π) = σp

√
|detπ|, where σp only depends on the sign of detπ. This

clearly implies the continuity of K2,p. We next turn to the proof of the continuity of Km,p for odd m.
Consider a polynomial π ∈ IHm. If Km,p(π) = 0 then the upper semi-continuity of Km,p, combined with
its non-negativity, implies that it is continuous at π. Otherwise, assume that Km,p(π) > 0. Consider a
sequence πn ∈ IHm converging to π, and a sequence ϕn of linear transformations satisfying detϕn = 1,
and such that

lim
n→+∞

eϕn(Teq)(πn) = lim inf
π∗→π

Km,p(π∗).

If the sequence ϕn admits a converging subsequence ϕnk
→ ϕ, it follows that

Km,p(π) ≤ eϕ(Teq)(π) = lim
k→+∞

eϕnk
(Teq)(πnk

) = lim inf
π∗→π

Km,p(π∗).

This asserts that Km,p is lower semi continuous at π, and therefore continuous at π since we already
know that Km,p is upper semi-continuous.

If ϕn does not admit any converging subsequence, then we invoke the SVD decomposition ϕn =
Un ◦ Dn ◦ Vn, where Un, Vn ∈ O2 and Dn = diag(εn,

1
εn

), where 0 < εn ≤ 1. (Here and below, we use
the shorthand diag(a, b) to denote the diagonal matrix with entries a and b) The compactness of O2

implies that Un admits a converging subsequence Unk
→ U . In particular πnk

◦ Unk
converges to π ◦ U .

Therefore, denoting by ai,n the coefficient of xiym−i in πn ◦ Un, the subsequence ai,nk
converges to the

coefficient ai of xiym−i in π ◦U . Observe also that εn → 0, otherwise some converging subsequence could
be extracted from ϕn. Since eϕn(Teq)(πn) = eTeq(πn◦ϕn), the sequence of polynomials πn◦ϕn is uniformly
bounded, and so is the sequence πn ◦ Un ◦ Dn. Therefore the sequences (ai,nε

2i−m
n )n≥0 are uniformly

bounded. It follows that ai = 0 when i < m
2 . Since m is odd, this implies that π ◦ U(x, y) = xsm π̃(x, y)

and Proposition 2.1 implies that Km,p(π) = 0 which contradicts the hypothesis Km,p(π) > 0.
Last, we prove property (14). The assumption Km,p(πn) → 0 is equivalent to the existence of a

sequence Tn = ϕn(Teq) with detϕn = 1 such that em,Tn(πn)p → 0. Reasoning in a similar way as in the
proof of Proposition 2.1, we first obtain that πn ◦ ϕn → 0, and we then invoke the SVD decomposition
of ϕn to build a converging sequence of orthogonal matrices Un → U and a sequence 0 < εn ≤ 1 such
that if ai,n is the coefficient of xiym−i in πn ◦ Un, we have ai,nε

2i−m
n → 0. When i < sm, it follows that

ai,n → 0 and therefore π ◦ U(x, y) = xsm π̂(x, y). The result follows from Proposition 2.1. ⋄

We finally make a connexion between the shape function and the approach developed in [9]. For all
π ∈ IHm, we denote by Λπ as the level set of |π| for the value 1,

Λπ = {(x, y) ∈ IR2, |π(x, y)| ≤ 1}. (15)

We now define

KE
m(π) =

(
sup

E∈E, E⊂Λπ

|E|
)−m/2

. (16)

where the supremum is taken over the set E of all ellipses centered at 0. The optimization problem
defining KE

m is equivalent to

inf{detH ; H ∈ S+
2 and ∀z ∈ IR2, ⟨Hz, z⟩ ≥ |P (x)|2/m}, (17)

where S+
2 is the cone of 2 × 2 symmetric definite positive matrices. The minimizing ellipse E∗ is then

given by {⟨Hz, z⟩ ≤ 1}. The optimization problem described in (17) is quadratic in dimension 2, and
subject to (infinitely many) linear constraints. This apparent simplicity is counterbalanced by the fact
that it is non convex. In particular, it does not have unique solutions and may also have no solution.
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Proposition 2.4 On IHm, one has the equivalence

cKE
m ≤ Km,p ≤ CKE

m (18)

with constant 0 < c ≤ C independent of p.

Proof: Let Teq denote an equilateral triangle of unit area, and B its circumscribed disk. It is easy to
see that the inscribed disc is B/2.

We first show that Km,p ≤ CKE
m. Let π ∈ IHm, and let En be a sequence of ellipsoids inscribed in

Λπ and such that |En| tends to supE∈E, E⊂Λπ
|E| as n → +∞. We write En = λnϕn(B), where ϕn is a

linear transform such that detϕn = 1 and λn > 0. We define the triangle Tn = ϕn(Teq) which satisfies
|Tn| = 1. We then have

Km,p(π) ≤ ∥π − Im,Tnπ∥Lp(Tn)

= ∥π ◦ ϕn − (Im,Tnπ) ◦ ϕn∥Lp(Teq)

= ∥π ◦ ϕn − Im,Teq(π ◦ ϕn)∥Lp(Teq)

≤ ∥π ◦ ϕn − Im,Teq(π ◦ ϕn)∥L∞(Teq),

where we have used the commutation formula (13).
Remarking that Im,Teq is a continuous operator from IHm to IPm−1 in the sense of any norm since

these spaces are finite dimensional, we thus obtain

Km,p(π) ≤ C1∥π ◦ ϕn∥L∞(Teq)

≤ C1∥π ◦ ϕn∥L∞(B)

= C1∥π∥L∞(ϕn(B))

= C1λ
−m
n ∥π∥L∞(En)

≤ C1

(
|En|
|B|

)−m/2

,

where we have used the fact that |π| ≤ 1 in En ⊂ Λπ. Letting n → +∞, we obtain that Km,p(π) ≤
CKE

m(π) with C = C1|B|m/2.
We next prove that cKE

m ≤ Km,p. Let Tn be a sequence of triangles of unit area such that em,Tn(π)p

tends to Km,p(π) as n→ +∞. We remark that the interpolation error eT (π)p of π ∈ IHm is invariant by
a translation τh : z 7→ z + h of the triangle T . Indeed π − π ◦ τh ∈ IPm−1 so that

∥π − Im,Tπ∥Lp(τh(T )) = ∥π ◦ τh − Im,T (π ◦ τh)∥Lp(T ) = ∥π − Im,Tπ∥Lp(T ). (19)

We may therefore assume that the triangles Tn have their barycenter at the origin. Then there exists
linear transforms ϕn with detϕn = 1, such that Tn = ϕn(Teq). We now write

∥π∥L∞(ϕn(B/2)) ≤ ∥π∥L∞(Tn)

= ∥π ◦ ϕn∥L∞(Teq)

≤ C2∥π ◦ ϕn − Im,Teqπ ◦ ϕn∥Lp(Teq)

= C2em,Tn(π)p,

where we have used the fact that ∥π∥L∞(Teq) and eTeq(π)p are equivalent norms on IHm. By homogeneity,
it follows that if λn := (C2em,Tn(π)p)−1/m, we have

∥π∥L∞(λnϕn(B/2)) ≤ λm
n C2em,Tn(π)p = 1.

Therefore the ellipse En := λnϕn(B/2) is contained in Λπ, so that

KE
m ≤ |En|−m/2 =

(
λ2

n

|B|
4

)−m/2

= C2

(
4
|B|

)m/2

em,Tn(π)p.

Letting n→ +∞, we obtain that cKE
m ≤ Km,p with c = C−1

2

(
|B|
4

)m/2

. ⋄
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Remark 2.2 Since Km,p and KE
m are equivalent, they must vanish on the same set, and therefore Propo-

sition 2.1 is also valid for KE
m. It also easy to see that KE

m satisfies the homogeneity and invariance
properties stated for Km,p in (11) and (12), as well as the continuity properties stated in Proposition 2.3.

Remark 2.3 The continuity of the functions Km,p and KE
m can be established when m is odd or equal

to 2, as shown by Proposition 2.3, but seems to fail otherwise. In particular, direct computation shows
that KE

4 (x2y2 − εy4) is independent of ε > 0 and strictly smaller than KE
4 (x2y2). Therefore KE

4 is upper
semi-continuous but discontinuous at the point x2y2 ∈ IH4.

3 Optimal estimates

This section is devoted to the proofs of our main theorems, starting with the lower estimate of Theorem
1.2, and continuing with the upper estimates involved in both Theorem 1.1 and 1.2.

Throughout this section, for the sake of notational simplicity, we fix the parameters m and p and use
the shorthand

K = Km,p and eT (π) = em,T (π)p.

For each point z ∈ Ω we define

πz =
dmfz

m!
∈ IHm,

where f ∈ Cm(Ω) is the function in the statement of the theorems. We denote by

ω(r) := sup
∥z−z′∥≤r

∥πz − πz′∥,

the modulus of continuity of z 7→ πz with the norm ∥ · ∥ defined by (8). Note that ω(r) → 0 as r → 0.

3.1 Lower estimate

In this proof we will use an estimate by below of the local interpolation error.

Proposition 3.1 Assume that 1 ≤ p < ∞. There exists a constant C > 0, such that for all triangle
T ⊂ Ω and z ∈ T ,

eT (f)p ≥ Kp(πz)|T |
mp
2 +1 − C(diamT )mp|T |ω(diamT ). (20)

Proof: Denoting by µz ∈ IPm−1 the Taylor development of f at the point z up to order m − 1, we
observe that

∥f − (µz + πz)∥L∞(T ) ≤ C0 diam(T )mω(diam(T )),

where C0 is a fixed constant. Observing that µz = Im,Tµz we obtain

|eT (f) − eT (πz)| ≤ ∥(f − Im,T f) − (πz − Im,Tπz)∥Lp(T )

≤ |T |1/p∥(I − Im,T f) − (πz − Im,Tπz)∥L∞(T )

= |T |1/p∥(I − Im,T )(f − µz − πz)∥L∞(T )

≤ C1|T |1/p∥f − µz − πz∥L∞(T )

≤ C0C1|T |1/p diam(T )mω(diam(T ))

where C1 is the norm of the operator I − Im,T in L∞(T ) which is independent of T .
¿From (4) we know that eT (πz) ≥ |T |

m
2 + 1

pK(πz), and therefore

eT (f) ≥ K(πz)|T |
m
2 + 1

p − C0C1|T |1/p diam(T )mω(diam(T )).

We now remark that for all p ∈ [1,∞) the function r 7→ rp is convex, and therefore if a, b, c are positive
real numbers, and a ≥ b− c then ap ≥ max{0, b− c}p ≥ bp − pcbp−1. Applying this to our last inequality
we obtain

eT (f)p ≥ Kp(πz)|T |
mp
2 +1 − pC0C1(K(πz))p−1|T |(p−1)( m

2 + 1
p )+ 1

p diam(T )mω(diamT ).

8



Since |T |(p−1)( m
2 + 1

p )+ 1
p = |T |(p−1) m

2 |T | ≤ (diamT )m(p−1)|T |, this leads to

eT (f)p ≥ Kp(πz)|T |
mp
2 +1 − C(diamT )mp|T |ω(diamT ),

where C := pC0C1(supz∈ΩK(πz))p−1. ⋄

We now turn to the proof of the lower estimate in Theorem 1.2 in the case where p < ∞. Consider
a sequence (TN )N≥N0 of triangulations which is admissible in the sense of equation (6). Therefore, there
exists a constant CA such that

diamT ≤ CAN
−1/2, N ≥ N0, T ∈ TN

For T ∈ TN , we combine this estimate with (20), which gives

eT (f)p ≥ Kp(πz)|T |
mp
2 +1 − (CAN)−

mp
2 |T |Cω(CAN

−1/2).

Averaging over T , we obtain

eT (f)p ≥
∫

T

Kp(πz)|T |
mp
2 dz − |T |Cmp

A N−mp
2 Cω(CAN

−1/2).

Summing on all T ∈ TN , and denoting by TN
z the triangle in TN containing the point z ∈ Ω, we obtain

the estimate
eTN (f)p ≥

∫
Ω

K(πz)|TN
z |

mp
2 dz −N−mp

2 ε(N), (21)

where ε(N) := |Ω|Cmp
A Cω(CAN

−1/2) → 0 as N → +∞. The function z 7→ |TN
z | is linked with the

number of triangles in the following way:∫
Ω

dz

|TN
z |

=
∑

T∈TN

∫
T

1
|T |

= N.

On the other hand, with 1
q = m

2 + 1
p , we have by Hölder’s inequality,∫

Ω

Kq(πz)dz ≤
(∫

Ω

Kp(πz)|TN
z |

mp
2 dz

)q/p(∫
Ω

1
|TN

z |
dz

)1−q/p

. (22)

Combining the above, we obtain a lower bound for the integral term in (21) which is independent of TN :∫
Ω

Kp(πz)|TN
z |

mp
2 dz ≥

(∫
Ω

Kq(πz)dz
)p/q

N−mp/2.

Injecting this lower bound in (21) we obtain eTN (f)p ≥
[(∫

Ω
Kq(πz)dz

)p/q − ε(N)
]
N−mp/2. This allows

us to conclude

lim inf
N→+∞

N
m
2 eTN

(f) ≥
(∫

Ω

K(πz)q

) 1
q

, (23)

which is the desired estimate.

The case p = ∞ follows the same ideas. Adapting Proposition 3.1, one proves that

eT (f) ≥ K(πz)|T |
m
2 − C(diamT )mω(diamT ).

and therefore
eTN

(f) ≥
∥∥K(πz)|TN

z |m
2
∥∥

L∞(Ω)
−N−m

2 ε(N), (24)

where ε(N) := Cm
A Cω(CAN

− 1
2 ) → 0 as N → +∞. The Holder inequality now reads∫

Ω

K(πz)
2
m dz ≤

∥∥∥K(πz)
2
m |TN

z |
∥∥∥

L∞(Ω)

∥∥∥∥ 1
|TN

z |

∥∥∥∥
L1(Ω)
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equivalently ∥∥K(πz)|TN
z |m

2
∥∥

L∞(Ω)
≥
(∫

Ω

K(πz)
2
m dz

)m
2

N−m
2 .

Combining this with (24), this leads to the desired estimate (23) with p = ∞ and q = 2
m .

Remark 3.1 This proof reveals the two principles which characterize the optimal triangulations. Indeed,
the lower estimate (23) becomes an equality only when both inequalities in (3.1) and (22) are equality.
The first condition - equality in (3.1) - is met when each triangle T has an optimal shape, in the sense
that eT (πz) = K(πz)|T |

m
2 + 1

p for some z ∈ T . The second condition - equality in (22) - is met when the
ratio between Kp(πz)|TN

z |
mp
2 and |TN

z |−1 is constant, or equivalently K(πz)|T |
m
2 + 1

p is independent of the
triangle T . Combined with the first condition, this means that the error eT (f)p is equidistributed over the
triangles, up to the perturbation by (diamT )mp|T |ω(diamT ) which becomes neglectible as N grows.

3.2 Upper estimate

We first remark that the upper estimate in Theorem 1.2. implies the upper estimate in Theorem 1.1 by
a sub-sequence extraction argument: if the upper estimate in Theorem 1.2 holds, then for all n > 0 there
exists a sequence (T n

N )N>N0 such that

lim sup
N→+∞

(
N

m
2 eTN

(f)
)
≤
∥∥∥∥K (dmf

m!

)∥∥∥∥
Lq

+
1
n
,

with 1
q = 1

p + m
2 . We then take TN = T n(N)

N , where

n(N) = max{n > 0 ; M
m
2 eT n

M
(f) ≤

∥∥∥∥K (dmf

m!

)∥∥∥∥
Lq

+
2
n
, M ≥ N}.

Clearly n(N) → +∞ as N → +∞ and therefore

lim sup
N→+∞

(
N

m
2 eTN

(f)
)
≤
∥∥∥∥K (dmf

m!

)∥∥∥∥
Lq

.

We are thus left with proving the upper estimate in Theorem 1.2. We begin by fixing a (large) number
M > 0. We shall take the limit M → ∞ in the very last step of our proof. We define

TM = {T triangle, |T | = 1, bary(T ) = 0 and diam(T ) ≤M},

the set of triangles centered at the origin, of unit area and diameter smaller than M . This set is compact
with respect to the Hausdorff distance. This allows us to define a “tempered” version of K = Km,p that
we denote by KM :

KM (π) = inf
T∈TM

eT (π).

Since TM is compact, the above infimum is attained on a triangle that we denote by TM (π). Note that
the map π 7→ TM (π) need not be continuous. It is clear that KM (π) decreases as M grows. Note also
that the restriction to triangles T centered at 0 is artificial, since the error is invariant by translation
as noticed in (19). Therefore KM (π) converges to K(π) as M → +∞. Since TM is compact, the map
π 7→ maxT∈TM

eT (π) defines a norm on IHm, and is therefore bounded by CM∥π∥ for some CM > 0. One
easily sees that the functions π 7→ eT (π) are uniformly CM -Lipschitz for all T ∈ TM , and so is KM .

We now use this new function KM to obtain a local upper error estimate that is closely related to the
local lower estimate in Proposition 3.1

Proposition 3.2 For z1 ∈ Ω, let T be a triangle which is obtained from TM (πz1) by rescaling and
translation ( T = tTM (πz1) + z0). Then for any z2 ∈ T ,

eT (f) ≤
(
KM (πz2) +BMω(max{|z1 − z2|,diam(T )})

)
|T |

m
2 + 1

p , (25)

where BM > 0 is a constant which depends on M .
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Proof: For all z1, z2 ∈ Ω, we have

eTM (πz1 )(πz2) ≤ eTM (πz1 )(πz1) + CM∥πz1 − πz2∥
= KM (πz1) + CM∥πz1 − πz2∥,
≤ KM (πz2) + 2CM∥πz1 − πz2∥,
≤ KM (πz2) + 2CMω(|z1 − z2|).

Therefore, if T is of the form T = tTM (πz1) + z0, we obtain by a change of variable that

eT (πz2) ≤
(
KM (πz2) + 2CMω(|z1 − z2|)

)
|T |

m
2 + 1

p

Denoting by µz ∈ IPm−1 the Taylor development of f at the point z up to order m− 1, we have

eT (f) ≤ eT (µz2) + eT (πz2) + eT (f − πz2 − µz2)
= eT (πz2) + eT (f − πz2 − µz2)

≤
(
KM (πz2) + 2CMω(|z1 − z2|)

)
|T |

m
2 + 1

p + eT (f − πz2 − µz2)

By the same argument as in the proof of Proposition 3.1, we derive that

eT (f − πz2 − µz2) ≤ C|T |
1
p diam(T )mω(diamT ),

and thus

eT (f) ≤
(
KM (πz2) + 2CMω(|z1 − z2|)

)
|T |

m
2 + 1

p + C|T |
1
p diam(T )mω(diamT ).

Since T is the scaled version of a triangle in TM , it obeys diam(T )2 ≤M2|T |. Therefore

eT (f) ≤ (KM (πz2) + (2CM + CMm)ω(max{|z1 − z2|,diam(T )})) |T |
m
2 + 1

p ,

which is the desired inequality with BM := 2CM + CMm. ⋄

We now choose an arbitrary triangular mesh R of Ω and define the radius

r = sup
R∈R

diam(R).

Our strategy to build a triangulation that satisfies the optimal upper estimate is to use the triangles R
as macro-elements in the sense that each of them will be tiled by a locally optimal uniform triangulation.
This strategy was already used in [4].

For all R ∈ R we consider the triangle

TR := (KM (πbR
) + 2BMω(r))−

q
2TM (πbR

), (26)

which is a scaled version of TM (πbR
) where bR is the barycenter of R. We use this triangle to build a

periodic tiling PR of the plane: there exists a vector c such that TR ∪ T ′
R with forms a parallelogram of

side vectors a and b, with T ′
R = c− TR. We then define

PR := {TR +ma+ nb ; m,n ∈ ZZ2} ∪ {T ′
R +ma+ nb ; m,n ∈ ZZ2}. (27)

Observe that for all π ∈ IHm, and all triangles T, T ′ such that T ′ = −T one has eT (π) = eT ′(π) since π
is either an even polynomial when m is an even integer, or an odd polynomial when m is odd. Since we
already know that eT (π) is invariant by translation of T , we find that the local error eT (π) is constant
on all T ∈ PR.

We now define as follows a family of triangulations Ts of the domain Ω, for s > 0. For every R ∈ R,
we consider the elements T ∩ R for T ∈ sPR, where sPR denotes the triangulation PR scaled by the

11



Figure 1: a. An edge (Thick) of the macro-triangulation R separating to uniformly paved regions (TR

is thick, PR is dashed). b. Additional edges (dashed) are added near the interface in order to preserve
conformity. c. The sets of triangles T reg

s (gray) and T bd
s (white)

factor s. Clearly {T ∩R, T ∈ sPR, R ∈ R} constitute a partition of Ω. In this partition, we distinguish
the interior elements

T reg
s := {T ∈ sPR ; T ∈ int(R) , R ∈ R},

which defines pieces of a conforming triangulation, and the boundary elements T ∩ R for T ∈ sPR such
that T ∩ ∂R ̸= ∅. These last elements might not be triangular, nor conformal with the elements on
the other side. Note that for s > 0 small enough, each R ∈ R contains at least one triangle in T reg

s ,
and therefore the boundary elements constitute a layer around the edges of R. In order to obtain a
conforming triangulation, we proceed as follow: for each boundary element T ∩R, we consider the points
on its boundary which are either its vertices or those of a neighboring element. We then build the
Delaunay triangulation of these points, which is a triangulation of T ∩ R since it is a convex set. We
denote by T bd

s the set of all triangles obtained by this procedure, which is illustrated on Figure 1.
Our conforming triangulation is given by

Ts = T reg
s ∪ T bd

s .

As s→ 0, clearly
#(T bd

s ) ≤ Cbds
−1 and

∑
T∈T bd

s

|T | ≤ Cbds, (28)

for some constant Cbd which depends on the macro-triangulation R. We therefore obtain that the
number of triangles in T bd

s is dominated by the number of triangles in T reg
s . More precisely, we have the

equivalence

#(Ts) ∼ #(T reg
s ) ∼

∑
R∈R

|R|
s2|TR|

= s−2
∑
R∈R

|R|(KM (πbR) + 2BMω(r))q, (29)

in the sense that the ratio between the above quantities tends to 1 as s→ 0. The right hand side in (29)
can be estimated through an integral:

s2#(T reg
s ) ≤

∑
R∈R

|R|(KM (πbR
) + 2BMω(r))q

=
∑
R∈R

∫
R

(KM (πbR) + 2BMω(r))qdz

≤
∑
R∈R

∫
R

(KM (πz) + CM∥πz − πbR
∥ + 2BMω(r))qdz

≤
∫

Ω

(KM (πz) + (2BM + CM )ω(r))qdz

Therefore, since CM ≤ BM ,

#(Ts) ≤ s−2

(∫
Ω

(KM (πz) + 3BMω(r))qdz + Cbds

)
. (30)
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Observe that the construction of Ts gives a bound on the diameter of its elements

sup
T∈Ts

diam(T ) ≤ sCa, Ca := max
R∈R

diam(TR)

Combining this with (29), we obtain that the admissibility condition (6) is fulfilled by the family Ts.

We now estimate the global interpolation error ∥f − Im,Tsf∥Lp := (
∑

T∈Ts
eT (f)p)

1
p , assuming first that

1 ≤ p < ∞. We first estimate the contribution of T bd
s , which will eventually be neglectible. Denoting

µz ∈ IPm−1 the Taylor development of f up to order m− 1 at z we remark that

∥f − Im,T f∥L∞(T ) = ∥(I − Im,T )(f − µbT
)∥L∞(T ) ≤ C1∥f − µbT

∥L∞(T ) ≤ C0C1 diam(T )m.

where C1 is the norm of I − Im,T in L∞(T ) which is independent of T and C0 only depends on the L∞

norm of dmf . Remarking that eT (f) = ∥f − Im,T f∥Lp(T ) ≤ |T |
1
p ∥f − Im,T f∥L∞(T ), we obtain an upper

bound for the contribution of T bd
s to the error:∑

T∈T bd
s

eT (f)p ≤ Cp
0C

p
1

∑
T∈T bd

s

|T |diam(T )mp

≤ Cp
0C

p
1

 ∑
T∈T bd

s

|T |

 sup
T∈T bd

s

diam(T )mp

≤ Cp
0C

p
1Cbds sup

T∈T bd
s

diam(T )mp

≤ C∗
bds

mp+1,

with C∗
bd = Cp

0C
p
1C

mp
a Cbd. We next turn to the the contribution of T reg

s to the error. If T ∈ T reg
s ,

T ⊂ R ∈ R, we consider any point z1 = z ∈ T and define z2 = bR the barycenter of R. With such
choices, the estimate (25) reads

eT (f) ≤ (KM (πz) +BMω(max{r, CAs})) |T |
m
2 + 1

p .

We now assume that s is chosen small enough such that CAs ≤ r. Geometrically, this condition ensures
that the “micro-triangles” constituting Ts actually have a smaller diameter than the “macro-triangles”
constituting R. This implies

eT (f)p ≤ (KM (πz) +BMω(r))p |T |
mp
2 +1 (31)

Given a triangle T ∈ T reg
s , T ⊂ R ∈ R, and a point z ∈ T , one has

|T | = s2 (KM (πbR
) + 2BMω(r))−q

≤ s2 (KM (πz) − CM∥πz − πbR∥ + 2BMω(r))−q

≤ s2 (KM (πz) + (2BM − CM )ω(r))−q
.

Observing that BM ≥ CM , and that p − qmp
2 = q, we inject the above inequality in the estimate (31),

which yields
eT (f)p ≤ (KM (πz) +BMω(r))q |T |.

Averaging on z ∈ T , we obtain

eT (f)p ≤ smp

∫
T

(KM (πz) +BMω(r))q
dz.

Adding up contributions from all triangles in Ts, we find

eTs(f)p =
∑

T∈T reg
s

eT (f)p +
∑

T∈T bd
s

eT (f)p ≤ smp

∫
Ω

(KM (πz) +BMω(r))q
dz + C∗

bds
mp+1 (32)
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Combining this with the estimate (30) we obtain,

eTs#(Ts)m/2 ≤
(∫

Ω

(KM (πz) +BMω(r))q
dz + C∗

bds

) 1
p
(∫

Ω

(KM (πz) + 3BMω(r))q
dz + Cbds

)m
2

and therefore, since 1
q = m

2 + 1
p ,

lim sup
s→0

(
#(Ts)m/2eTs

)
≤
(∫

Ω

(KM (πz) + 3BMω(r))q
dz

) 1
q

.

Is it now time to observe that for fixed M ,

lim
r→0

∫
Ω

(KM (πz) + 3BMω(r))q
dz =

∫
Ω

Kq
M (πz)dz,

and that
lim

M→+∞

∫
Ω

Kq
M (πz)dz =

∫
Ω

Kq(πz)dz.

Therefore, for all ε > 0, we can choose M sufficiently large and r sufficiently small, such that

lim sup
s→0

(
#(Ts)m/2eTs

)
≤
(∫

Ω

Kq(πz)dz
) 1

q

+ ε.

This gives us the announced statement of Theorem 1.2, by defining

sN := min{s > 0 ; #(Ts) ≤ N},

and by setting TN = TsN
.

The adaptation of the above proof in the case p = ∞ is not straightforward due to the fact that the
contribution to the error of T bd

s is not anymore neglectible with respect to the contribution of T reg
s . For

this reason, one needs to modify the construction of T bd
s . Here, we provide a simple construction but for

which the resulting triangulation Ts is non-conforming.
More precisely, we define T reg

s in a similar way as for p <∞, and add to the construction of T bd
s a post

processing step in which each triangle is splitted in 4j similar triangles according to the midpoint rule.
Here we take for j the smallest integer which is larger than − log s

4 log 2 . With such an additional splitting,
we thus have

max
T∈T bd

s

diam(T ) ≤ s
1
4 max

R∈R
diam(sTR) = Cas

1+ 1
4 .

The contribution of T bd
s to the L∞ interpolation error is bounded by

eT bd
s

(f) ≤ C0C1 max
T∈T bd

s

diam(T )m ≤ C∗
bds

5m
4 ,

with C∗
bd := C0C1C

m
a . We also have

#(T bd
s ) ≤ Cbds

−3/2,

which remains neglictible compared to s−2. We therefore obtain

#(Ts) ≤ s−2

(∫
Ω

(KM (πz) + 3BMω(r))
2
m dz + Cbds

1/2

)
(33)

If T ∈ T reg
s and T ⊂ R ∈ R, we have according to the estimate (25)

eT (f) ≤ (KM (πbR) +BMω(max{r, CAs})) |T |
m
2

moreover, by construction |T | = s2(KM (πbR
)+ 2BMω(r))−2/m. This implies eT (f) ≤ sm when CAs ≤ r.

Therefore
eTs(f) = max{eT reg

s
, eT bd

s
} ≤ sm max{1, C∗

bds
m
4 }.

Combining this estimate with (33) yields

lim sup
s→0

(
#(Ts)m/2eTs

)
≤
(∫

Ω

(KM (πz) + 3BMω(r))
2
m dz

)m
2

,

and we conclude the proof in a similar way as for p <∞.
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4 The shape function and the optimal metric for linear and
quadratic elements

This section is devoted to linear (m = 2) and quadratic (m = 3) elements, which are the most commonly
used in practice. In these two cases, we are able to derive an exact expression for Km,p(π) in terms of
the coefficients of π. Our analysis also gives us access to the distorted metric which characterizes the
optimal mesh. While the results concerning linear elements have strong similarities with those of [4],
those concerning quadratic elements are to our knowledge the first of this kind, although [10] analyzes a
similar setting.

4.1 Exact expression of the shape function

In order to give the exact expression of Km,p, we define the determinant of an homogeneous quadratic
polynomial by

det(ax2 + 2bxy + cy2) = ac− b2,

and the discriminant of an homogeneous cubic polynomial by

disc(ax3 + bx2y + cxy2 + dy3) = b2c2 − 4ac3 − 4b3d+ 18abcd− 27a2d2.

The functions det on IH2 and disc on IH3 are homogeneous in the sense that

det(λπ) = λ2 detπ, disc(λπ) = λ4 discπ. (34)

Moreover, it is well known that they obey an invariance property with respect to linear changes of
coordinates ϕ:

det(π ◦ ϕ) = (detϕ)2 detπ, disc(π ◦ ϕ) = (detϕ)6 discπ. (35)

Our main result relates Km,p to these quantities.

Theorem 4.1 We have for all π ∈ IH2,

K2,p(d2f) = σp(detπ)
√
|detπ|,

and for all π ∈ IH3,
K3,p(d3f) = σ∗

p(discπ) 4
√
|discπ|,

where σp(t) and σ∗
p(t) are constants that only depends on the sign of t.

The proof of Theorem 4.1 relies on the possibility of mapping and arbitrary polynomial π ∈ IH2 such
that det(π) ̸= 0 or π ∈ IH3 such that disc(π) ̸= 0 onto two fixed polynomials π− or π+ by a linear change
of variable and a sign change.

In the case of IH2, it is well known that we can choose π− = x2−y2 and π+ = x2 +y2. More precisely,
to all π ∈ H2, we associate a symmetric matrix Qπ such that π(x, y) = ⟨Qπz, z⟩. This matrix can be
diagonalized according to

Qπ = UT

(
λ1 0
0 λ2

)
U, U ∈ O2, λ1, λ2 ∈ IR.

Then, defining the linear transform

ϕπ := UT

(
|λ1|−

1
2 0

0 |λ2|−
1
2

)
and λπ = sign(λ1) ∈ {−1, 1}, it is readily seen that

λππ ◦ ϕπ =
{
x2 + y2 if detπ > 0
x2 − y2 if detπ < 0.

In the case of IH3, a similar result holds, as shown by the following lemma.

Lemma 4.1 Let π ∈ IH3. There exists a linear transform ϕπ such that

π ◦ ϕπ =
{
x(x2 − 3y2) if discπ > 0
x(x2 + 3y2) if discπ < 0.
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Proof: Let us first assume that π is not divisible by y so that it can be factorized as

π = λ(x− r1y)(x− r2y)(x− r3y),

with λ ∈ IR and ri ∈ C|| . If discπ > 0, then the ri are real and we may assume r1 < r2 < r3. Then,
defining

ϕπ = λ(2 discπ)−1/3

(
r1(r2 + r3) − 2r2r3 (r2 − r3)r1

√
3

2r1 − (r2 + r3) (r2 − r3)
√

3,

)
.

an elementary computation shows that π ◦ ϕπ = x(x2 − 3y2). If discπ < 0, then we may assume that r1
is real, r2 and r3 are complex conjugates with Im(r2) > 0. Then, defining

ϕπ = λ(2 discπ)−1/3

(
r1(r2 + r3) − 2r2r3 i(r2 − r3)r1

√
3

2r1 − (r2 + r3) i(r2 − r3)
√

3

)
.

an elementary computation shows that π ◦ ϕπ = x(x2 + 3y2). Moreover it is easily checked that ϕπ has
real entries and is therefore a change of variable in IR2.

In the case where π is divisible by y, there exists a rotation U ∈ O2 such that π̃ := π ◦ U is not
divisible by y. By the invariance property (35) we know that discπ = disc π̃. Thus, we reach the same
conclusion with the choice ϕπ := U ◦ ϕπ̃. ⋄

Proof of Theorem 4.1: for all π ∈ IH2 such that detπ ̸= 0 and for all change of variable ϕ and λ ̸= 0,
we may combine the properties of the determinant in (34) and (35) with those of the shape function
established in Proposition 2.2. This gives us

K2,p(π)√
|detπ|

=
K2,p(λπ ◦ ϕ)√
|det(λπ ◦ ϕ)|

.

Applying this with ϕ = ϕπ and λ = λπ, we therefore obtain

K2,p(π) =
√
|detπ|

{
K2,p(x2 + y2) if detπ > 0,
K2,p(x2 − y2) if detπ < 0.

This gives the desired result with σp(t) = K2,p(x2 + y2) for t > 0 and σp(t) = K2,p(x2 − y2) for t < 0. In
the case where detπ = 0, then π is of the form π(x, y) = λ(αx + βy)2 and we conclude by Proposition
2.1 that K2,p(π) = 0.

For all π ∈ IH3 such that discπ ̸= 0, a similar reasoning yields

K3,p(π) = 4
√
|discπ|108−

1
4

{
K3,p(x(x2 − 3y2)) if discπ > 0,
K3,p(x(x2 + 3y2)) if discπ < 0. ,

where the constant 108 comes from the fact that disc(x(x2−3y2)) = −disc(x(x2−3y2)) = 108. This gives
the desired result with σ∗

p(t) = 108−
1
4K3,p(x(x2−3y2)) for t > 0 and σ∗

p(t) = 108−
1
4K3,p(x(x2 +3y2)) for

t < 0. In the case where discπ = 0, then π is of the form π(x, y) = (αx+ βy)2(γx+ δy) and we conclude
by Proposition 2.1 that K3,p(π) = 0. ⋄

Remark 4.2 We do not know any simple analytical expression for the constants involved in σp and σ∗
p,

but these can be found by numerical optimisation. These constants are known for some special values of
p in the case m = 2, see for example [4].

4.2 Optimal metrics

Practical mesh generation techniques such as in [20, 6, 7, 26, 27] are based on the data of a Riemannian
metric, by which we mean a field h of symmetric definite positive matrices

x ∈ Ω 7→ h(x) ∈ S+
2 .
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Typically, the mesh generator takes the metric h as an input and hopefully returns a triangulation Th

adapted to it in the sense that all triangles are close to equilateral of unit side length with respect to
this metric. Recently several algorithms have been “proved”, see [24, 6], and offer theoretical guaranties
of termination and quality, at least in two dimensions. This must be contrasted with algorithms based
on heuristics, such as [26] in two dimensions, and [27] in three dimensions, which have been available for
some time and offer good performance [8] but no theoretical guaranties.

For a given function f to be approximated, the field of metrics given as input should be such that
the local errors are equidistributed and the aspect ratios are optimal for the generated triangulation.
Assuming that the error is measured in X = Lp and that we are using finite elements of degree m − 1,
we can construct this metric as follows, provided that some estimate of πz = dmf(z)

m! is available all points
z ∈ Ω. An ellipse Ez such that |Ez| is equal or close to

sup
E∈E,E⊂Λπz

|E| (36)

is computed, where Λπz is defined as in (15). We denote by hπz ∈ S+
2 the associated symmetric definite

positive matrix such that
Ez = {(x, y) ; (x, y)Thπz (x, y) ≤ 1}.

Let us notice that the supremum in (36) might not always be attained or even be finite. This particular
case is discussed in the end of this section. Denoting by ν > 0 the desired order of the Lp error on each
triangle, we then define the metric by rescaling hπz according to

h(z) =
1
α2

z

hπz where αz := ν
p

mp+2 |Ez|−
1

mp+2 .

With such a rescaling, any triangle T designed by the mesh generator should be comparable to the ellipse
z + αzEz centered around z the barycenter of T , in the sense that

z + c1αzEz ⊂ T ⊂ z + c2αzEz, (37)

for two fixed constants 0 < 2c1 ≤ c2 independent of T (recall that for any ellipse E there always exist a
triangle T such that E ⊂ T ⊂ 2E).

Such a triangulation heuristically fulfills the desired properties of optimal aspect ratio and error
equidistribution when the level of refinement is sufficiently small. Indeed, we then have

em,T (f)p ≈ em,T (πz)p

= ∥π − Im,Tπz∥Lp(T ),

∼ |T |
1
p ∥πz − Im,Tπz∥L∞(T ),

∼ |T |
1
p ∥πz∥L∞(T ),

∼ |αzEz|
1
p ∥πz∥L∞(αzEz),

= α
m+ 2

p
z |Ez|

1
p ∥π∥L∞(Ez),

= ν,

where we have used the fact that πz ∈ IHm.
Leaving aside these heuristics on error estimation and mesh generation, we focus on the main com-

putational issue in the design of the metric h(z), namely the solution to the problem (36): to any given
π ∈ IHm, we want to associate hπ ∈ S+

2 such that the ellipse Eπ defined by hπ has area equal or close to
supE∈E,E⊂Λπ

|E|.
When m = 2 the computation of the optimal matrix hπ can be done by elementary algebraic means.

In fact, as it will be recalled below, hπ is simply the absolute value (in the sense of symmetric matrices)
of the symmetric matrix [π] associated to the quadratic form π. These facts are well known and used in
mesh generation algorithms for IP1 elements.

When m ≥ 3 no such algebraic derivation of hπ from π has been proposed up to now and current
approaches instead consist in numerically solving the optimisation problem (17), see [9]. Since these
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Figure 2: Maximal ellipses inscribed in Λπ, π = x(x2 − 3y2) or π = x(x2 + 3y2).

computations have to be done extremely frequently in the mesh adaptation process, a simpler algebraic
procedure is highly valuable. In this section, we propose a simple and algebraic method in the case m = 3,
corresponding to quadratic elements. For purposes of comparison the results already known in the case
m = 2 are recalled.

Proposition 4.2 1. Let π ∈ IH2 be such that det(π) ̸= 0, and consider its associated 2 × 2 matrix
which can be written as

[π] = UT

(
λ1 0
0 λ2

)
U, U ∈ O2.

Then, an ellipse of maximal volume inscribed in λπ is defined by the matrix

hπ = UT

(
|λ1| 0
0 |λ2|

)
U

2. Let π ∈ IH3 be such that discπ > 0, and ϕπ the matrix of Lemma 4.1. Define

hπ = ϕ−1,T
π ϕ−1

π . (38)

Then hπ defines an ellipse of maximal volume inscribed in Λπ. Moreover dethπ = 2−2/3

3 (discπ)
1
3

3. Let π ∈ IH3 be such that discπ < 0, and ϕπ the matrix of Lemma 4.1. Define

hπ = 2
1
3ϕ−1,T

π ϕ−1
π . (39)

Then hπ defines an ellipse of maximal volume inscribed in Λπ. Moreover dethπ = 1
3 |discπ| 13

Proof: Clearly, if the matrix hπ defines an ellipse of maximal volume in the set Λπ, then for any linear
change of coordinates ϕ, the metric ϕ−1,Thπϕ

−1 defines an ellipse of maximal volume in the set Λπ◦ϕ.
When π ∈ IH2, we know that λππ ◦ ϕπ = x2 + y2 when detπ > 0, and x2 − y2 when detπ < 0, where
|λπ| = 1. When π ∈ IH3, we know from Lemma 4.1 that π ◦ ϕπ = x(x2 − 3y2) when discπ > 0 and
x(x2+3y2) when discπ < 0. Hence it only remains to prove that when π ∈ {x2+y2, x2−y2, x(x2−3y2)},
then hπ = Id, which means that the disc of radius 1 is an ellipse of maximal volume inscribed in Λπ,
while when π = x(x2 + 3y2) we have hπ = 21/3 Id.

The case π = x2 + y2 is trivial. We next concentrate on the case π = x(x2 + 3y2), the treatment of
the two other cases being very similar. Let E be an ellipse included in Λπ, π = x(x2 + 3y2). Analyzing
the variations of the function π(cos θ, sin θ), it is not hard to see that we can rotate E into another ellipse
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E′, also verifying the inclusion E′ ⊂ Λπ, and which principal axes are {x = 0} and {y = 0}. We therefore
only need to consider ellipses of the form kx2 + hy2 ≤ 1. For a given value of h, we denote by k(h) the
minimal value of k for which this ellipse is included in Λπ. Clearly the boundary of the ellipse, defined
by k(h)x2 + hy2 = 1, must be tangent to the curve defined by π(x, y) = 1 at some point (x, y). This
translates into the following system of equations π(x, y) = 1,

hx2 + ky2 = 1,
ky∂xπ(x, y) − hx∂xπ(x, y) = 0.

(40)

Eliminating the variables x and y from this system, as well as negative or complex valued solutions,
we find that k(h) = 4+h3

3h2 when h ∈ (0, 2], and k(h) = k(2) = 1 when h ≥ 2. The minimum of
the determinant hk(h) = 1

3

(
4
h + h2

)
is attained for h = 2

1
3 . Observing that k(2

1
3 ) = 2

1
3 we obtain

as announced hπ = 21/3 Id and that the ellipse of largest area included in Λπ is the disc of equation
21/3(x2 + y2) ≤ 1, as illustrated on Figure 2.b.

The same reasoning applies to the other cases. For π = x2−y2 we obtain k(h) = 1
h , h ∈ (0,∞). In this

case the determinant hk(h) is independent of h, and we simply choose h = 1 = k(1). For π = x(x2 −3y2)
we obtain k(h) = 4−h3

3h2 when h ∈ (0, 1] and k(h) = k(1) = 1 when h > 1. The maximal volume is attained
when h = 1, corresponding to the unit disc, as illustrated on Figure 2.a. ⋄

Remark 4.3 When π ∈ IH3 and discπ > 0 a surprising simplification happens : the matrix (38) has
entries which are symmetric functions of the roots r1, r2, r3. Using the relation between the roots and the
coefficients of a polynomial, we find the following expression

If π = ax3 + 3bx2y + 3cxy2 + dy3, then hπ = 2−
1
3 3(discπ)

−1
3

(
2(b2 − ac) bc− ad
bc− ad 2(c2 − bd)

)
. (41)

This yields a direct expression of the matrix as a function of the coefficients. Unfortunately there is no
such expression when discπ < 0.

At first sight, Proposition 4.2 might seem to be a complete solution to the problem of building an
appropriate metric for mesh generation. However, some difficulties arise at points z ∈ Ω where detπz = 0
or discπz = 0. If π ∈ IH2\{0} and detπ = 0, then up to a linear change of coordinates, and a change
of sign, we can assume that π = x2. The minimisation problem clearly yields the degenerate matrix
hπ = diag(1, 0). If π ∈ IH3\{0} and discπ = 0, then up to a linear change of coordinates either π = x3

or π = x2y. In the first case the minimisation problem gives again hπ = diag(1, 0). In the second case
a wilder behavior appears, in the sense that minimizing sequences for the problem (36) are of the type
hπ = diag(ε−1, ε2) with ε → 0. The minimisation process therefore gives a matrix which is not only
degenerate, but also unbounded.

These degenerate cases appear generically, and constitute a problem for mesh generation since they
mean that the adapted triangles are not well defined. Current anisotropic mesh generation algorithms
for linear elements often solve this problem by fixing a small parameter δ > 0, and working with the
modified matrix h̃π := hπ + δ Id. However this procedure cannot be extended to bilinear elements, since
hx2y is both degenerate and unbounded.

In the theoretical construction of an optimal mesh which was discussed in §3.2, we tackled this problem
by imposing a bound M > 0 on the diameter of the triangles. This was the purpose of the modified
shape function KM (π) and of the triangle TM (π) of minimal interpolation error among the triangles of
diameter smaller than M . We follow a similar idea here, looking for the ellipse of largest area included
in Λπ with constrained diameter. This provides matrices which are both positive definite and bounded,
and vary continuously with respect to the data π ∈ IH3. The constrained problem, depending on α > 0,
is the following:

sup{|E| ; E ∈ E , E ⊂ Λπ and diamE ≤ 2α−1/2}, (42)

or equivalently

inf{detH ; H ∈ S+
2 s.t. ⟨Hz, z⟩ ≥ |π(z)|2/m, z ∈ IR2, and H ≥ α Id}. (43)
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Figure 3: The set Λπ (full) and the ellipses Eπ,α (dashed) for various values of α > 0 when π ∈ IH2.

We denote by Eπ,α and hπ,α the solutions to (42) and (43). In the remainder of this section, we show
that this solution can also be computed by a simple algebraic procedure, avoiding any kind of numerical
optimisation. In the case where π ∈ IH2, it can easily be checked that

[hπ,α] = UT

(
max{|λ1|, α} 0

0 max{|λ2|, α},

)
U (44)

as illustrated on Figure 3.
When π ∈ IH3, the problem is more technical, and the matrix hπ,α takes different forms depending

on the value of α and the sign of discπ. In order to describe these different regimes, we introduce three
real numbers 0 ≤ βπ ≤ απ ≤ µπ and a matrix Uπ ∈ O2 which are defined as follow. We first define µπ by

µ−1/2
π := min{∥z∥ ; |π(z)| = 1},

the radius of the largest disc Dπ inscribed in Λπ. For zπ such that |π(zπ)| = 1 and ∥zπ∥ = µ
−1/2
π , we

define Uπ as the rotation which maps zπ to the vector (∥zπ∥, 0). We then define απ by

2α−1/2
π := max{diam(E) ; E ∈ E ; Dπ ⊂ E ⊂ Λπ},

the diameter of the largest ellipse inscribed in Λπ and containing the disc Dπ. In the case where π is of
the form (ax+ by)3, this ellipse is infinitely long and we set απ = 0. We finally define βπ by

2β−1/2
π := diam(Eπ),

where Eπ is the optimal ellipse described is Proposition 4.2. In the case where discπ = 0, the “optimal
ellipse” is infinitely long and we set βπ = 0. It is readily seen that 0 ≤ βπ ≤ απ ≤ µπ.

All these quantities can be algebraically computed from the coefficients of π by solving equations of
degree at most 4, as well as the other quantities involved in the description of the optimal hπ,α and Eπ,α

in the following result.

Proposition 4.3 For π ∈ IH3 and α > 0, the matrix hπ,α and ellipse Eπ,α are described as follows.

1. If α ≥ µπ, then hπ,α = α Id and Eα,π is the disc of radius α−1/2.

2. If απ ≤ α ≤ µπ, then

hπ,α = UT
π

(
µπ 0
0 α

)
Uπ, (45)

and Eα is the ellipse of diameter 2α−1/2 which is inscribed in Λπ and contains Dπ. It is tangent
to ∂Λπ at the two points zπ and −zπ.

3. If βπ ≤ α ≤ απ then Eπ,α is tangent to ∂Λπ at four points and has diameter 2α−1/2. There are
at most three such ellipses and Eπ,α is the one of largest area. The matrix hπ,α has a form which
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Figure 4: The set Λπ (full), the disc Eπ,µπ = Dπ (full), the ellipse Eπ,απ (full), and the ellipses Eπ,α

(dashed) for various values of α > 0 when π ∈ IH3 and α ∈ (απ,∞). Left: discπ < 0. Right: discπ > 0

Figure 5: The set Λπ (full), the ellipse Eπ,απ (full), the ellipse Eπ,βπ = Eπ (full), and the ellipses Eπ,α

(dashed) for various values of α > 0 when π ∈ IH3 and α ∈ (βπ, απ). Left: discπ < 0. Right: discπ > 0

depends on the sign of discπ.
(i) If discπ < 0, then

hπ,α = ϕ−1,T
π

(
λα 0
0 4+λ3

α

3λ2
α

)
ϕ−1

π (46)

where ϕπ is the matrix defined in Proposition 4.2 and λα determined by det(hπ,α − α Id) = 0.
(ii) If discπ > 0, then

hπ,α = ϕ−1,T
π V T

(
λα 0
0 4−λ3

α

3λ2
α

)
V ϕ−1

π (47)

where ϕπ and λα are given as in the case discπ < 0 and where V is chosen between the three
rotations by 0, 60 or 120 degrees so to maximize |Eα,π|.
(iii) If discπ = 0 and απ > 0, then there exists a linear change of coordinates ϕ such that π◦ϕ = x2y
and we have

hπ,α = ϕ−1,T

(
λα 0
0 4

27λ2
α

)
ϕ−1 (48)

where λα is determined by det(hπ,α − α Id) = 0.

4. If α ≤ βπ, then hπ,α = hπ and Eπ,α = Eπ the solution of the unconstrained problem.

Proof: See Appendix. ⋄

Figure 4 illustrates the ellipses Eπ,α, α ∈ (απ,∞) when discπ > 0 (4.a) or discπ < 0 (4.b). Figure 5
illustrates the ellipses Eπ,α, α ∈ (απ,∞) when discπ > 0 (5.a) or discπ < 0 (5.b). Note that when
α ≥ απ, the principal axes of Eπ,α are independent of α since Uπ is a rotation that only depends on π,
while these axes generally vary when βπ ≤ α ≤ απ, since the matrix ϕπ is not a rotation.
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Remark 4.4 For interpolation by cubic or higher degree polynomials (m ≥ 4), an additional difficulty
arises that can be summarized as follows: one should be careful not to “overfit” the polynomial π with
the matrix hπ. An approach based on exactly solving the optimisation problem (36) might indeed lead to
a metric h(z) with unjustified strong variations with respect to z and/or bad conditioning, and jeopardize
the mesh generation process. As an example, consider the one parameter family of polynomials

πt = x2y2 + ty4 ∈ IH4, t ∈ [−1, 1].

It can be checked that when t > 0, the supremum S+ = supE∈E,E⊂Λπt
|E| is finite and independent of t, but

not attained, and that any sequence En ⊂ Λπt of ellipses such that limn→∞ |En| = S+ becomes infinitely
elongated in the x direction, as n→ ∞. For t < 0, the supremum S− = supE∈E,E⊂Λπt

|E| is independent

of t and attained for the optimal ellipse of equation |t|−1/2
√

2−1
2 x2 + |t|1/2y2 ≤ 1. This ellipse becomes

infinitely elongated in the y direction as t→ 0. This example shows the instability of the optimal matrix hπ

with respect to small perturbations of π. However, for all values of t ∈ [−1, 1], these extremely elongated
ellipses could be discarded in favor, for example, of the unit disc D = {x2 + y2 ≤ 1} which obviously

satisfies D ⊂ Λπt and is a near-optimal choice in the sense that 2|D| = S+ ≤ S− = |D|
√

2(
√

2 + 1).

5 Polynomial equivalents of the shape function in higher degree

In degrees m ≥ 4, we could not find analytical expressions of Km,p or KE
m, and do not expect them to

exist. However, equivalent quantities with analytical expressions are available, under the same general
form as in Theorem 4.1: the root of a polynomial in the coefficients of the polynomial π ∈ IHm. This
result improves on the analysis of [11], where a similar setting is studied. The object of this section is to
prove the following theorem

Theorem 5.1 For all degree m ≥ 2, there exists a polynomial Km on IHm, and a constant Cm > 0 such
that for all π ∈ IHm, and all 1 ≤ p ≤ ∞

1
Cm

rm
√

Km(π) ≤ Km,p(π) ≤ Cm
rm
√

Km(π), (49)

where rm = deg Km

Since for fixed m all functions Km,p, 1 ≤ p ≤ ∞, are equivalent on IHm, there is no need to keep track of
the exponent p in this section and we use below the notation Km = Km,∞.

This theorem is a generalisation of Theorem 4.1, and the polynomial Km involved should be seen as a
generalisation of the determinant on IH2, and of the discriminant on IH3. Let us immediately stress that
the polynomial Km is not unique. In particular, we shall propose two constructions that lead to different
Km with different degree rm. Our first construction is simple and intuitive, but leads to a polynomial
of degree rm that grows quickly with m. Our second construction uses the tools of Invariant Theory to
provide a polynomial of much smaller degree, which might be more usable in practice.

We first recall that there is a strong connection between the roots of a polynomial in IH2 or IH3 and
its determinant or discriminant.

det

λ ∏
1≤i≤2

(x− riy)

 = λ2(r1 − r2)2,

disc

λ ∏
1≤i≤3

(x− riy)

 = λ4(r1 − r2)2(r2 − r3)2(r3 − r1)2.

We now fix an integer m > 3. Observing that these expressions are a “cyclic” product of the squares
of differences of roots, we define

S(λ, r1, · · · , rm) := λ4(r1 − r2)2 · · · (rm−1 − rm)2(rm − r1)2.
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Since m > 3, this quantity is not invariant anymore under reordering of the ri. For any positive integer
d, we introduce the symmetrized version of the d-powers of the cyclic product

Qd(λ, r1, · · · , rm) :=
∑

σ∈Σm

[S(λ, rσ1 , · · · , rσm)]d,

where Σm is the set of all permutations of {1, · · · ,m}.

Proposition 5.1 For all d > 0 there exists a homogeneous polynomial Qd of degree 4d on IHm, with
integer coefficients, and such that

If π = λ

m∏
i=1

(x− riy) then Qd (π) = Qd(λ, r1, · · · , rm).

In addition, Qd obeys the invariance property

Qd(π ◦ ϕ) = (detϕ)2mdQd(π). (50)

Proof: We denote by σi the elementary symmetric functions in the ri, in such way that

m∏
i=1

(x− riy) = xn − σ1x
m−1y + σ2x

m−2y2 − · · · + (−1)mσmy
m.

A well known theorem of algebra (see e.g. chapter IV.6 in [21]) asserts that any symmetrical polynomial
in the ri, can be reformulated as a polynomial in the σi. Hence for any d there exists a polynomial Q̃d

such that
Qd(1, r1, · · · , rm) = Q̃d(σ1, · · · , σm).

In addition it is known that the total degree of Q̃d is the partial degree of Qd in the variable r1, in our
case 4d, and that Q̃d has integer coefficients since Qd has.

Given a polynomial π ∈ Hm not divisible by y, we write it under the two equivalent forms

π = a0x
m + a1x

m−1y + · · · + amy
m = λ

m∏
i=1

(x− riy).

clearly a0 = λ and σi = (−1)i ai

a0
. It follows that

Qd(λ, r1, · · · , rm) = λ4dQ̃d(σ1, · · · , σm) = a4d
0 Q̃d(

−a1

a0
, · · · , (−1)mam

a0
)

Since deg Q̃d = 4d, the negative powers of a0 due to the denominators are cleared by the factor a4d
0 and

the right hand side is thus a polynomial in the coefficients a0, · · · , am that we denote by Qd(π).
We now prove the invariance of Qd with respect to linear changes of coordinates. By continuity of

Qd, it suffices to prove this invariance property for pairs (π, ϕ) such that ϕ is an invertible linear change
of coordinates, and neither π or π ◦ ϕ−1 is divisible by y.

Under this assumption, we observe that if π = λ
∏m

i=1(x − riy) and ϕ =
(
α β
γ δ

)
, then π ◦ ϕ−1 =

λ̃
∏m

i=1(x− r̃iy) where

λ̃ = λ(detϕ)−m
m∏

i=1

(γ + δri) and r̃i =
αri + β

γri + δ
. (51)

Observing that

r̃i − r̃j =
detϕ

(γri + δ)(γrj + δ)
(ri − rj),

it follows that
S(λ̃, r̃1, · · · , r̃m) = (detϕ)−2m S(λ, r1, · · · , rm).
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The invariance property (50) follows readily. ⋄

We now define rm = 2lcm{deg Qd ; 1 ≤ d ≤ m!} where lcm{a1, · · · , ak} stands for the lowest com-
mon multiple of {a1, · · · , ak}, and we consider the following polynomial on IHm:

Km :=
m!∑

d=1

Q
rm

deg Qd

d . (52)

Clearly Km has degree rm and obeys the invariance property Km(π ◦ ϕ) = (detϕ)
rmm

2 Km(π).

Lemma 5.2 Let π ∈ IHm. If Km(π) = 0 then Km(π) = 0.

Proof: We assume that Km(π) ̸= 0 and intend to prove that Km(π) ̸= 0. Without loss of generality,
we may assume that y does not divide π, since Km(π ◦ U) = Km(π) and Km(π ◦ U) = Km(π) for
any rotation U . We thus write π = λ

∏m
i=1(x − riy), where ri ∈ C|| . Since Km(π) ̸= 0, we know from

Proposition 2.1 that there is no group of sm := ⌊m
2 ⌋ + 1 equal roots ri.

We now define a permutation σ∗ ∈ Σn such that rσ∗(i) ̸= rσ∗(i+1) for 1 ≤ i ≤ m − 1 and rσ∗(m) ̸=
rσ∗(1). In the case where m = 2m′ is even and m′ of the ri are equal, any permutation σ∗ such that
rσ∗(1) = rσ∗(3) = · · · = rσ∗(2m′−1) satisfies this condition. In all other cases let us assume that the ri are
sorted by equality : if i < j < k and ri = rk then ri = rj = rk. If m = 2m′ is even, we set σ∗(2i− 1) = i
and σ∗(2i) = m+i, 1 ≤ i ≤ m′. If m = 2m′+1 is odd we set σ∗(2i) = i, 1 ≤ i ≤ m′ and σ∗(2i−1) = m+i,
1 ≤ i ≤ m′ + 1. For example, σ∗ = (4 1 5 2 6 3 7) when m = 7 and σ∗ = (1 5 2 6 3 7 4 8) when m = 8.
With such a construction, we find that |σ∗(i)−σ∗(i+1)| ≥ m′ if m is odd and |σ∗(i)−σ∗(i+1)| ≥ m′−1
if m is even, for all 1 ≤ i ≤ m where we have set σ∗(m + 1) := σ∗(1). Hence σ satisfied the required
condition, and therefore S(λ, rσ∗(1), · · · , rσ∗(m)) ̸= 0.

It is well known that if k complex numbers α1, · · · , αk ∈ C|| are such that αd
1 + · · · + αd

k = 0,
for all 1 ≤ d ≤ k, then α1 = · · · = αk = 0. Applying this property to the m! complex numbers
S(λ, rσ(1), · · · , rσ(m)), σ ∈ Σn, and noticing that the term corresponding to σ∗ is non zero, we see that
there exists 1 ≤ d ≤ m! such that Qd(π) = Qd(λ, r1, · · · , rm) ̸= 0. Since Qd has real coefficients, the
numbers Qd(π) are real, and it follows that Km(π) > 0. This concludes the proof of this lemma. ⋄

The following proposition, when applied to the function Keq = rm
√

Km concludes the proof of Theo-
rem 5.1.

Proposition 5.3 Let m be a positive integer, and let Keq : IHm → IR+ be a continuous function obeying
the following properties

1. Invariance property : Keq(π ◦ ϕ) = |detϕ|m
2 Keq(π).

2. Vanishing property : for all π ∈ IHm, if Keq(π) = 0 then Km(π) = 0.

Then there exists a constant C > 0 such that 1
CKeq ≤ Km ≤ CKeq on IHm.

Proof: We first remark that Keq is homogeneous in a similar way as Km: if λ ≥ 0, then applying
the invariance property to ϕ = λ

1
m Id yields Keq(π ◦ (λ

1
m Id)) = Keq(λπ) and |detϕ|m

2 = λ. Hence
Keq(λπ) = λKeq(π).

Our next remark is that a converse of the vanishing property holds: if Km(π) = 0, then there exists
a sequence ϕn of linear changes of coordinates, detϕn = 1, such that π ◦ ϕn → 0 as n → ∞. Hence
Keq(π) = Keq(π ◦ ϕn) → Keq(0). Furthermore, Keq(0) = 0 by homogeneity. Hence Keq(π) = 0.

We define the set NFm := {π ∈ IHm ; Km(π) = 0}. We also define a set Am ⊂ IHm by a property
“opposite” to the property defining NFm. A polynomial π ∈ IHm belongs to Am if and only if

∥π∥ ≤ ∥π ◦ ϕ∥ for all ϕ such that detϕ = 1. (53)

The sets NFm and Am are closed by construction, and clearly NFm ∩Am = {0}. We now define

Km(π) = lim
r→0

inf
∥π′−π∥≤r

Km(π′) (54)
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the lower semi-continuous envelope of Km. If Km(π) = 0 then there exists a converging sequence πn → π
such that Km(πn) → 0. According to Proposition 2.3, it follows that Km(π) = 0 and hence π ∈ NFm.
Therefore the lower semi continuous function Km and the continuous function Keq are bounded below
by a positive constant on the compact set {π ∈ Am, ∥π∥ = 1}. Since in addition Keq is continuous and
Km is upper semi-continuous, we find that the constant

C = sup
π∈Am,∥π∥=1

max
{
Keq(π)
Km(π)

,
Km(π)
Keq(π)

}
,

is finite. By homogeneity of Km and Keq, we infer that on Am

1
C
Keq ≤ Km ≤ Km ≤ CKeq. (55)

Now, for any π ∈ IHm, we consider π̂ of minimal norm in the closure of the set {π ◦ ϕ ; detϕ = 1}.
By construction, we have π̂ ∈ Am, and there exists a sequence ϕn, detϕn = 1 such that π ◦ ϕn → π̂ as
n→ ∞. If π̂ = 0, then Km(π) = Keq(π) = 0. Otherwise, we observe that

Km(π̂) ≤ Km(π) ≤ Km(π̂) and Keq(π̂) = Keq(π).

Where we used the fact that Km, Km and Keq are respectively lower semi continuous, upper semi con-
tinuous, and continuous on IHm. Combining this with inequality (55) concludes the proof. ⋄

A natural question is to find the polynomial of smallest degree satisfying Theorem 5.1. This leads
us to rely on the theory of invariant polynomials introduced by Hilbert [19] (we also refer to [16] for a
survey on this subject). A polynomial R on IHm is said to be invariant if µ = m deg R

2 is a positive integer
and for all π ∈ IHm and linear change of coordinates ϕ, one has

R(π ◦ ϕ) = (detϕ)µR(π). (56)

We have seen for instance that Km and Qd are “invariant polynomials” on IHm.
Nearly all the literature on invariant polynomials is concerned with the case of complex coefficients,

both for the polynomials and the changes of variables. It is known in particular [16] that for all m ≥ 3,
there exists m− 2 invariant polynomials R1, · · ·Rm−2 on IHm, such that for any π (complex coefficients
are allowed) and any other invariant polynomial R on IHm,

If R1(π) = · · · = Rm−2(π) = 0, then R(π) = 0. (57)

A list of such polynomials with minimal degree is known explicitly at least when m ≤ 8. Defining

r = 2lcm(degRi) and Keq :=
r

√∑m−2
i=1 R

r
deg Ri
i , we see that Keq(π) = 0 implies Km(π) = 0 and hence

Km(π) = 0. According to proposition 5.3, we have constructed a new, possibly simpler, equivalent of
Km.

For example when m = 2 the list (Ri) is reduced to the polynomial det, and for m = 3 to the
polynomial disc. For m = 4, given π = ax4 + 4bx3y + 6cx2y2 + 4dxy3 + ey4, the list consists of the two
polynomials

I = ae− 4bd+ 3c2, J =

∣∣∣∣∣∣
a b c
b c d
c d e

∣∣∣∣∣∣ ,
therefore K4(π) is equivalent to the quantity 6

√
|I(π)|3 + J(π)2. As m increases these polynomials un-

fortunately become more and more complicated, and their number m− 2 obviously increases. According
to [16], for m = 5 the list consists of three polynomials of degrees 4, 8, 12, while for m = 6 it consists of
4 polynomials of degrees 2, 4, 6, 10.
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6 Extension to higher dimension

The function Km,p can be generalised to higher dimension d > 2 in the following way. We denote by
IHm,d the set of homogeneous polynomials of degree m in d variables. For all d-dimensional simplex T ,
we define the interpolation operator Im,T acting from C0(T ) onto the space IPm−1,d of polynomials of
total degree m − 1 in d variables. This operator is defined by the conditions ImT v(γ) = v(γ) for all
point γ ∈ T with barycentric coordinates in the set {0, 1

m−1 ,
2

m−1 , · · · , 1}. Following Section §1.2, and
generalizing Definition (3), we define the local interpolation error on a simplex, the global interpolation
error on a mesh, as well as the shape function. For all π ∈ IHm,d,

Km,p,d(π) = inf
|T |=1

∥π − Im,Tπ∥p.

where the infimum is taken on all d-dimensional simplexes T of volume 1. The variant KE
m introduced

in (16) also generalises in higher dimension, and was introduced by Weiming Cao in [9]. Denoting by Ed

the set of d-dimensional ellipsoids, we define

KE
m,d(π) =

(
sup

E∈Ed,E⊂Λπ

|E|
)−m

d

,

with Λπ = {z ∈ IRd ; |π(z)| ≤ 1}. Similarly to Proposition 2.4, it is not hard to show that the functions
Km,p,d(π) and KE

m,d(π) are equivalent: there exists constants 0 < c ≤ C depending only on m, d, such
that

cKE
m,d ≤ Km,p,d ≤ CKE

m,d.

Let (Tn)n≥0 be a sequence of simplicial meshes (triangles if d = 2, tetrahedrons if d = 3, . . . ) of a
d-dimensional, polygonal open set Ω. Generalizing (6), we say that (Tn)n≥0 is admissible if there exists
a constant CA verifying

sup
T∈Tn

diam(T ) ≤ CAN
−1/d.

The lower estimate in Theorem 1.2 can be generalized, with straightforward adaptations in the proof. If
f ∈ Cm(Ω) and (TN )N≥N0 is an admissible sequence of triangulations, then

lim inf
N→∞

N
m
d em,TN

(f)p ≥
∥∥∥∥Km,d,p

(
dmf

m!

)∥∥∥∥
Lq(Ω)

.

Where 1
q := m

d + 1
p .

The upper estimate in Theorem 1.2 however does not generalize. The reason is that we used in its
proof a tiling of the plane consisting of translates of a single triangle and of its symmetric with respect to
the origin. This construction is not anymore possible in higher dimension, for example it is well known
that one cannot tile the space IR3, with equilateral tetrahedra.

The generalisation of the second part of Theorem (1.2) is therefore the following. For all m and d,
there exists a constant C = C(m, d) > 0, such that for all polygonal open set Ω ⊂ IRd and f ∈ Cm(Ω)
the following holds: for all ε > 0, there exists an admissible sequence Tn of triangulations of Ω such that

lim sup
N→∞

N
m
d em,TN (f)p ≤ C

∥∥∥∥Km,d,p

(
dmf

m!

)∥∥∥∥
Lq(Ω)

+ ε.

The “tightness” Theorem 1.2 is partially lost due to the constant C. This upper bound is not new, and
can be found in [9]. In the proof of the bidimensional theorem we define by (27) a tiling PR of the plane
made of a triangle TR, and some of its translates and of their symmetry with respect to the origin. In
dimension d, the tiling PR cannot be constructed by the same procedure. The idea of the proof is to
first consider a fixed tiling P0 of the space, constituted of simplices bounded diameter, and of volume
bounded below by a positive constant, as well as a reference equilateral simplex Teq of volume 1. Then,
with ϕ a linear change of coordinates such that TR = ϕ(Teq), we set PR = ϕ(P0). This procedure can be
applied in any dimension, and yields all subsequent estimates “up to a multiplicative constant”, which
concludes the proof.
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Since this upper bound is not tight anymore, and since the functions Km,p,d are all equivalent to
KE

m,d as p varies (with equivalence constants independent of p), there is no real need to keep track of the
exponent p. We therefore denote by Km,d the function Km,∞,d.

For practical as well as theoretical purposes, it is desirable to have an efficient way to compute the
shape function Km,d, and an efficient algorithm to produce adapted triangulations. The case m = 2,
which corresponds to piecewise linear elements, has been extensively studied see for instance [4, 12]. In
that case there exists constants 0 < c < C, depending only on d, such that for all π ∈ IH2,d,

c d
√

|detπ| ≤ K2,d(π) ≤ C d
√
|detπ|.

where detπ denotes the determinant of the symmetric matrix associated to π. Furthermore, similarly
to Proposition 4.2, the optimal metric for mesh refinement is given by the absolute value of the matrix
of second derivatives, see [4, 12], which is constructed in a similar way as in dimension d = 2: with
U and D = diag(λ1, · · · , λd) the orthogonal and diagonal matrices such that [π] = UTDU and with
|D| := diag(|λ1|, · · · , |λd|), we set hπ = UT|D|U . It can be shown that the matrix hπ defines an ellipsoid
of maximal volume included into the set Λπ. The case m = 2 can therefore be regarded as solved.

For values (m, d) both larger than 2, the question of computing the shape function as well as the
optimal metric is much more difficult, but we have partial answers, in particular for bilinear elements
in dimension 3. Following §5, we need fundamental results from the theory of invariant polynomials,
developed in particular by Hilbert [19]. In order to apply these results to our particular setting, we need
to introduce a compatibility condition between the degree m and the dimension d.

Definition 6.1 We call the pair of numbers m ≥ 2 and d ≥ 2 “compatible” if and only if the following
holds. For all π ∈ IHm,d such that there exists a sequence (ϕn)n≥0 of d × d matrices with complex
coefficients, verifying detϕn = 1 and limn→∞ π ◦ϕn = 0, there also exists a sequence ψn of d×d matrices
with real coefficients, verifying detψn = 1 and limn→∞ π ◦ ψn = 0.

Following Hilbert [19], we say that a polynomial Q of degree r defined on IHm,d is invariant if µ = mr
d

is a positive integer and if for all π ∈ IHm,d and all linear changes of coordinates ϕ,

Q(π ◦ ϕ) = (detϕ)µQ(π). (58)

This is a generalization of (56). We denote by IIm,d the set of invariant polynomials on IHm,d. It is easy
to see that if π ∈ IHm,d is such that Km,d(π) = 0, then Q(π) = 0 for all Q ∈ IIm,d. Indeed, as seen in
the proof of Proposition 2.1, if Km,d(π) = 0 then there exists a sequence ϕn such that detϕn = 1 and
π ◦ ϕn → 0. Therefore (58) implies that Q(π) = 0. The following lemma shows that the compatibility
condition for the pair (m, d) is equivalent to a converse of this property.

Lemma 6.1 The pair (m, d) is compatible if and only if for all π ∈ IHm,d

Km,d(π) = 0 if and only if Q(π) = 0 for all Q ∈ IIm,d. (59)

Proof: We first assume that the pair (m, d) is not compatible. Then there exists a polynomial
π0 ∈ IHm,d such that there exists a sequence ϕn, detϕn = 1 of matrices with complex coefficients such
that π ◦ ϕn → 0, but there exists no such sequence with real coefficients. This last property indicates
that Km,d(π) > 0. On the contrary let Q ∈ IIm,d be an invariant polynomial, and set µ = m deg Q

d . The
identity

Q(π0 ◦ ϕ) = (detϕ)µQ(π0) (60)

is valid for all ϕ with real coefficients, and is a polynomial identity in the coefficients of ϕ. Therefore it
remains valid if ϕ has complex coefficients. If follows that Q(π0) = Q(π0 ◦ ϕn) for all n, and therefore
Q(π0) = 0, which concludes the proof in the case where the pair (m, d) is not compatible.

We now consider a compatible pair (m, d). Following Hilbert [19], we say that a polynomial π ∈ Hm,d

is a null form if and only if there exists a sequence of matrices ϕn with complex coefficients such that
detϕn = 1 and π ◦ ϕn → 0. We denote by NFm,d the set of such polynomials. Since the pair (m, d) is
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compatible, note that π ∈ NFm,d if and only if there exists a sequence ϕn of matrices with real coefficients
such that detϕn = 1 and π ◦ ϕn → 0. Hence, we find that

NFm,d = {π ∈ IHm,d ; Km,d(π) = 0}.

Denoting by IIC|
|

m,d the set of invariant polynomials on IHm,d with complex coefficients, a difficult theorem
of [19] states that

NFm,d = {π ∈ IHm,d ; Q(π) = 0, Q ∈ IIC|
|

m,d}
It is not difficult to check that if Q = Q1 + iQ2 where Q1 and Q2 have real coefficients then (58) holds
for Q if and only if it holds for both Q1 and Q2, i.e. Q1 and Q2 are also invariant polynomials. Hence
denoting by IIm,d the set of invariant polynomials on IHm,d with real coefficients, we have obtained that

NFm,d = {π ∈ IHm,d ; Q(π) = 0, Q ∈ IIm,d}

which concludes the proof. ⋄

Theorem 6.1 If the pair (m, d) is compatible, then there exists a polynomial K on IHm,d (we set r =
deg K) and a constant C > 0 such that for all π ∈ IHm,d

1
C

r
√

K(π) ≤ Km,d(π) ≤ C r
√

K(π). (61)

If the pair (m, d) is not compatible, then there does not exist such a polynomial K.

Proof: The proof of the property of non-existence when the pair (m, d) is not compatible is reported
to the appendix. Assume that the pair (m, d) is compatible. We follow a reasoning very similar to §5 to
prove the equivalence (61).

We use the notations of Lemma 6.1 and consider the set

NFm,d = {π ∈ IHm,d ; Km,d(π) = 0} = {π ∈ IHm,d ; Q(π) = 0, Q ∈ IIm,d}.

The ring of polynomials on a field is known to be Noetherian. This implies that there exists a finite
family Q1, · · · , Qs ∈ IIm,d of invariant polynomials on IHm,d such that any invariant polynomial is of the
form

∑
PiQi where Pi are polynomials on IHm,d. We therefore obtain

NFm,d = {π ∈ IHm,d ; Q1(π) = · · · = Qs(π) = 0}.

which is a generalization of (57), however with no clear bound on s.
We now fix such a set of polynomials, set r := 2lcm1≤i≤s degQi, and define

K =
s∑

i=1

Q
r

deg Qi
i and Keq := r

√
K. (62)

Clearly K is an invariant polynomial on IHm,d, and NFm,d = {π ∈ IHm,d ; K(π) = 0}. Hence the
function Keq is continuous on IHm,d, obeys the invariance property Keq(π ◦ ϕ) = |detϕ|Keq(π), and for
all π ∈ IHm, Keq(π) = 0 implies K(π) = 0 and therefore Km,d(π) = 0. We recognize here the hypotheses
of Proposition 5.3, except that the dimension d has changed. Inspection of the proof of Proposition 5.3
shows that we use only once the fact that d = 2, when we refer to Proposition 2.3 and state that if
(πn) ∈ IHm, πn → π and Km(πn) → 0, then Km(π) = 0. This property also applies to Km,d, when the
pair (m, d) is compatible. Assume that (πn) ∈ IHm,d, πn → π and that Km,d(πn) → 0. Then there exists
a sequence of linear changes of coordinates ϕn, detϕn = 1, such that πn ◦ ϕn → 0. Therefore

K(π) = lim
n→∞

K(πn) = lim
n→∞

K(πn ◦ ϕn) = 0

It follows that π ∈ NFm,d, and therefore Km,d(π) = 0. Since the rest of the proof of Proposition 5.3 never
uses that d = 2, this concludes the proof of Equivalence (61). ⋄
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Hence there exists a “simple” equivalent of Km,d for all compatible pairs (m, d), while equivalents
of Km,d for incompatible pairs need to be more sophisticated, or at least different from the root of a
polynomial. This theorem leaves open several questions. The first one is to identify the list of compatible
pairs (m, d). It is easily shown that the pairs (m, 2), m ≥ 2, and (2, d), d ≥ 2 are compatible, but this
does not provide any new results since we already derived equivalents of the shape function in these
cases. More interestingly, the pair (3, 3) is compatible, which corresponds to approximation by bilinear
elements in dimension 3. There exists two generators S and T of I3,3, which expressions are given in [23]
and which have respectively degree 4 and 6.

Corollary 6.1 6
√
|S|3 + T 2 is equivalent to K3,3 on IH3,3.

Proof: The invariants S and T obey the invariance properties S(π ◦ϕ) = (detϕ)4S(π) and T (π ◦ϕ) =
(detϕ)6T (π). We intend to show that if π ∈ IH3,3 and S(π) = T (π) = 0 then K3,3(π) = 0. Let us
first admit this property and see how to conclude the proof. According to Lemma 6.1 the pair (3, 3)
is compatible. The function Keq := 6

√
|S|3 + T 2 is continuous on IH3,3, obeys the invariance property

Keq(π ◦ ϕ) = |detϕ|Keq(π) and is such that Keq(π) = 0 implies K3,3(π) = 0. We have seen in the proof
of Theorem 6.1 that these properties imply the desired equivalence of Keq and K3,3.

We now show that S(π) = T (π) = 0 implies K3,3(π) = 0. A polynomial π ∈ IH3,3 can be of two
types. Either it is reducible, meaning that there exists π1 ∈ IH1,3 (linear) and π2 ∈ IH2,3 (quadratic) such
that π = π1π2, or it is irreducible. In the latter case according to [18], there exists a linear change of
coordinates ϕ and two reals a, b such that

π ◦ ϕ = y2z − (x3 + 3axz2 + bz3).

A direct computation from the expressions given in [23] shows that S(π ◦ ϕ) = a and T (π ◦ ϕ) = −4b.
If S(π) = T (π) = 0 then S(π ◦ ϕ) = T (π ◦ ϕ) = 0 and π ◦ ϕ = y2z − x3. Therefore for all λ ̸= 0,
π ◦ ϕ(λx, λ2y, λ−3z) = λy2z − λ3x3, which tends to 0 as λ → 0. We easily construct from this point a
sequence ϕn, detϕn = 1, such that π ◦ ϕn → 0. Therefore K3,3(π) = 0.

If π is reducible, then π = π1π2 where π1 is linear and π2 is quadratic. Choosing a linear change of
coordinates ϕ such that π1 ◦ ϕ = z we obtain

π ◦ ϕ = 3z(ax2 + 2bxy + cy2) + z2(ux+ vy + wz),

for some constants a, b, c, u, v, w. Again, a direct computation from the expressions given in [23] shows
that S(π◦ϕ) = −(ac−b2)2 (and T (π◦ϕ) = 8(ac−b2)3). Therefore if S(π) = T (π) = 0 then the quadratic
function ax2 + 2bxy+ cy2 of the pair of variables (x, y) is degenerate. Hence there exists a linear change
of coordinates ψ, altering only the variables x, y, and reals µ, u′, v′ such that

π ◦ ϕ ◦ ψ = µzx2 + z2(u′x+ v′y + wz).

It follows that π ◦ ϕ ◦ ψ(x, λ−1y, λz) tends to 0 as λ → 0. Again, this implies that K3,3(π) = 0, and
concludes the proof of this proposition. ⋄

We could not find any example of incompatible pair (m, d), which leads us to formulate the conjecture
that all pairs (m, d) are compatible (hence providing “simple” equivalents of Km,d in full generality).
Another even more difficult problem is to derive a polynomial K of minimal degree for all couples (m, d)
which are compatible and of interest.

Last but not least, efficient algorithms are needed to compute metrics, from which effective triangu-
lations are built that yield the optimal estimates. A possibility is to follow the approach proposed in [9],
i.e. solve numerically the optimisation problem

inf{detH ; H ∈ S+
d and ∀z ∈ IRd, ⟨Hz, z⟩ ≥ |π(z)|2/m},

which amounts to minimizing a degree d polynomial under an infinite set of linear constraints. When
d > 2, this minimisation problem is not quadratic which makes it rather delicate. Furthermore, numerical
instabilities similar to those described in Remark 4.4 can be expected to appear.
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7 Conclusion and Perspectives

In this paper, we have introduced asymptotic estimates for the finite element interpolation error measured
in Lp when the mesh is optimally adapted to the interpolated function. These estimates are asymptotically
sharp for functions of two variables, see Theorem 1.2, and precise up to a fixed multiplicative constant
in higher dimension, as described in §6. They involve a shape function Km,p (or Km,d,p if d > 2) which
generalises the determinant which appears in estimates for piecewise linear interpolation [12, 4, 13]. This
function can be explicitly computed in several cases, as shows Theorem 4.1, and has equivalents of a
simple form in a number of other cases, see Theorems 5.1 and 6.1.

All our results are stated and proved for sufficiently smooth functions. One of our future objectives is to
extend these results to larger classes of functions, and in particular to functions exhibiting discontinuities
along curves. This means that we need to give a proper meaning to the nonlinear quantity Km,p

(
dmf
m!

)
for non-smooth functions.

This paper also features a constructive algorithm (similar to [4]), that produces triangulations obeying
our sharp estimates, and is described in §3.2. However, this algorithm becomes asymptotically effective
only for a highly refined triangulation. A more practical way to produce quasi-optimal triangulations is
to adapt them to a metric, see [6, 20, 7]. This approach is discussed in §4.2. This raises the question of
generating the appropriate metric from the (approximate) knowledge of the derivatives of the function to
be interpolated. We addressed this question in the particular case of piecewise quadratic approximation
in two dimensions in Theorems 4.2 and 4.3.

We plan to integrate this result in the PDE solver FreeFem++ in a near future. Note that a Mathe-
matica source code is already available on the web [25]. We also would like to derive appropriate metrics
for other settings of degree m and dimension d, although, as we pointed it in Proposition 4.4, this might
be a rather delicate matter.

We finally remark that in many applications, one seeks for error estimates in the Sobolev norms W 1,p

(or Wm,p) rather than in the Lp norms. Finding the optimal triangulation for such norms requires a new
error analysis. For instance, in the survey [24] on piecewise linear approximation, it is observed that the
metric hπ = |d2f | (evoked in Equation (44)) should be replaced with hπ = (d2f)2 for best adaptation in
H1 norm. In other words, the principal axes of the positive definite matrix hπ remain the same, but its
conditioning is squared.

A Proof of Proposition 4.3

We consider a fixed polynomial π ∈ IH3, a parameter α > 0, and look for an ellipse Eπ,α of maximal
volume included in the set α−1/2D∩Λπ. Since this set is compact, a standard argument shows that there
exists at least one such ellipse.

If α ≥ µπ, then α−1/2D ⊂ Λπ and therefore α−1/2D ∩Λπ = α−1/2D. It follows that Eπ,α = α−1/2D,
which proves part 1.

In the following we denote by E′
α the ellipse defined by the matrix (45). Note that any ellipse

containing Dπ and included in Λπ must be tangent to ∂Λπ at the point zπ, and hence of the form E′
δ for

some δ > 0. Clearly E′
δ ⊂ E′

µ if and only if δ ≥ µ. Therefore E′
α ⊂ Λπ if and only if α ≥ απ. Let E be an

arbitrary ellipse, let D1 the largest disc contained in E, and D2 the smallest disc containing E. Then it
is not hard to check that |E| =

√
|D1||D2|. For any α verifying απ ≤ α ≤ µπ, the ellipse E′

α is such that
D1 = Dπ, which is the largest centered disc contained in Λπ, and D2 = α−1/2D, which corresponds to
the bound 2α−1/2 on the diameter of Eπ,α. It follows that E′

α is an ellipse of maximal volume included
in α−1/2D ∩ Λπ, and this concludes the proof of part 2.

Part 4 is trivial, hence we concentrate on part 3 and assume that βπ ≤ α ≤ απ.
An elementary observation is that Eπ,α must be “blocked with respect to rotations”. Indeed assume

for contradiction that Rθ(Eπ,α) ⊂ Λπ for θ ∈ [0, ε] or [−ε, 0], where we denote by Rθ the rotation of angle
θ. Observing that the set ∪θ∈[0,ε]Rθ(Eπ,α) contains an ellipse of larger area than Eπ,α and of the same
diameter, we obtain a contradiction.

In the following, we say that an ellipse E is quadri-tangent to Λπ, when there are at least four points
of tangency between ∂E and ∂Λπ (a tangency point beind counted twice if the radii of curvature of ∂E
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and ∂Λπ coincide at this point).
The fact that Eπ,α is “blocked with respect to rotations” implies that it is either quadri-tangent to

Λπ or tangent to ∂Λπ at the extremities of its small axis. In the latter case the extremities of the small
axis must clearly be the points zπ and −zπ, the closest points of ∂Λπ to the origin. It follows that Eπ,α

belongs to the family E′
δ, δ ≥ απ described above, and therefore is equal to E′

απ
since α ≤ απ. But E′

απ

is quadri-tangent to Λπ, since otherwise we would have E′
απ−ε ⊂ Λπ for some ε > 0.

We have now established that Eπ,α is quadri-tangent to Λπ when βπ ≤ α ≤ απ. This property is
invariant by any linear change of coordinate: if an ellipse E is quadri-tangent to Λπ◦ϕ, then ϕ(E) is
quadri-tangent to Λπ. Furthermore if E is defined by a symmetric positive definite matrix H, then ϕ(E)
is defined by ϕ−1,THϕ−1. This remark leads us to identify the family of ellipses quadri-tangent to ∂Λπ

when π is among the four reference polynomials x(x2 − 3y2), x(x2 + 3y2), x2y and x3. In the case of
x3 there is no quadri-tangent ellipse and we have απ = 0, therefore part 3 of the theorem is irrelevant.
In the three other cases, which respectively correspond to part 3 (i), (ii) and (iii), the quadri-tangent
ellipses are easily identified using the symmetries of these polynomials and the system of equations (40).

The ellipses quadri-tangent to x(x2 + 3y2) are defined by matrices of the form Hλ = diag(λ, 4+λ3

3λ2 ),
where 0 < λ ≤ 2. Note that detHλ is decreasing on (0, 2

1
3 ] and increasing on [2

1
3 , 2]. Given π such that

discπ < 0, the optimisation problem (43), therefore becomes

min
λ

{detHλ ; ϕ−1,T
π Hλϕ

−1
π ≥ α Id}.

If the constraint is met for λ = 21/3, we obtain Eπ,α = Eπ and therefore α ≤ βπ. Otherwise, using the
monotonicity of λ 7→ detHλ on each side of its minimum 2

1
3 we see that the matrix Hλ − αϕT

πϕπ must
be singular. Taking the determinant, we obtain an equation of degree 4 from which λ can be computed,
and this concludes the proof of part 3 (i).

The ellipses quadri-tangent to x(x2−3y2) are defined by Hλ,V = V T diag(λ, 4−λ3

3λ2 )V , where 0 < λ ≤ 1
and V is a rotation by 0, 60 or 120 degrees. Since detHλ,V is a decreasing function of λ on (0, 1], we can
apply the same reasoning as above to polynomials π such that discπ > 0. This concludes the proof of
part 3 (ii).

Last, the ellipses quadri-tangent to xy2 are defined by Hλ = diag(λ, 4
27λ2 ), λ > 0. The determinant

is a decreasing function of λ, with lower bound 0 as λ→ ∞, and the same reasoning applies again hence
concluding the proof of part 3 (iii).

B Proof of non existence property in Theorem 6.1

Let (m, d) be an incompatible pair. We know from Lemma 6.1 that there exists π0 ∈ IHm,d such that
Km,d(π0) > 0 and Q(π0) = 0 for all invariant polynomial Q ∈ IIm,d.

We assume for contradiction that a polynomial K satisfies inequalities (61). Up to replacing K with
K2d, we can assume that K takes non negative values on IHm,d and that µ = mr

d is an integer. The rest
of proof consists in showing that K needs to be an invariant polynomial, thus leading to a contradiction
since we would then have K(π0) = 0. For this purpose we derive from inequalities (61), and from the
invariance of Km,d with respect to changes of variables, the inequalities

C−2r(detϕ)µK(π) ≤ K(π ◦ ϕ) ≤ C2r(detϕ)µK(π), (63)

where C is the constant appearing in inequalities (61). We regard the function Q(π, ϕ) = K(π ◦ ϕ) as a
polynomial on the vector space V = IHm,d×Md, whereMd denotes the space of d×dmatrices, and observe
that it vanishes on the hypersurface Vdet = {(π, ϕ) ∈ V ; detϕ = 0}. Since ϕ 7→ det(ϕ) is an irreducible
polynomial, as shown in [5], it follows that Q(π, ϕ) = (detϕ)Q1(π, ϕ) for some polynomial Q1 on V .
Injecting this expression in inequality (63) we obtain that Q1(π, ϕ) also vanishes on the hypersurface Vdet

and the argument can be repeated. By induction we eventually obtain a polynomial K̂ on V such that
K(π ◦ ϕ) = (detϕ)µK̂(π, ϕ). It follows from inequality (63) that for all (π, ϕ) ∈ V

C−2rK(π) ≤ K̂(π, ϕ) ≤ C2rK(π).
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This implies that K̂(π, ϕ) is does not depend on ϕ. Otherwise, since it is a polynomial, we could find
π1 ∈ Hm,d and a sequence ϕn ∈Md such that |K̂(π1, ϕn)| → ∞. Therefore

K(π ◦ ϕ) = (detϕ)µK̂(π, ϕ) = (detϕ)µK̂(π, Id) = (detϕ)µK(π).

This establishes the invariance property of K, in contradiction with our first argument, and concludes
the proof.
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