
1 Introduction 

Recently, performance measuring in manufacturing and logistics has been highlighted by 
a number of researchers. Owing to growth of enterprise collaboration and new challenges 
in managing supply chains, risk evaluation has become a very important issue. This 
paper focuses on minimising the forecasting risk for inventory management in supply 
chains with intermittent demand in the case of reporting errors in the past demand 
records. 
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For large-scale supply chains, accurate demand forecasting is motivated by strong 
financial incentives, since there is a high need to balance the customer service levels 
against investments over a large assortment of Stock-Keeping Units (SKU) (Harris, 
1997; Hopp and Spearman, 1995; Silver et al., 1998). As follows from related research 
(Snyder, 2002), a large proportion of SKUs is usually made up of ‘slow-moving items’ 
with irregular (intermittent) demand patterns, that is, random sequences with a large 
proportion of zeros and great variability among the remaining non-zero integer values 
(Willemain et al., 2004). A typical case study of NSK Corporation (Ann Arbor, MI, a 
precision parts manufacturer for the automotive industry) reported by Smart (2002) 
shows that two-thirds of the 7000 SKUs demonstrate highly intermittent demand 
behaviour, with half of the zeros in the history data. Similar demand patterns are 
common for all the service parts businesses in the aerospace, automotive and high-tech 
electronics industries. The intermittent demands are also usual for high-priced capital 
goods, such as heavy machinery, where the inventory replenishment lead times can be up 
to several months, and the costs may reach several hundred thousand dollars. 

In contrast to the standard marginal stock level setting, the inventory management of 
the slow-moving items requires a probability distribution of the SKU demand. 
It is used to generate the demand forecasts, which are key inputs to the inventory control 
models allowing to correct time and size of replenishment orders (reorder points and 
order quantities). Besides, the demand distribution is particularly important for 
estimating the customer service level (e.g. a 95% or 99% likelihood of not stocking out 
over a lead time). In such situation, the conventional statistical forecasting methods 
(exponential smoothing and moving averages) are limited to forecasting of the average 
demand per period only. They are not able to produce credible results for the complete 
set of all possible demand values, since they implicitly assumed the normal, 
bell-shaped distribution, which ignores both the integer nature of the historical data and 
special role of zeros. And with the intermittent data, the distribution shape can be 
essentially non-symmetric and even non-unimodal, with several maximums. So often, 
the conventional methods may produce misleading inputs to inventory control models, 
with rather costly consequences (Grange, 1998; Hopp et al., 1997). For this reason,it is 
important to apply an adequate demand probability distribution that ensure accurate 
reorder points forecast. 

The first heuristic technique for the intermittent demand forecasting was developed 
by Croston (1972) who applied separate exponential smoothing to both the non-zero 
demand sizes and inter-arrival times between successive demands. Later, the problem 
was addressed by a number of authors (Willemain et al.,  1994; Johnston and Boylan, 
1996; Syntetos and Boylan, 2001) who concentrated on improving the forecast 
accuracy and proposed several modifications of the Croston’s method, including 
EWMA-smoothing and log-transformation of the data (both the demand values and 
inter-arrival times) in order to avoid the positive-space constraint. However, the 
corresponding model variables were still deterministic and defined in a continuous space. 
Consequently, all of these methods do not produce forecast distributions and associated 
prediction intervals (Hyndman and Shenstone 2003). 

The first stochastic demand models were based on the Poisson or NBD 
(negative-binomial) distributions, and they originated from research on stochastic 
inter-purchase times and proved to be very accurate in the fitting of the aggregated data 
describing frequently purchased goods (Agrawal and Smith, 1996; Dunn et al., 1983; 
Grange, 1998; Gupta, 1991; Wagner and Taudes, 1987). However, their basic 
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assumption on exponential (or gamma-exponential) distribution of the inter-arrival times 
does not take into account the multimodality, which becomes a vital issue for 
personalisation of the marketing decisions. To overcome this problem, Telang et al. 
(2004) proposed recently a hierarchical probabilistic model of user’s repeat visits that 
incorporates Weibull, Laplace and double-exponential mixed distribution to account for 
users’ schedule. This model was successfully applied to forecasting of visits to massively 
popular internet websites, but it seems to be hardly applied to the intermittent demand 
modelling, which possesses the above-mentioned specificities. In this paper, the 
multimodality is resolved within the Bayesian framework (Azoury and Miller, 1984), 
using the Generalised Beta-Binomial Demand Distribution (GBBD) developed in our 
previous paper (Dolgui et al., 2005). 

However, even when the selected stochastic model of the demand is adequate, it still 
can be misleading in cases of reporting errors in the demand records (Jacobs and 
Wagner, 1989). A number of researchers investigated the related problem of unobserved 
lost sales and proposed efficient identification algorithms for relevant stochastic demand 
models (Agrawal and Smith, 1996; Nahmias, 1994; Tripathi et al., 1994). However, no 
research has been reported on the performance of the Beta-Binomial Demand Model 
(BBM) in such settings. So, this paper focuses on the analysis of the Beta-Binomial 
Distribution- (BBD-) based forecasting risk and also proposes consistent estimators for 
the demand values, which are robust in respect to the distorted historical data. 
This paper also contributes in some neighbouring areas, such as implication of errors in 
survey data (Gaba and Winkler, 1992), where the data distortions may have an essential 
effect on inferences, such as too-high point estimates and too-narrow estimation 
intervals. 

The remainder of the paper is organised as follows. Section 2 defines the general 
inventory optimisation problem and justifies applications of the GBBD. In Section 3, the 
BBM is described in detail and its main characteristics are presented. Section 4 focuses 
on minimisation of the forecasting risk and contains the main theoretical deliverables, 
such as the explicit expressions for the forecasting risk and the prediction function, 
which minimises the error impact on the risk. Section 5 contains simulation results. 
Section 6 describes an application example. Section 7 summarises the main contributions 
of this paper. 

2 Inventory optimisation problem 

A basic inventory optimisation problem can be stated as follows (Grange, 1998). Denote 
by m the number of SKU and let Dl and Ql be the demand rate and stock guidance 
(‘order-up-to’ quantity) of the lth SKU over a fixed period of time (e.g. one week). 
Define the total fill rate as 
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where E{Dl} is the expected demand for the lth SKU, P{Dl ≤ Ql} is the individual 
service level of this SKU, and Q = {Q

1
,…, Q

2
, Qm}. Let Cl be the cost of the item l.  
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Then the problem is to minimise the total inventory cost ensuring the target total 
fill rate F: 

1

min, ( )
m

l l
Q

l

C Q f Q F
=

→ ≥ (2)

In order to solve problem (2) that is rather common for the combinatorial optimisation, 
one must know the probability distribution of the demand Dl for each SKU. Thus, this 
paper focuses on statistical aspects of the inventory optimisation, namely consistent 
estimation of the distribution parameters and minimisation of the forecasting risk with 
respect to the demand data distortions. 

As was proved by Grange (1998), an adequate demand model may be based on the 
BBD. An essential advantage of the BBM versus the classical Binomial Model (BM) is 
that the BBM takes into account possible correlation of the demand within a time period 
and between the periods, while the BM assumes that all requests are independent. The 
BBM also has some advantages over the Poisson-based models, which assumes only 
binary demand values and perform poorly for many industrial data sets (Willemain et al., 
2004). In this paper, we apply a Generalisation of the Beta-Binomial Model (GBBM), 
proposed in our earlier research (Dolgui et al., 2005). 

3 Beta-binomial demand model 

Let us assume that the demand data are arranged in an integer matrix {sij, i = 1, …, k, 
i = 1, …, m}, where each observed value sij is presented as a sum of n binary random 

variables 
1

n

ij ijll
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where i denotes the item number (within a group of similar SKUs), j defines the 
observation period, n is the model parameter, ( , )B α β  is the complete beta function; α, β 

and π
0
, π

1
 are the shape and range distribution parameters respectively (0

 
≤

 
π

0 
<

 
π

1 
≤

 
1). 

This distribution takes into account the intermittent data nature by implicitly assuming 
that the observation time-segment may be uniformly divided in n time segments 
(an hour, a day, etc.), within which not more than one order can be received. It should be 
noted that such formulation follows the concept of the hierarchical (or mixed) statistical 
distributions where the probability of a random event is also treated as a random variable. 

Under such assumptions, the generalised BBM may be expressed as the weighted 
sum of the shifted beta-binomial PDFs: 

0
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where Pr is the probability that the demand for the time-segment is equal to r, and the 
weights are expressed as  
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To obtain this expression, it is necessary to apply the linear transformation 0p π θ= +Δ  

with the standard-beta random variable [0, 1]θ ∈  and the width parameter 1 0 .π πΔ = −  

So, the marginal distribution of r may be presented as 
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where 0 01 ,ρ π= −  and the product 0 0( ) ( )r n rπ θ ρ θ −+Δ +Δ  may be expanded into the sum 

0
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=
−  with the coefficients wrl computed via the Binomial theorem. 

Finally, the obtained sum of the integrals may be expressed via the beta-functions to 
yield (4), (5). 

For computing convenience, the ratios of the beta-functions ( , ) /
j j
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B α β can be further simplified and Equation (4) can be rewritten as: 
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Using the same approach with the dummy random variable θ, the demand mean E(r) can 
be expressed via the conditional expectation as 0[ ( | )] ( ),E E r n E nθ θ π θ= + Δ  and after 

substitution of E(θ), this transformation yields the following average demand value: 

0
1( )

n n
E r

π β α
π

α β α β
= +

+ +
(8)

where the terms /( )nα α β+  and /( )nβ α β+  can be interpreted as the average 

non-zero/zero probabilities for the standard BBD-model. Similarly, the demand variance 
V(r) can be expressed via the conditional mean and variance as 

( ) ( | ) ( (1 ) | )V r V np E np pθ θθ θ= + −  and after computation of the conditional components 

and substitution of E(θ) and V(θ) one can obtain: 

( ) ( )0 0 0 1 1( ) 1 1
n n

V r V
β α

π π π π
α β α β

= + − + −
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(9)

where the first term 2 2
0 ( ) ( ) ( 1)/V n nαβ α β α β α β= Δ + + + + +  can be treated as the weighted 

variance of the standard BBD with the scale factor equal to the square range of p, and 
the remainder ones are the weighted variances of the binomial distribution with 
parameters π

0
, π

1
. 

An essential feature of the GBBM is that it is capable of describing additive binary 
distortions in the demand records. As proved in our previous work (Pashkevich and 
Dolgui, 2005), to take into account distortions, the GBBM should be parameterised in the 
following way: π

0
 = ε

0
 and π

1
 = 1−ε

1
, where ε

0
 is the probability that a false order was 

erroneously recorded, and ε
1
 is the probability that an order was wrongly omitted in 

the record. 
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4 Minimising forecasting risk 

Traditionally, the demand probabilities are forecasted using the BBM Bayes predictor 
(Collet, 2002), which due to the conjugate property of the classical BBD is reduced up to 

( ) ( ) /( ),p s s nα α β= + + +  where ,α β  are the estimates of the BBM parameters, and s

is the last observed demand value. This predictor minimises the mean square forecast 
error in the case of the consistent estimation of α, β. However, in the case of the data 
distortions, the classical predictor looses its optimality. Hence, a new predictor was 
developed, which minimises the forecasting risk in the case of the reporting errors. 

It was proved (Kharin and Pashkevich, 2003) that for the BBM with the reporting 
errors, the mean square optimal forecast obeys the following probability distribution 
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and the predictor function is the weighted sum 
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where the weights ωsi are defined as follows 
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To evaluate the related forecast risk, let us note that in the non-distorted data case the risk 

is computed from the expression 2
0 ( )( 1)( ),R nα β α β α β α β= + + + + +  which includes 

the distribution shape parameters α, β only. Then, if the data are corrupted by the 
additive distortions with levels ε

0
, ε

1
, it is proved that the forecasting risk of the classical 

Bayes predictor is increased in accordance with the expression 
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where [ ]kα +  and [ ]kα −  denote the ascending/descending factorials of order k. Related 

proof is based on computing of the mean square error of the Bayes estimator taking into 
account the probability distributions (4), (11). 

Since the distortions also influence the model parameter identification and 
α, β-estimators may produce non-consistent result, the forecasting risk is further 
increased. It was proved (Pashkevich and Kharin, 2004) that in this case the forecasting 
risk can be minimised by using the proposed prediction function which in the case of 
relatively small error levels is approximated by the expression 
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which is the product of the classical Bayes predictor and the correction factor depending 
on the error levels ε

0
, ε

1
. Application of the proposed robust predictor and its influence on 

the minimisation of the forecasting risk is illustrated in the following section. 

5 Simulation study 

To evaluate efficiency of the proposed forecasting and risk evaluation procedures, they 
were applied to a number of randomly generated data sets that originated from the 
beta-binomial demand distribution with parameters α = 0.5, β = 9.5, n = 10. Then, these 
data were contaminated by imposing the additive binary distortions with levels ε

0
,  

ε
1
 ∈[0, 0.05]. Totally, 10,000 random samples were generated and used for both the 

model parameter estimation and demand value forecasting. Two basic cases were 
investigated based on the assumptions of the known and unknown distortion levels. 

For the case of the known error levels, simulation results are shown in Figure 1, 
where R denotes the forecasting risk and ε is the distortion level, assuming that ε

0
 = ε

1
. 

As follows from the figure, the distortions influence is non-negligible and they may 
cause essential increase of the forecasting risk. For instance, in the error-free case, the 
risk is equal to 0.046 while for ε = 0.05 the classical technique produces results with the 
risk about 0.071. In contrast, the proposed robust predictor yields 1.3 times better result, 
with the risk value of 0.054. It is comparable with the minimum possible bound defined 
by the Bayesian theory (only by 0.008 higher than the lower bound), that confirms the 
proposed method efficiency. 

Figure 1 Forecasting risk for classical and proposed predictor functions (theoretical  
curves and experimental 95% confidence intervals) 

In the case of the unknown distortion levels, the experimental data sets were first used 
for the identification of the error levels. Then, the estimates of ε

0
, ε

1
 were passed on to the 

forecasting routine. The obtained results are also optimistic, while even theoretically they 
cannot be obviously as good as in the previous case because of the additional source of 
the uncertainty related to the stochastic distortions. As follows from the computer 
experiments, for ε = 0.05 the proposed estimation method (given in our previous paper, 
Dolgui et al., 2004) in combination with the prediction technique, proposed here, is able 
to reduce the forecasting risk down to 0.55. Hence, the developed forecasting method 
demonstrates a robust behaviour in respect to the data distortions, which is attractive for 
industrial applications. 
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6 Application example 

To validate the efficiency of the developed forecasting method in real world settings, the 
demand data were used for two service parts reported by Snyder (2002). The review 
period was assumed to be one month, and values for 36 months were available. 
The distribution parameters α, β and distortion levels ε

0
 = ε

1
 were estimated using the 

demand data for the first 24 months (for several values of n). 
Since the demand values possess stable seasonality, the Bayes forecast for the third 

year (months 25–36) was generated using the corresponding month demand of the 
second year (months 13–24). Two types of the predictors were used: the classical Bayes 
and the developed ones. The performance of each forecast was evaluated by comparing 
the square root of the mean square forecast error, that is, the forecasting risk (R). 

Tables 1 and 2 present the actual demand for the months 25–36 and the forecast 
results for different values of the parameter n. It should be noted that the initial n-value is 
defined as the maximum demand in the past samples (months 1–24), and then it is 
slightly increased to consider the case of possible larger demand in the future. 
As follows from the tables, the proposed technique ensures essentially lower forecast 
error for the part 2, and a little lower error for part 1 when compared to the classical 
approach. As an example, for part 2, n = 8, the classical model leads to the error 1.72, 
while the proposed model ensures a value of 1.30 that results in 33% risk reduction. 

Table 1 Forecasts for Service_Part #1 (classical and proposed predictors) 

n = 3 n = 4 n = 5 n = 6 Month Demand 

BBM GBBM BBM GBBM BBM GBBM BBM GBBM 

25 0 0.343 0.408 0.431 0.509 0.476 0.559 0.502 0.588 

26 1 0.858 0.957 0.822 0.905 0.804 0.882 0.793 0.869 

27 1 0.343 0.408 0.431 0.509 0.476 0.559 0.502 0.588 

28 2 0.343 0.408 0.431 0.509 0.476 0.559 0.502 0.588 

29 2 0.858 0.957 0.822 0.905 0.804 0.882 0.793 0.869 

30 2 0.858 0.957 0.822 0.905 0.804 0.882 0.793 0.869 

31 1 1.374 1.477 1.212 1.292 1.132 1.202 1.083 1.148 

32 0 0.858 0.957 0.822 0.905 0.804 0.882 0.793 0.869 

33 0 0.343 0.408 0.431 0.509 0.476 0.559 0.502 0.588 

34 2 1.374 1.477 1.212 1.292 1.132 1.202 1.083 1.148 

35 0 0.343 0.408 0.431 0.509 0.476 0.559 0.502 0.588 

36 0 0.343 0.408 0.431 0.509 0.476 0.559 0.502 0.588 

Forecast risk 0.793 0.771 0.799 0.780 0.807 0.789 0.813 0.797 

For the considered demand data, the risk sensitivity was also analysed with respect 
to the parameter n. As follows from relevant computations, the classical demand model is 
rather non-sensitive to selecting of n-value, while the generalised model (incorporating 
reporting errors) should be properly tuned to achieve the low value of the forecast risk. 
In particular, it is prudent to define n close to the maximum demand in the learning 
sample, whereas unjustified increases of n may reduce the model efficiency. However, 
this complication in model tuning is compensated by reduction of the forecast risk. 
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Table 2 Forecasts for Service_Part #2 (classical and proposed predictors) 

n = 8 n = 9 n = 10 n = 11 Month Demand 

BBM GBBM BBM GBBM BBM GBBM BBM GBBM 

25 0 3.462 2.850 3.409 2.644 3.368 2.794 3.336 2.775 

26 0 1.430 0.674 1.472 0.642 1.504 0.654 1.531 0.857 

27 1 4.139 3.754 4.055 3.534 3.990 3.803 3.937 3.558 

28 2 2.107 1.186 2.118 1.092 2.126 1.109 2.132 1.350 

29 1 0.752 0.393 0.826 0.391 0.883 0.405 0.929 0.544 

30 0 1.430 0.674 1.472 0.642 1.504 0.654 1.531 0.857 

31 0 1.430 0.674 1.472 0.642 1.504 0.654 1.531 0.857 

32 1 2.784 1.953 2.763 1.787 2.747 1.842 2.734 2.015 

33 0 1.430 0.674 1.472 0.642 1.504 0.654 1.531 0.857 

34 0 1.430 0.674 1.472 0.642 1.504 0.654 1.531 0.857 

35 1 1.430 0.674 1.472 0.642 1.504 0.654 1.531 0.857 

36 1 1.430 0.674 1.472 0.642 1.504 0.654 1.531 0.857 

Forecast risk 1.724 1.295 1.717 1.209 1.712 1.287 1.709 1.278 

7 Conclusion 

Forecasting intermittent demand is a challenging problem of inventory management. 
Current practice in such modelling favours the exponential smoothing of the demand 
values or applying exponential smoothing separately to the intervals between non-zero 
demands and their sizes (Croston’s method). Alternatives recommended in inventory 
control literature are based on the bootstrap or Poisson distribution, which assumes 
exponential inter-arrival times. This paper describes another demand model, based on the 
generalised BBD, which is capable of incorporating the additive distortions as 
parameters. In combination with the Bayesian technique, this model is also able to 
describe the intermittent demand patterns with essentially non-exponential (poly-modal) 
distribution of the inter-arrival times. 

This paper contributes to the forecasting risk analysis in the presence of demand 
record errors, which are modelled as binary additive distortions that contaminate the 
actual demand data described by the generalised BBD. For this setting, explicit 
expressions were derived for the forecasting risk and the prediction function, which 
minimise the error impact. The efficiency of the proposed approach is confirmed by 
computer simulation and is illustrated by an application example for forecasting the 
intermittent demand values for car spare parts. 
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