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Finiteness spaces, graphs and “coherence”

April 2008

WORKING DRAFT

Pierre Hyvernat,* pierre.hyvernat@univ-savoie.fr

Abstract. We look at a sub-collection of finiteness spaces introduced in [2]

based on the notion of coherence spaces from [4]. The original idea was to gen-

eralize the notion of stable functions between coherence spaces to interpret the

algebraic lambda-calculus ([6]) or even the differential lambda-calculus ([3]).

An important tool for this analysis is the infinite Ramsey theorem.

0. Introduction. The category of coherence spaces was the first denotational model

for linear logic (see [4]): the basic objects are reflexive, non oriented graphs; and we are

more specifically interested by their cliques (complete subgraph). If C is such a graph,

we write C(C) for the collection of its cliques.

Coherence spaces enjoy a very rich algebraic structure where the most important

operations on them are:

◦ taking the (reflexive closure of the) complement (written C⊥
1 );

◦ taking a cartesian product (written C1 ⊗ C2);

◦ taking a disjoint union (written C1 ⊕ C2).

If one only looks at the vertices, the corresponding operations are simply the identity,

the usual cartesian product “×” and the disjoint union “⊕”.

More recently, Thomas Ehrhard introduced the notion of finiteness spaces ([2]) to

give a model to the differential λ-calculus ([3]), which can be seen as an enrichment

of linear logic. The point that interests us most here is that the collection of finitary

sets of a finiteness space are closed under finite sums (i.e. finite unions) to take into

account a notion of “non-deterministic sum” of terms. (See also [6].) This is definitely

not true of cliques of a coherence space...

Very briefly, a finiteness space is given by a set |F| and a collection F of subsets

of |F| such that

F⊥⊥⊥⊥ = F

where

D⊥⊥ =
{

x | ∀y ∈ D,#(x ∩ y) < ω
}

.

Constructions similar to the one above can be defined; and they are characterized by:

◦ the dual F⊥⊥;

◦ F1 ⊕F2 = {x1 ⊎ x2 | xi ∈ Fi};

◦ F1 ⊗F2 = {r | πi(r) ∈ F1}.

Here again, if one looks only at the web |F| of finiteness spaces, the corresponding

operations are just the identity, the usual cartesian product and the disjoint union.
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Remarks:

◦ the operations on finiteness spaces are actually defined in a way that makes it clear

that they yield finiteness spaces. They are latter proved to be equivalent what is

given above. (See [2].)

◦ There is another presentation of coherent spaces that closely resembles the defi-

nition of finiteness spaces: a coherent space is given by a collection C of subsets

of |C| which satisfy C•• = C, where D• = {x | ∀y ∈ D,#(x ∩ y) ≤ 1}.

◦ Any operator of the form X 7→ X • = {y | ∀x ∈ X R(x, y)} is contravariant and

yields a closure operator when applied twice.

1. From “coherence” to finiteness. The idea is rather simple: we would like to

close the collection of cliques of a coherence space under finite unions. Unfortunately

(but unsurprisingly), the notion of “finite unions of cliques” is not very well behaved.

We instead consider the following notion:

Definition. If C is a coherent space, we call a subset of |C| finitely incoherent if it

doesn’t contain infinite anticliques. We write F(C) for the collection of all finitely

incoherent subsets of C.

The following follows directly from the definition:

Lemma.

◦ any finite subset of |C| is finitely incoherent;

◦ any clique is finitely incoherent;

◦ a subset of a finitely incoherent subset is finitely incoherent;

◦ finitely incoherent subsets are closed under finite unions.

Note however that a finitely incoherent set needs not be a finite union of cliques: take

for example the graph composed of the disjoint union of all the complete graphs Kn

for n ≥ 1. This graph doesn’t contain an infinite clique, but it is not a finite union of

anticliques; so, its dual doesn’t contain infinite anticliques, but is not a finite union of

cliques.

The next lemma is more interesting as it implies that the collection of finitely

incoherent subsets forms a finiteness space in the sense of [2]:

Lemma. If C is a coherence space, we have:

C(C)⊥⊥ = F(C⊥)

Proof:

(⊆) let x be in C(C)⊥⊥, and suppose, by contradiction, that x is not in F(C⊥), i.e. x

contains an infinite anticlique y of C⊥. This set y is a clique in C, i.e. y ∈ C(C).

Since x ∩ y = y is infinite, this contradicts the hypothesis that x ∈ C(C)⊥⊥.

(⊇) let x be finitely incoherent in C⊥, i.e. x doesn’t contain an infinite clique of C;

let y be in C(C). Since x ∩ y ∈ C(C) and x ∩ y is contained in x, it cannot be

infinite. This shows that x ∈ C(C)⊥⊥.

We thus get the expected corollary:
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Corollary. If C is a coherent space, then F(C) is a finiteness space.

What was slightly unexpected was the following:

Lemma. If C is a coherence space, then:

F(C⊥) = F(C)⊥⊥ .

Proof: because of the previous lemma, and because ⊥⊥ is contravariant, we only need

to show that C(C)⊥⊥ ⊆ F(C)⊥⊥. Suppose that x ∈ C(C)⊥⊥, and let y ∈ F(C); we need

to show that x ∩ y is finite.

◦ Since x ∩ y ⊆ y ∈ F(C), x ∩ y cannot contain an infinite anticlique;

◦ since x ∩ y ⊆ x ∈ C(C)⊥⊥, x ∩ y cannot contain an infinite clique.

Those two points imply, by the infinite Ramsey theorem, that x ∩ y is finite.

The other linear connectives are similarly behaved with respect to the notion of

finitely incoherent sets. We have:

Lemma. If C1 and C2 are coherent spaces, then we have both

F(C1 ⊕ C2) = F(C1) ⊕F(C2) ,

and

F(C1 ⊗ C2) = F(C1) ⊗F(C2)

where the connectives on the left are the coherent spaces ones, and the connectives on

the right are the finiteness ones.

Proof: the ⊕ part is direct; for the ⊗ part, recall that r ∈ F(C1)⊗F(C2) is equivalent

to π1(r) ∈ F(C1) and π2(r) ∈ F(C2).

(⊆) suppose r doesn’t contain an infinite anticlique; neither π1(r) nor π2(r) can contain

an infinite anticlique, as it would imply the existence of an infinite anticlique in r.

(⊇) suppose that r ∈ F(C1) ⊗F(C2) contains an infinite anticlique r′ of C1 ⊗ C2. At

least one of π1(r
′) or π2(r

′) must be infinite, otherwise, r′ itself would be finite.

Suppose π1(r
′) is infinite; because π1(r

′) ⊆ π1(r), it cannot contain an infinite

anticlique. By the infinite Ramsey theorem, it thus contains an infinite clique x.

For each a ∈ x, chose one element b inside the “fiber” r′(a) = {b | (a, b) ∈ r′}. Two

such b’s can’t be coherent as it would contradict the fact that r′ is an anticlique:

we have constructed an infinite anticlique in π2(r
′). Contradiction!

Note that because the same is true of finiteness spaces, the previous corollary implies

in particular that

F
(

(C1 ⊕ C2)
⊥

)

= F
(

C⊥
1 ⊕ C⊥

2

)

.

The direct proof of this equality is also quite easy.

3



From all the above (and anticipating on the section about exponentials), we can

conclude that

Proposition. F( ) can be lifted to a functor from Coh to Fin; moreover, this functor

commutes with the logical connectives.

Note that this functor is faithful (but not full); and that it is not injective on objects:

adding and removing any finite number of edges to a coherence space doesn’t change

its image via F( ). We will see in a moment that it is not surjective on objects.

So, coherence spaces can be used to define a (non-full) subcategory of finiteness

spaces, closed under the logical operations ( ⊥, ⊗ and ⊕ ). We will later see

that the functor F commutes with the (different flavors of the) exponentials. The

subcategory thus obtained contains all the examples used in [2], like for example the

space of natural numbers N. However, not all finiteness spaces are equal to the bi-

orthogonal of a coherence space:

Proposition. If A is infinite countable, there are strictly more finiteness spaces on A

than coherence spaces on A.

Proof : let A be countable; “up to isomorphism”, we can assume that A = B<ω,

the set of finite sequences of bits. If x is an infinite sequence of bits (a non dyadic

real), write x↓ for the set of finite approximations of x; and if X is a set of such “real

numbers”, write X↓ for the set {x↓ | x ∈ X}. We have X↓ ⊂ P(A) for any such X.

Suppose now that X 6= X ′ with, for example, x ∈ X but x /∈ X ′. Since x↓ is infinite

and x↓ ∈ X↓, we have x /∈ X↓⊥⊥. However since two different reals must differ on some

finite approximation, we have that x↓ ∈ X ′↓⊥⊥. Thus, the finiteness spaces (A,X↓⊥⊥)

and (A,X ′↓⊥⊥) differ.

Thus, finiteness spaces on A have the same cardinality as P(R) ≃ P(P(A)). Since

the cardinality of coherence spaces on A is the same as that of P(A × A) ≃ P(A), we

can conclude.

Note that the above reasonning also provides a proof that the cardinality of finite-

ness spaces on A modulo permutation on A is the same as that of P(P(A)): any equiv-

alence class is of cardinality at most #(P(A)) (because there are exactly #
(

P(A)
)

permutations on A), and since κ × #
(

P(A)
)

= max
(

κ,#(P(a))
)

, there must be at

least #
(

P(P(A))
)

such equivalence classes to cover the whole collection of finiteness

spaces...

It is slightly interesting to note that the same reasoning doesn’t apply to higher

cardinalities since #(A<ω) = #(A) if A is uncountable.

In a sense, coherence spaces allow to define a collection of “simple” finiteness

spaces. An informal argument regarding this “simplicity” can be found in the following

remark: the logical complexity of the formula expressing x ∈ A⊥⊥⊥⊥ for a lower-closed

collection of subsets x. In the general case (see [2]), we have

x ∈ A⊥⊥⊥⊥ ⇔ ∀y ⊆ x,#(y) = ∞ ∃z ⊆ y,#(z)∞ z ∈ A
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In other words, logically speaking, this is a Π
1
2 formula (second order quantifiers are ∀∃).

For the particular case when A is the set of cliques of a coherent spaces, we obtain

x ∈ A⊥⊥⊥⊥ ⇔ ∀y ⊆ x,#(y) = ∞ ∃a, b ∈ y {a, b} ∈ A

which is only a Π
1
1 formula.

2. Exponentials. Traditionally, the exponential on coherent spaces is defined using

finite subsets, while the exponential on finiteness spaces (or on any other web-based

model of linear logic) is defined using finite multisets. Since the original idea was to

lift the notion of stable function, we will use here the first variant.

Definition. If F is a finiteness space, then we define !F as follows:

!F = {Pf (x) | x ∈ F}⊥⊥⊥⊥

Note that the usual problem arises: this operation is functorial, but isn’t a comonad:

dereliction isn’t natural. It is only a near comonad ([5]) and the co-Kleisli construction

is still available... (See also [1] for an even weaker notion.)*

As opposed to what happens with the usual exponential on finiteness spaces, this

operation applied to trivial (finite) spaces yields trivial spaces. We thus need infinite

spaces to start with...

Just like in [2], we have

Lemma. If F is a finiteness space, we have

V ∈ !F ⇔
⋃

V ∈ F

Proof: just follow the nice proof of lemma 4 from [2]...

On the coherence spaces side, the exponential is the usual one: if C is a coherence

space, !C is the following coherence space:

◦ |!C| = C(|C|) ∩ Pf (|C|): the collection of finite cliques of C;

◦ x and y are coherent iff x ∪ y ∈ C(C).

With that in mind, it is now easy to show

Lemma. For any coherence space C, we have

F(!C) = !F(C) .

Proof: we have

V ∈ F(!C) ⇔ V doesn’t contain an infinite anticlique in !C

⇔
⋃

V doesn’t contain an infinite anticlique in C

⇔
⋃

V ∈ F(C)

⇔ V ∈ !F(C)

* One slight problem is that we need to quotient morphisms (relations) by an ap-

propriate equivalence relation.
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Remark: the same holds if one uses the multiset variant of the exponentials...

3. Weakly stable functions. The notion of stable function has several equivalent

characterizations, but the one that interests us here is the following: write T (f, x, b)

for the collection
{

x0 | x0 ⊆f x, a ∈ f(x0)
}

.

Definition. A function f : C(C1) → C(C2) is stable if for all x ∈ C(C1) and b ∈ f(x)

the collection T (f, x, a) is of the form x↑
0.

where x
↑
0={y0∈T (f,x,b) | x0⊆y0}

This definition is equivalent to

◦ Tr(f) =
{

(x0, b) | x0 ∈ Pf (C1), a ∈ f(x0), and x0 is minimal w.r.t. inclusion
}

is

a clique in (!C1)
⊥ &

C2

◦ f is Scott-continuous and commutes with coherent finite intersections

We generalize the notion of stability in the following manner:

Definition. A function f : F(C1) → F(C2) is weakly stable if for all x ∈ C(C1)

and b ∈ f(x), the collection T (f, x, b) is of the form {x1, x2, . . . , xn}
↑.

where
{

x1,x2,...,xn

}↑

=
{

y0∈T (f,x,b) | ∃i, xi⊆y0

}

Lemma.

◦ If f is stable, then f is weakly stable;

◦ if f is weakly stable, then f is Cantor continuous.

Perhaps unsurprisingly, we have

Proposition. If f is a function from P(|C1|) to P(|C2|), we have

f is weakly stable ⇔ Tr(f) ∈ F
(

(!C1)
⊥ &

C2

)

Proof:

(⇒) let f be a weakly stable function; we need to show that Tr(f) ∈ C(!C1 ⊗ C⊥
2 )⊥⊥.

Suppose it is not the case, i.e. that Tr(f) contains an infinite clique in !C1 ⊗ C⊥
2 ;

let this clique be {(xi, bi) | i ∈ I}. Since x =
⋃

i∈I xi is a clique, f(x) ∈ F(C2) and

so, it cannot contain an infinite anticlique. This implies that there is only a finite

number of different bi. This in turn implies that there must be at least one bi0

s.t. {xi | (xi, bi0) ∈ Tr(f)} is infinite, which is impossible...

(⇐) We first need to show that f takes F(C1) to F(C2). Suppose that x ∈ F(C1);

we have f(x) = {b | ∃x0 ⊆f x, (x0, x) ∈ Tr(f)}. Suppose that this set contains

an infinite anticlique {bi | i ∈ I}, and let {xi} be the corresponding x0’s. Be-

cause
⋃

i xi ⊆ x, it cannot contain an infinite anticlique; and since it cannot be

finite, it must contain an infinite clique by the Ramsey theorem. This implies

that {xi | i ∈ I} contains an infinite clique in !C1, so that {(xi, bi) | i ∈ I} is an

infinite clique in !C1 ⊗ C⊥
2 .

Moreover, we have

T (f, x, b) = {x0 | x0 ⊆ x, (x0, b) ∈ Tr(f)}↑

and since such a set is necessarily finite, we can conclude.
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Note that by construction, we have:

Proposition. The category of coherent spaces with weakly stable functions is cartesian

closed.

TO CHECK: do we have a deriving transformation (cf. Blute, Cockett and Seely)
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