
Interaction Systems

and Linear Logic

¿A Different Games Semantics?

Pierre Hyvernat

Laboratoire de mathématiques
université de Savoie
campus scientifique

73376 Le Bourget-du-Lac Cedex
France

Abstract

We define a model for linear logic based on two well-known ingredients: games and
simulations. This model is interesting in the following respect: while it is obvious
that the objects interpreting formulas are games and that everything is developed
with the intuition of interaction in mind, the notion of morphism is very different
from traditional morphisms in games semantics. In particular, we make no use of
the notion of strategy! The resulting structure is very different from what is usually
found in categories of games.

We start by defining several constructions on those games and show, using ele-
mentary considerations, that they enjoy the appropriate algebraic properties mak-
ing this category a denotational model for intuitionistic linear logic. An interesting
point is that the tensor product corresponds to a strongly synchronous operation
on games

This category can also, using traditional translations, serve as a model for the
simply typed λ-calculus. We use some of the additional structure of the category to
extend this to a model of the simply typed differential λ-calculus of [1]. Once this is
done, we go a little further by constructing a reflexive object in this category, thus
getting a concrete non-trivial model for the untyped differential λ-calculus.

We then show, using a highly non-constructive principle, that this category is in
fact a model for full classical linear logic ; and we finally have a brief look at the
related notions of predicate transformers ([2]) and containers ([3]).

Key words: Denotational Semantics, Linear Logic, Differential λ-calculus,
Interaction Systems, Simulations, Games Semantics, Containers

Email address: pierre.hyvernat@univ-savoie.fr (Pierre Hyvernat).

Preprint submitted to Elsevier 25 May 2009

Introduction

Transition systems and simulation relations are well known tools in computer
science. More recent is the use of games to give models for different program-
ming languages [4,5], or as an interesting tool for the study of other program-
ming notions [6]. We devise a denotational model of linear logic based on those
two ideas. Basically, a formula will be interpreted by an “alternating transi-
tion system” (called an interaction system) and a proof will be interpreted
by a safety property for this interaction system. Those concepts which were
primarily developed to model imperative programming and interfaces turned
out to give a rather interesting games model: a formula is interpreted by a
game (the interaction systems), and a proof by a witness that a non-loosing
strategy exists (the safety property). The notion of morphism corresponds to
the notion of simulation relation, a particular case of safety properties.

Part of the interest is that the notion of safety property is very simple. They
are only subsets of states in which the first player can remain, whatever the
second player does. In other words, from any state in the safety property, the
first player has an infinite strategy which never leaves the safety property. This
is to be contrasted with traditional notions where morphisms are functions
(usually depending on some subset of the history) giving the strategy.

The structure of safety properties is much richer than the structure of proofs.
In particular, safety properties are closed under arbitrary unions. Since there
is no notion of “sum” of proofs, this doesn’t reflect a logical property. However,
this is a feature rather than a bug: the differential λ-calculus of Ehrhard and
Regnier ([1]) is an extension of λ-calculus with a notion of differentiation and
non-deterministic sum. As we will show, interaction systems can interpret this
extra structure quite naturally.

Even better, this category enjoys such properties that we can, without much
difficulty, construct a reflexive object allowing an interpretation of untyped
differential λ-calculus. This reflexive object is constructed using a fixpoint
construction which is already available in the category Rel of sets and relations
between them.

The last thing we look at in this category is the object “⊥”. As far as interac-
tion is concerned, this is one of the most boring objects. However, it satisfies
a very strong algebraic property: it is dualizing and we can thus interpret the
whole of classical linear logic. This was rather unexpected and has a few sur-
prising consequences (see corollary 34). The main reason for this is that the
principle used to prove this fact (the contraposition of the axiom of choice) is
relatively counter-intuitive. It is also the only part of this work where highly
non-constructive principles are used, which explains why we separate this from

2

the rest.

We conclude this paper by relating interaction systems with other notions,
namely the notion of predicate transformers ([2]) and the notion of containers
([3]) and “dependent containers”.

1 Interaction Systems

The definition of interaction system we are using was developed primarily
by Peter Hancock and Anton Setzer. Their aim was to describe programming
interfaces in dependent type theory ([7,8]). The ability to use dependent types
makes it possible to add logical specifications to usual specification. The result
is a notion of formal interface describing:

• the way the programmer is allowed to use commands;
• and the logical properties he can expect from those commands.

In practice, it is usually the case that the logical specification is ensured a pos-
teriori : a command might be legally used in a situation, even though the logical
specification prevents it

Because of their definition however, interaction systems can be interpreted in
many different ways. In order to develop some intuitions, we prefer using a
“games” interpretation: an interaction system describes the modalities of a
two persons game.

1.1 The Category of Interaction Systems

Let’s start with the raw definition:

Definition 1 Let S be a set (of states); an interaction system on S is given
by the following data:

• for each s ∈ S, a set A(s) of possible actions;
• for each a ∈ A(s), a set D(s, a) of possible reactions to a;
• for each d ∈ D(s, a), a new state n(s, a, d) ∈ S.

We usually write s[a/d] instead of n(s, a, d).

We use the letter w for an arbitrary interaction system, and implicitly name its
components A, D and n. To resolve ambiguity, we sometimes use the notation

3

w.A, w.D and w.n to denote the components of interaction system w. The set
of states is usually implicit, and we write it w.S.

Following standard practice within computer science, we distinguish the two
“characters” by calling them the Angel (choosing actions, hence the A) and
the Demon (choosing reactions, hence the D). Depending on the authors’
background, other names could be Player and Opponent, Eloise and Abelard,
Alice and Bob, Master and Slave, Client and Server, System and Environment,
alpha and beta, Arthur and Bertha, Left and Right etc.

As stated above, one of the original goals for interaction systems was to rep-
resent programming interfaces. Here is for example the interface of a stack of
booleans:

• S = List(B);

•

A([]) = {Push(b) | b ∈ B}

A() = {Push(b) | b ∈ B} ∪ {Pop}

• D(,) = {Akn}

•

n(s, Push(b)) = b :: s

n(b :: s, Pop) = s

The set of states S represents the “virtual”
internal states of an implementation of stacks:
lists (stacks) of booleans.

In a non-empty state, we can issue a “pop” or a
“push(b)” command, but if the state is empty,
we can only issue a push command.

The responses are (in this case) trivial: we can
only get an “Aknowledgment”.

The next state is defined by either adding a
boolean in front of the list (push) or removing
the first element of the list (pop).

What is still missing from this description is the “side-effects” part: it doesn’t
say anywhere that a “pop” command will return the first element of the state. 1

This is however much more precise than traditional interfaces which are usually
given by a collection of types. Compare with this poor description of stacks:

• Pop : B
• Push : B→ ()

For any given stack, there are two commands: “Pop” and “push”: the
first one returns a boolean and the second one takes a single boolean
argument and “does something”.

Since we are aiming at a games semantics, we will rather use the following
interpretation:

• S is a set of states describing the possible states of a game;
• for a state s ∈ S, the set A(s) is the set of legal moves in state s;
• for such a move a ∈ A(s), the set D(s, a) is the set of countermoves to a;
• finally, s[a/d] is just the new state of the game after a/d has been played.

1 It is possible to devise interaction systems with such side-effects, but the theory
of those is still to be developed.

4

Departing from the well established tradition of “morphisms as strategies”,
we use the following notion of “simulation relation”:

Definition 2 If w1 and w2 are two interaction systems on S1 and S2 respec-
tively; a relation r ⊆ S1 × S2 is called a simulation if:

(s1, s2) ∈ r ⇒ (∀a1 ∈ A1(s1))

(∃a2 ∈ A2(s2))

(∀d2 ∈ D2(s2, a2))

(∃d1 ∈ D1(s1, a1))

(s1[a1/d1], s2[a2/d2]) ∈ r .

This definition is very similar to the usual definition of simulation relations
between labeled transition systems, but adds one layer of quantifiers to deal
with reactions. That (s1, s2) ∈ r means that “s2 simulates s1”. By extension,
if a2 is a witness to the first existential quantifier, we say that “a2 simulates a1”.
Note that because the left hand side would be vacuous, the empty relation is
always a simulation.

It is illuminating to look at the usual “copycat strategy” with this in mind: a
simulation is just a generalization of what happens there. Intuitively, a simu-
lation from w to w′ means that if the Angel knows how to play in w, she can
simulate, move after move, a play in w′. (And vice and versa for the Demon.)

To continue on the previous example, programming a stack interface amounts
to implementing the stack commands using a lower level interface (arrays
and pointer for examples). If we interpret the quantifiers constructively, this
amounts to providing a (constructive) proof that a non-empty relation is a
simulation from this lower level interaction system to stacks: for each of the
stacks commands, we need to provide a witness command in the low level
world in such a way as to guarantee simulation. (See [9] and [10] for a more
detailed description of programming in terms of interaction systems.)

Recall that the composition of two relations is given by:

(s1, s3) ∈ r2 · r1 ⇔ (∃s2) (s1, s2) ∈ r1 and (s2, s3) ∈ r2

It should be obvious that the composition of two simulations is a simulation
and that the equality relation is a simulation from any w to itself. Thus, we
can put:

Definition 3 We call Int the category of interaction systems with simula-

5

tions.

Note that this category is locally small but that, for any given set of states S,
the collection of interaction systems on S forms a proper class. It is possible
to restrict to “finitary” interaction systems: those for which the sets of actions
and the sets of reactions are always finite. For our purposes, it is impossible
to restrict to finite sets of states (see the definition of !w) or to countable
actions/reactions sets (see the definition of w1 ⊸ w2). Subtler considerations
show that it is however possible to restrict to sets of states of cardinalities ℵ0

and sets of actions of cardinalities 2ℵ0 and sets of reactions of cardinalities ℵ0.
(See the proof of proposition 38 for a hint.)

We have the following “forgetful” functor from Int to Rel, the category of
sets and relations between them:

Lemma 4 The operation w 7→ |w| = w.S is a faithful functor from Int
to Rel. Its action on morphisms is just the identity.

This functor has a right adjoint S 7→ magic(S) and a left adjoint S 7→ abort(S)
defined by (where {∗} denotes a singleton set)

magic(S).A(s) = {∗} abort(S).A(s) = ∅

magic(S).D(s, ∗) = ∅ abort(S).D(s,) =

magic(S).n(s, ∗,) = abort(S).n(s, ,) =

In terms of games, magic means “the Demon resigns” (he cannot answer any
move) while abort means “the Angel resigns” (she cannot play).

This category enjoys a very strong algebraic property:

Proposition 5 The category Int is enriched over complete sup-lattices.

Note that enrichment over sup-lattice is stronger than enrichment over com-
mutative monoids.

PROOF. Proving that an arbitrary unions of simulations in Int(w1, w2) is
still a simulation in Int(w1, w2) is trivial; as well as showing that the empty
relation is always a simulation.

It thus only remains to show that composition commutes with unions, on the
right and on the left. Since this is true in Rel, it is also true in Int!

2

6

1.2 Notation

Let’s recall some traditional notation.

• An element of the indexed cartesian product
∏

a∈A D(a) is given by a func-
tion f taking any a ∈ A to an f(a) in D(a). When the set D(a) doesn’t
depend on a, it amounts to a function f : A→ D.
• An element of the indexed disjoint sum

∑
a∈A D(a) is given by a pair (a, d)

where a ∈ A and d ∈ D(a). When the set D(a) doesn’t depend on a, this is
simply the cartesian product A×D.
• We write List(S) for the set of “lists” over set S. A list is a tuple (s1, s2, . . . sn)

of elements of S. The empty list is written ().
• The collection Mf (S) of finite multisets over S is the quotient of List(S)

by permutations. We write [s1, . . . sn] for the equivalence class contain-
ing (s1, . . . sn). We use “+” for the sum of multisets; it simply corresponds
to concatenation on lists.

1.3 Constructions

We now define, at the level of interaction systems, the connectives of linear
logic. With those, making Int into a denotational model of intuitionistic linear
logic more or less amounts to showing that it is symmetric monoidal closed,
has finite products and coproducts and has a well behaved comonad.

1.3.1 Constants.

A very simple, yet important interaction system is “I”, the interaction system
without interaction.

Definition 6 Define I to be the interaction system on the singleton set {∗}:

AI(∗) = {∗}

DI(∗, ∗) = {∗}

nI(∗, ∗, ∗) = {∗} .

This interaction systems is also called “ skip”.

This is the perfect example of “stable” or “constant” game: no knowledge is
ever gained by any of the players. Since the interaction traces are ultimately

7

constant, this is sometimes considered a terminating system: both sides have
reached an agreement.

One last interaction system of (theoretical) interest is given by the interaction
system on the empty set of states:

Definition 7 Define 0 to be the unique interaction system on ∅.

This interaction system is even more boring than I: there are no states! From a
practical point of view, this system doesn’t even exist. The following is trivial:

Lemma 8 In Int, the object 0 is a zero object: it is both initial and terminal.

1.3.2 Product and Coproduct

Since the forgetful functor w 7→ |w| has a right adjoint, we know it commutes
with colimits. As a result, we know that if the coproduct of w1 and w2 exists
in Int, its set of states is isomorphic to the coproduct of S1 and S2 in Rel.
We thus define:

Definition 9 Suppose w1 and w2 are interaction systems on S1 and S2. Define
the interaction system w1 ⊕ w2 on S1 + S2 as follows: 2

Aw1⊕w2
((i, si)) = Ai(si)

Dw1⊕w2
((i, si), a) = Di(si, a)

nw1⊕w2
((i, si), a, d) = (i, si[a/d])

In other words, the game w1 ⊕ w2 is simply a disjoint sum of w1 and w2, and
interaction takes place in only one of the games. Because we have no initial
state, there is no need to specify who, among the Angel or the Demon, is
making the choice of the game to use. With this in mind, lemma 11 isn’t very
surprising.

We have:

Lemma 10 The operation ⊕ is the coproduct in Int.

2 Recall that A + B = {1}×A ∪ {2}×B.

8

PROOF. We just “lift” the constructions from the category Rel:

• injections: we put

i1 : Int(w1, w1 ⊕ w2)

= {(s1, (1, s1)) | s1 ∈ S1}

and similarly for i2 ∈ Int(w2, w1 ⊕ w2).
• copairing: suppose r1 ∈ Int(w1, w) and r2 ∈ Int(w2, w), define:

[r1, r2] : Int(w1 ⊕ w2, w)

= {((1, s1), s)) | (s1, s) ∈ r1}

∪ {((2, s2), s)) | (s2, s) ∈ r2}

Checking that those constructions yield simulations is direct.

Commutativity of the appropriate diagrams as well as universality can be
lifted from Rel...

2

The next result is only surprising at first sight: the situation is similar in Rel.
It will however to be quite important in the sequel since we cannot interpret
the differential λ-calculus without it.

Lemma 11 In Int, ⊕ is also the product.

PROOF. This is a direct consequence of commutative monoid enrichment
(proposition 5). 3

2

When dealing with linear logic, we use the usual symbol & when it denotes a
conjunction...

3 This is well known for abelian categories (see [11, chap. 8]), but the existence of
inverses is irrelevant.

9

1.3.3 Synchronous Product.

There is an obvious tensor construction reminiscent of the synchronous prod-
uct found in SCCS (synchronous calculus of communicating systems, [12]):

Definition 12 Suppose w1 and w2 are interaction systems on S1 and S2.
Define the interaction system w1 ⊗ w2 on S1 × S2 as follows:

Aw1⊗w2
((s1, s2)) = A1(s1)× A2(s2)

Dw1⊗w2
((s1, s2), (a1, a2)) = D1(s1, a1)×D2(s2, a2)

nw1⊗w2
((s1, s2), (a1, a2), (d1, d2)) = (s1[a1/d1], s2[a2/d2]) .

This is a kind of lock-step synchronous parallel composition of w1 and w2: the
Angel and the Demon exchange pairs of actions/reactions. In terms of games,
the players simply play two games in parallel at the same pace.

For any sensible notion of morphism, I should be a neutral element for this
product. It is indeed the case, for the following reason: the components of w⊗I
and w are isomorphic by dropping the second (trivial) coordinate:

w ⊗ I w

S × {∗} ≃ S

A((s, ∗)) = A(s)× {∗} ≃ A(s)

D((s, ∗), (a, ∗)) = D(s, a)× {∗} ≃ D(s, a)

n((s, ∗), (a, ∗), (d, ∗)) = (s[a/d], ∗) ≃ s[a/d]

This implies trivially that {((s, ∗), s) | s ∈ S} is an isomorphism. For similar
reasons, this product is transitive and commutative.

Lemma 13 ⊗ is a commutative tensor product in the category Int. Its
action on morphisms is given by:

((s1, s
′
1), (s2, s

′
2)) ∈ r ⊗ r′ ⇔

(s1, s2) ∈ r

and (s′1, s
′
2) ∈ r′

Checking that r ⊗ r′ is a simulation is easy.

10

The notion of “componentwise” isomorphism is too fine for most purposes and
the notion of isomorphism inherited from simulations is coarser. In particular,
it is easy to find examples of isomorphic interaction systems in Int where the
actions/reactions sets are not isomorphic. For example, if w is an interaction
system, let εs be a choice function from P∗(A(s)), the collection of non-empty
subsets of A(s) to A(s); and define ŵ with

• Â(s) = P∗(A(s));
• D̂(s, U) = D(s, εs(U));
• n̂(s, U, d) = n(s, εs(U), d).

The systems w and ŵ are isomorphic, but the sets A(s) and Â(s) have different
cardinalities.

1.3.4 Linear Arrow.

Any category with a zero object cannot be cartesian closed. We thus cannot
hope to model the simply typed λ-calculus inside Int. One of the points of
linear logic is precisely to give logical status to a simpler kind of structure:
linear implication. We do not require our denotational model to be cartesian
closed but only symmetric monoidal closed w.r.t. to a tensor which is generally
not the cartesian product. This is the case for Int, but the definition of the
functor ⊸ is a little more involved:

Definition 14 If w1 and w2 are interaction systems on S1 and S2, define the
interaction system w1 ⊸ w2 on S1 × S2 as follows:

A
⊸

((s1, s2)) =
∑

f∈A1(s1)→A2(S2)

∏

a1∈A1(s1)

D2(s2, f(a1))→ D1(s1, a1)

D
⊸

((s1, s2), (f, G)) =
∑

a1∈A1(s1)

D2(s2, f(a1))

n
⊸

((s1, s2), (f, G), (a1, d2)) = (s1[a1/Ga1
(d2)] , s2[f(a1)/d2]) .

It may seem difficult to get some intuition about this interaction system; but
it is a posteriori quite natural. Let’s unfold this definition with simulations in
mind:

• An action in state (s1, s2) is given by a pair consisting of:
(1) a function f (the index for the element of the disjoint sum) translating

actions from s1 into actions from s2;
(2) for any action a1, a function Ga1

translating reactions to f(a1) into reac-
tions to a1.

• A reaction to such a “one step translating mechanism” is given by:
(2) an action a1 in A1(s1) (which we want to simulate);

11

(1) and a reaction d2 in D2(s2, f(a1)) (which we want to translate back).
• Given such a reaction, we can simulate a1 by a2 = f(a1) ∈ A2(s2); and

translate back d2 into d1 = Ga1
(d2) ∈ D1(s1, a1). The next state is just the

pair of states s1[a1/d1] and s2[a2/d2].

In essence, the Angel translates what the Demon gives her.

This connective is indeed a “linear arrow”:

Proposition 15 In Int, ⊗ is left adjoint to ⊸ : there is an isomorphism

Int(w1 ⊗ w2 , w3) ≃ Int(w1 , w2 ⊸ w3) ,

natural in w1, w2 and w3

PROOF. The proof is not really difficult. First notice that the axiom of
choice can be written as

AC : (∀a ∈ A)(∃d ∈ D(a)) ϕ(a, d)

⇔

(∃f ∈
∏

a∈A D(a))(∀a ∈ A) ϕ(a, f(a)) .

When the domain D(a) for the existential quantifier doesn’t depend on a ∈ A,
we can simplify it into:

AC : (∀a ∈ A)(∃d ∈ D) ϕ(a, d)

⇔

(∃f ∈ A→ D)(∀a ∈ A) ϕ(a, f(a)) .

We will use AC to shuffle quantifiers and complexify the domains of quantifi-
cation. This will transform the condition defining a simulation from w1 ⊗ w2

to w3 into the condition defining a simulation from w1 to w2 ⊸ w3.

12

In the sequel, the part of the formula being manipulated will be written in
bold. That r is a simulation from w1 ⊗ w2 to w3 takes the form 4

(s1, s2, s3) ∈ r ⇒ (∀a1 ∈ A1(s1))(∀a2 ∈ A2(s2))

(∃a3 ∈ A3(s3))

(∀d3 ∈ D3(s3, a3))

(∃d1 ∈ D1(s1, a1))(∃d2 ∈ D2(s2, a2))

(s1[a1/d1], s2[a2/d2], s3[a3/d3]) ∈ r .

Using AC on ∀a2∃a3, we obtain:

(s1, s2, s3) ∈ r ⇒ (∀a1 ∈ A1(s1))

(∃f ∈ A2(s2)→ A3(s3))

(∀a2 ∈ A2(s2))(∀d3 ∈ D3(s3, f(a2)))

(∃d1 ∈ D1(s1, a1))(∃d2 ∈ D2(s2, a2))

(s1[a1/d1], s2[a2/d2], s3[f(a2)/d3]) ∈ r .

We can now apply AC on ∀d3∃d2:

(s1, s2, s3) ∈ r ⇒ (∀a1 ∈ A1(s1))

(∃f ∈ A2(s2)→ A3(s3))

(∀a2 ∈ A2(s2))

(∃g ∈ D3(s3, f(a2)) → D2(s2, a2))

(∀d3 ∈ D3(s3, f(a2)))

(∃d1 ∈ D1(s1, d1))

(s1[a1/d1], s2[a2/g(d3)], s3[f(a2)/d3]) ∈ r

4 modulo associativity (S1 × S2)× S3 ≃ S1 × (S2 × S3) ≃ S1 × S2 × S3.

13

and apply AC one more time on ∀a2∃g to obtain:

(s1, s2, s3) ∈ r ⇒ (∀a1 ∈ A1(s1))

(∃f ∈ A2(s2)→ A3(s3))

(∃G ∈
∏

a2∈A2(s2) D3(s3, f(a2))→ D2(s2, a2))

(∀a2 ∈ A2(s2))(∀d3 ∈ D3(s3, f(a2)))

(∃d1 ∈ D1(s1, d1))

(s1[a1/d1], s2[a2/Ga2
(d3)], s3[f(a2)/d3]) ∈ r

which is equivalent to

(s1, s2, s3) ∈ r ⇒ (∀a1 ∈ A1(s1))
∃(f, G) ∈

∑
f∈A2(s2)→A3(s3)

∏
a2∈A2(s2) D3(s3, f(a2))→ D2(s2, a2)

(∀(a2, d3) ∈
∑

A2(s2) D3(s3, f(a2)))

(∃d1 ∈ D1(s1, d1))

(s1[a1/d1], s2[a2/Ga2
(d3)], s3[f(a2)/d3]) ∈ r .

By definition, this means that r is a simulation from w1 to w2 ⊸ w3.

Naturality is trivial: it corresponds to naturality of associativity in Rel. 2

In particular, proposition 15 implies that

Int(w1, w2) ≃ Int(I, w1 ⊸ w2) .

We call a simulation from I to w a safety property for w.

Lemma 16 (with Def.) A subset x ⊆ S is a simulation from I to w iff 5

s ∈ x ⇒ (∃a ∈ A(s))(∀d ∈ D(s, a)) s[a/d] ∈ x .

We write S(w) for the collection of such subsets, and we call such an x a
safety property for w.

5 This is well defined since P({∗}×S) ≃ P(S).

14

Finally, we have

Int(w1, w2) = S(w1 ⊸ w2) .

The analogy with traditional notions of morphisms as strategies is rather
subtle. A safety property x satisfies the property

if interaction is started from a state in x, then the Angel has a move that
guarantees that the next state will also be in x (provided the Demon does
answer).

This is a safety property in the sense that it guarantees that “nothing bad
happens”. (As opposed to liveness properties, which ensure that “something
good happens”...) In particular, this means that the Angel has an infinite
strategy from any state in x: she can always find a move to play. The choice of
those moves is irrelevant to the notion of safety property: we only know they
exist. In particular, such a move needs not be unique.

As special case, let’s look at the definition of linear negation. The orthogo-
nal w⊥ of w is defined as usual as the interaction system w ⊸ ⊥. For intu-
itionistic linear logic, any object can formally be used as ⊥, but anticipating
on proposition 33, we use ⊥ = I. We have:

A⊥((s, ∗)) =
∑

f∈A(s)→{∗}

∏

a∈A(s)

{∗} → D(s, a)

D⊥((s, ∗), (f, G)) =
∑

a∈A(s)

{∗}

n⊥((s, ∗), (f, G), (a, ∗)) = (s[a/Ga1
(∗)], ∗)

which, after simplification, is equivalent to

A⊥(s) =
∏

a∈A(s)

D(s, a)

D⊥(s, f) = A(s)

n⊥(s, f, a) = s[a/f(a)] .

One important point to notice is that with this definition, the set of states
of w⊥ is the same as the set of states of w. In particular, the canonical mor-
phism in Int(w, w⊥⊥) will be given by the equality relation.

The definition looks complex but can be interpreted in a very traditional way:
negation interchanges the two players. In our context, it is not possible to

15

simply interchange actions and reactions since reactions depend on a particular
action. We have to do the following:

• an action in A⊥(s) is a conditional reaction; or a one move strategy to react
to any action;
• a reaction in D⊥(s, f) is just an action in w;
• the new state after “action” f and “reaction” a is just the state obtained

after playing a followed by f(a).

The “polarities” of moves and coutermoves is interchanged, and it does swap
the players in the sense that it transforms Angel strategies into Demon strate-
gies and vice and versa. (See [10] for more details.)

The dual w⊥ enjoys a surprising property: the set of possible reactions to a
particular action doesn’t depend on the particular action!

1.3.5 Multithreading.

We now come to the last connective needed to interpret intuitionistic linear
logic. Its computational interpretation is related to the notion of multithread-
ing, i.e. the possibility to run several instances of a program in parallel. In our
case, it corresponds to the ability to play several synchronous instances of the
same game in parallel. Let’s start by defining synchronous multithreading in
the most obvious way:

Definition 17 If w is an interaction system on S, define L(w), the multi-
threaded version of w to be the interaction system on List(S) with:

 L.A((s1, . . . , sn)) = A(s1)× . . .×A(sn)

 L.D((s1, . . . , sn), (a1, . . . , an)) = D(s1, a1)× . . .×D(sn, dn)

 L.n((s1, . . . , sn), (a1, . . . , an), (d1, . . . , dn)) = (s1[a1/d1], . . . , sn[an/dn]) .

This interaction system is just the sum of all “n-ary” versions of the syn-
chronous product.

Lemma 18 The operator w 7→ L(w) can be extended to a functor from Int
to Int.

To get the abstract properties we want, we need to quotient multithreading
by permutations. Just like multisets are lists modulo permutations, so is !w
the multithreaded L(w) modulo permutations. This definition is possible be-

16

cause L(w) is “compatible” with permutations: if σ is a permutation, we have

σ · ((s1, . . . sn)[(a1, . . . an)/(d1, . . . dn)])

=

(σ · (s1, . . . sn))[σ · (a1, . . . an)/σ · (d1, . . . dn)] .

The final definition is:

Definition 19 If w is an interaction system on S, define !w to be the follow-
ing interaction system on Mf(S):

!A(µ) =
∑

s∈µ L.A(s)

!D(µ, (s, a)) = L.D(s, a)

!n(µ, (s, a), d) = [L.n(s, a, d)] .

(Note that as an element of µ, s is just a specific order for the element of µ.)

Unfolded, it gives:

• an action in state µ is given by an element s (a list) of µ (a multiset, i.e. an
equivalence class) together with an element a in L.A(s) (a list of actions);
• a reaction is given by a list of reactions d in L.D(s, a);
• the next state is the equivalence class containing the list s[a/d] (the orbit

of s[a/d] under the action of the group of permutations).

Lemma 20 This operation w 7→ !w can be extended to a functor from Int
to Int. Moreover, we have the following bisimulation (which is not an isomor-
phism)

 L(w)
σ
→
←
p

!w (1)

where σ is just membership of a list in a multiset (equivalence class of lists)
and p its converse.

This operation enjoys a very strong algebraic property:

Proposition 21 !w is the free ⊗-comonoid generated by w.

Note that because !w “is”
⊕

n≥0
w⊗n/Sn, this is not very surprising.

17

PROOF. Quite a lot can be deduced from the same property of Rel, but we
will look at some details.

Let’s start by looking at the ⊗-comonoid structure of !w: the counit and
comultiplication are given by

e ∈ Int(!w, I) and m ∈ Int(!w, !w ⊗ !w)

= {([], ∗)} = {(µ + ν, (µ, ν)) | µ, ν ∈Mf(S)}

We need to show that for any interaction system w and ⊗-comonoid wc, there
is a natural isomorphism

CoMon(Int,⊗)(wc, !w) ≃ Int(wc, w) .

Going from left to right is easy:

CoMon(Int,⊗)(wc, !w) → Int(wc, w)

r 7→ {(sc, s) | (sc, [s]) ∈ r} .

Checking that this operation is well-defined (it sends a comonoid morphism
to a simulation) is direct.

The other direction is more interesting. Let wc be a commutative comonoid.
This means we are given ec ∈ Int(wc, I) and mc ∈ Int(wc, wc⊗wc), satisfying
additional commutativity and associativity conditions.

Suppose r is a simulation from wc to w. This is a relation with no condition
about the comonoid structure of wc. We construct a relation from wc to !w in
the following way:

• we start by extending comultiplication mc to mc : Int(wc, L(wc));
• we then compose that with L(r) : Int(L(wc), L(w));
• and finally compose that with σ : Int(L(w), !w), see (1) in lemma 20.

We then check that this simulation respects the comonoid structures of wc

and !w.

18

Define mc ⊆ Sc × List(Sc) by the following clauses: (inductive definition)

(s, ()) ∈ mc iff s ∈ ec

(s, s′) ∈ mc iff s = s′

(s, (s1, . . . , sn)) ∈ mc iff (s, (s1, s
′)) ∈ mc ∧ (s′, (s2, . . . , sn)) ∈ mc

for some s′ ∈ Sc .

Using the fact that ec and mc are simulations, we can easily show (by induc-
tion) that mc is a simulation from wc to L(wc).

Moreover, we have:

(sc, (sc,1, . . . , sc,n+m)) ∈ mc

⇔

(∃s1
c , s

2
c ∈ Sc) (sc, (s1

c , s
2
c)) ∈ mc ∧ (s1

c , (sc,1, . . . , sc,n)) ∈ mc

∧ (s2
c , (sc,n+1, . . . , sc,n+m)) ∈ mc

(2)

by transitivity and

(sc, (sc,1, . . . , sc,i, sc,i+1, . . . , sc,n)) ∈ mc

⇔

(sc, (sc,1, . . . , sc,i+1, sc,i, . . . , sc,n)) ∈ mc

(3)

by commutativity.

We know that r̃ = σ · L(r) ·mc is a simulation from wc to !w. We need to check
that this simulation respects the comonoid structures of wc and !w, i.e. that
both

wc

r̃
- !w wc

c
- wc ⊗ wc

and

1

e
?

e
c -

!w

r̃
?

mc

- !w ⊗ !w

r̃ ⊗ r̃
?

are commutative. The first diagram is easily shown to be commutative. For the
second one: suppose (sc, [s1, . . . , sn], [sn+1, . . . , sn+m]) ∈ m·r̃. This is equivalent
to saying that there are sc,1, . . . , sc,n+m in Sc s.t.

• (sc,i, si) ∈ r for all i = 1, . . . , n + m

19

• and (sc, (sc,1, . . . , sc,n+m)) ∈ mc.

That (sc, [s1, . . . , sn], [sn+1, . . . , sn+m]) is in r̃ ⊗ r̃ · c means that there are s1
c

and s2
c in Sc s.t.

• (sc, (s1
c , s

2
c)) ∈ mc

• and (s1
c , [s1, . . . , sn]) ∈ r̃ and (s2

c , [sn+1, . . . , sn+m]) ∈ r̃,

i.e. there are s1
c and s2

c in Sc, and sc,1, . . . , sc,n, sc,n+1, . . . , sc,n+m in Sc s.t.

• (sc, (s1
c , s

2
c)) ∈ mc

• (s1
c , (sc,1, . . . , sc,n)) ∈ mc

• (s2
c , (sc,n+1, . . . , sc,n+m)) ∈ mc

• and (si, sc,i) ∈ r for all i = 1, . . . , n + m.

By using (2) and (3), it is trivial to show that the two conditions are equivalent.
This proves that the second diagram is commutative.

It only remains to show that the two operations defined are inverse of each
other. This is not difficult. 2

2 Interpreting Linear Logic

We now have all the necessary ingredients to construct a denotational model
for intuitionistic linear logic. The details of categorical models for linear logic
are quite intricate, and there are several notions, not all of which are equiva-
lent. We refer to the survey [13] and the references given there.

In the case of Int, the situation is however quite simple: proposition 21
makes Int into a “Lafont category” (see [14]).

Corollary 22 With the construction defined in the previous sections, Int is
a Lafont category. In particular, “ ! ” is a comonad; and we have for any w1

and w2, we have the following natural isomorphism:

!(w1 & w2) ≃ !w1 ⊗ !w2 .

Recall that since the product and coproduct coincide, & is the same as ⊕.

A direct proof of the fundamental isomorphism is easy: there is a “componen-
twise” isomorphism between the interaction systems !(w1 &w2) and !w1⊗ !w2.

Lafont categories were used to give a semantics to linear logic and were latter
subsumed by Seely categories and linear categories.

20

It is thus possible to give a semantics to formulas and proofs in the usual way.
We write F for the interpretation of a formula F (no confusion arises) and [[π]]
for the interpretation of a proof π.

Proposition 23 For all proof π1 and π2 of the same sequent, if π1 and π2

have the same cut-free normal form, then [[π1]] = [[π2]].

Moreover, since the interpretation is done using canonical morphisms, which
are just lifting of the same morphisms in Rel, the interpretation of a proof is
the same as its relational interpretation: 6

Proposition 24 For any proof π of a sequent Γ ⊢ F , the relational interpre-
tation [[π]] of π is a simulation from

⊗
Γ to F . (This holds for any valuation

of the propositional variables.)

The presence of propositional variables is crucial because without them, the
model becomes trivial:

Proposition 25 Suppose F is a formula without propositional variables; then
its interpretation is trivial : any subset of its set of states is a safety property.

More precisely, we have

• AF (s) = {∗} (singleton set) ;
• DF (s, ∗) = {∗} (singleton set) ;
• nF (s, ∗, ∗) = s.

The proof is a trivial induction on the formula.

This model is thus only appropriate when interpreting Π1
1 logic, i.e. proposi-

tional linear logic. There, it has a real discriminating power. The model can
even be extended to deal with full second order, with the usual proviso: the
interpretation may decrease (in some very special cases) during elimination of
a second order cut. For more details, see [10, chap. 8]. 7

6 the relational interpretation is folklore, at least in Marseille and Paris, but it is
surprisingly difficult to find an early reference to it. For those who want to see the
concrete definition of the interpretation, we refer to of [15, app. 4].
7 There, the equivalent notion of predicate transformers rather than interaction
systems is used, but as we will show in section 6.1, the two categories are equivalent.

21

3 Interpreting the Differential λ-calculus

So far, proposition 5 hasn’t been used, except to deduce the existence of a
product. The problem is that this proposition doesn’t reflect a property of
proofs. The reason is that

• not every formula has a proof;
• we do not see a priori how to sum proofs of a single formula.

Ehrhard and Regnier’s differential λ-calculus ([1]) extends the λ-calculus by
adding a notion of differentiation of λ-terms. One consequence is that we need
a notion of sum of terms, interpreted as a non-deterministic choice. It is also
possible to only add sums (and coefficients) to the usual λ-calculus as in [16].

It is not the right place to go into the details of the differential λ-calculus
and we refer to [1] for motivations and a complete description. A complete
definition can also be found in the Appendix on page 36.

In the typed case, we have the following typing rules:

(1)
Γ ⊢ 0 : τ

and
Γ ⊢ t : τ Γ ⊢ u : τ

Γ ⊢ t + u : τ
;

(2)
Γ ⊢ t : τ → σ Γ ⊢ u : τ

Γ ⊢ D t · u : τ → σ
.

The intuitive meaning is that “D t · u” is the result of (non-deterministically)
replacing exactly one occurrence of the first variable of t by u. We thus obtain a
sum of terms, depending on which occurrence was replaced. This gives a notion
of differential substitution (or linear substitution) which yields a differential-
reduction. The rules governing this reduction are more complex than usual
β-reduction rules; we refer to [1] or the Appendix.

Besides the natural commutativity and associativity of addition, differential
λ-terms are also quotiented modulo the following equivalence relations:

• 0 = (0)u = λx.0 = D 0 · t = D t · 0;
• (t1 + t2) u = (t1)u + (t2)u;
• λx.(t1 + t2) = λx.t1 + λx.t2;
• D(t1 + t2) · u = D t1 · u + D t2 · u;
• D t · (u1 + u2) = D t · u1 + D t · u2;
• D(D t · u) · v = D(D t · v) · u.

The last one is probably the most important one as it allows to link the notion
of differentiation to the traditional, analytic notion of differentiation. Note

22

that even if the first five rules can be oriented from left to right, a quotient
is inevitable because of the sixth rule and the commutativity of addition.
This quotient is natural because none of those rules carries any computational
content.

Interpreting usual (without “D”, “+” nor “0”) λ-terms can be done using
the well-known translation of the simply typed λ-calculus into intuitionistic
linear logic with propositional variables. Just replace an atomic type by a
propositional variable and the type τ → σ by !τ ⊸ σ inductively. That the
resulting interpretation is sound follows directly from the fact that Int is a
Lafont category. (In any model for linear logic, the co-Kleisli category of ! is
cartesian closed.)

The general notion of categorical model for the differential λ-calculus (or dif-
ferential proof nets, or “differential linear logic”) is only beginning to emerge.
The main paper on the subject is [17], where the categorical notion of “dif-
ferentiation combinator” is studied in details. No real soundness theorem is
however proved there because the authors work in a more general setting: the
base category is not necessarily monoidal closed, i.e. the co-Kleisli category is
not necessarily cartesian closed.

The notion of differential category is well-suited for our purposes, and we will
show that the category Int is indeed a differential category. Together with
the fact that Int is a Lafont category, it allows to deduce that we do get a
categorical model for the differential λ-calculus.

Definition 26 If C is a symmetric monoidal category with a coalgebra modal-
ity ! , we call a natural transformation dX : X ⊗ !X → !X a deriving trans-
formation in case the following hold:

dX eX = 0

dX ∆ = (1⊗∆) (dX ⊗ 1) + (1⊗∆) (c⊗ 1) (1⊗ dX)

dX ǫX = (1⊗ e) uX

dX δ = (1⊗∆) (dX ⊗ δ)d!X

where

- eX : !X → I and ∆X : !X → !X ⊗ !X are the operations of the coalgebra !X;

- c : A⊗B → B ⊗A is the symmetry and uX : X ⊗ I → X is the unit;

23

- δX : !X → !!X and ǫX : !X → X come from the usual comonad laws. 8

In our case, we can lift dX from the relational model:

Lemma 27 (and definition) For any interaction system w on S, the rela-
tion dw defined by

dw =
{(

(s0, [s1, . . . , sn]), [s0, s1, . . . , sn]
)
| s0, . . . , sn ∈ S

}

is a deriving transformation.

PROOF. Because it is already shown in [17] that this relation is indeed a
deriving transformation in Rel, is suffices to show that dw is a simulation
from w ⊗ !w to !w. This is immediate.

2

We can now extend the interpretation to differential λ-terms:

• the additive structure (0 and +) is directly interpreted by the monoid struc-
ture (∅ and ∪);
• the differential structure is interpreted in the only sensible way: suppose we

have Γ ⊢ t : τ → σ and Γ ⊢ u : τ ; by induction, we have [[t]] ∈ Int(!Γ, !τ⊸σ)
and [[u]] ∈ Int(!Γ, τ). We can define a morphism in Int(!τ ⊸σ, (τ⊗!τ)⊸σ):

1 ∈ Int(!τ ⊸ σ , !τ ⊸ σ)

⇔ 1̂ ∈ Int((!τ ⊸ σ)⊗ !τ , σ)

⇒ 1̂ (1⊗ dτ) ∈ Int((!τ ⊸ σ)⊗ τ ⊗ !τ , σ)

⇔ ̂1̂ (1⊗ dτ) ∈ Int(!τ ⊸ σ , (τ ⊗ !τ) ⊸ σ)

We write D for this morphism. This is an internal version of the differential
combinator from [17, def. 2.3]. From this, we get

D [[t]] ∈ Int(!Γ , (τ ⊗ !τ) ⊸ σ)

⇔ D̃[[t]] ∈ Int(!Γ⊗ τ , !τ ⊸ σ)

8 The applications of the isomorphism σ : (A⊗B)⊗C → A⊗ (B⊗C) are omitted
for readability.

24

which we’ll call [[D t]]. We can now compose interpretations as in:

!Γ
∆
−→ !Γ⊗ !Γ

1⊗[[u]]
−→ !Γ⊗ τ

[[D t]]
−→ !τ ⊸ σ

This morphism in Int(!Γ , !τ ⊸ σ) is the interpretation of D t · u.

Spelled out concretely in the case of Rel or Int, the inductive definition looks
like:

(γ, µ, s′) ∈ [[D t · u]]

⇔

(γ1, µ + [s], s′) ∈ [[t]] for some (γ2, s) ∈ [[u]] s.t. γ = γ1 + γ2

That the interpretation is sound follows rather directly from the properties of
a deriving transformation, see [17] for some of the missing details:

Lemma 28 For all differential λ-terms and valuations γ, we have

• [[0]] = [[(0)u]] = [[λx.0]] = [[D 0 · t]] = [[D t · 0]];
• [[(t1 + t2) u]] = [[(t1)u + (t2)u]];
• [[λx.(t1 + t2)]] = [[λx.t1 + λx.t2]];
• [[D(t1 + t2) · u]] = [[D t1 · u + D t2 · u]];
• [[D t · (u1 + u2)]] = [[D t · u1 + D t · u2]];
• [[D(D t · u) · v]] = [[D(D t · v) · u]].

We finally obtain the desired result:

Proposition 29 Suppose that Γ ⊢ t : σ where Γ is a context and t a differen-
tial λ-term. The relation [[t]] is a simulation relation from !Γ to σ. Moreover,
for all t and u we have:

[[(λx.t)u]] = [[t[u/x]]]

[[D(λx.t) · u]] = [[λx . (∂t/∂x) · u]]

PROOF. That we obtain a simulation is true by construction.

Invariance under β-reduction follows from the correctness of the interpretation
of λ-calculus in a cartesian-closed category.

Invariance under linear substitution seems to follow from general considera-
tions about deriving transformation in linear categories, even if this is not

25

treated in [17]. (In our case, a direct verification is possible, but long and
tedious...)

2

4 Untyped Calculus

Interpreting untyped λ-calculus remained an open question for quite a long
time: since the cardinality of a function space is strictly bigger than the cardi-
nality of the original set, it seemed difficult to get a model where any λ-term
can be either an argument or a function. Dana Scott finally found a model by
constructing a special object in the category of domains.

The solution is quite elegant: to interpret untyped λ-terms in a cartesian
closed category, one “just” needs to find a reflexive object in a cartesian closed
category, i.e. an object X with a retraction / projection pair [X → X] ⊳ X.

We have at our disposal a cartesian closed category: the Kleisli category over
the comonad ! . Were we to find a reflexive object W in this category, we
could model the untyped differential λ-calculus in the λ-model S(W). We now
show how to construct such a reflexive object, in a fairly straightforward way.

We start with a non-trivial interaction system w on a set of states S (natural
numbers for example) and then define an interaction system W , satisfying the
equation W ≃ w ⊕ (!W ⊸ W) as follows:

(1) the set of states SW is defined as the least fixpoint of X 7→ S+Mf(X)×X;
in a more “programming” fashion”

SW = data Leaf(s ∈ S)

| Node
(
µ ∈Mf (SW) , u ∈ SW

)

(2) the possible actions in a given state are defined by induction on the state:
using “pattern matching”, we have

AW (Leaf(s)) = A(s)

AW (Node(µ, u)) = (!AW ⊸ AW)((µ, u))

(3) reactions are defined similarly as

DW (Leaf(s), a) = D(s, a)

DW (Node(µ, u), b) = (!DW ⊸ DW)((µ, u), b)

26

(4) and finally, the next state function is defined as

nW (Leaf(s), a, d) = Leaf(s[a/d])

nW (Node(µ, u), b, p) = (!nW ⊸ nW)((µ, u), b, p)

Due to the presence of multisets, an actual implementation of W in a depen-
dently typed functional programming language would be a little more complex:
we would need to work with lists rather than multisets, and reason modulo
shuffling concretely.

Lemma 30 The relation r between S + (Mf (SW)× SW) and SW defined by

((1, s) , Leaf(s)) ∈ r

((2, (µ, u)) , Node(µ, u)) ∈ r

is an isomorphism (in Int) from w ⊕ (!W ⊸ W) to W .

The proof is direct. (This is an instance of a strong, “componentwise” isomor-
phism.)

Corollary 31 In the ! -Kleisli category of Int, which is cartesian closed, there
is a retract W W ⊳ W .

PROOF. First, notice that it is sufficient to find a retract in the category Int:
any morphism in a category can also be seen as a morphism in a Kleisli cate-
gory (in a way which is compatible with composition in the Kleisli category).

There is the canonical injection i2 from !W ⊸ W to w ⊕ (!W⊸W). Now, in
the category Int, we have that product and coproduct coincide; in particular,
we have the projection π2 from w & (!W⊸W) = w⊕ (!W⊸W) to !W ⊸ W .
Moreover, by definition, we have π2 · i2 = Id!W⊸W .

We can now prove that r · i2 / π2 ·r
∼ is a retraction / projection from !W ⊸W

to W : 9 it follows from the previous remark that π2 · i2 = Id and that r∼ is
the inverse of r. (Recall that r is an isomorphism.) 2

From there, constructing a model for the untyped λ-calculus is standard. We
refer to [18]. We obtain in this way a model where each term is interpreted by
a safety property for W .

9 The converse r∼ of a relation is defined as (s2, s1) ∈ R∼ iff (s1, s2) ∈ r.

27

Since S(W) is a complete sup-lattice, we can also model sums, and by the very
same construction defined in section 3, model differentiation. (Remark that
the interpretation of a term is not really by induction on the type inference,
but directly by induction on the term: we can thus apply it to untyped terms
as well.)

The interpretation becomes: if t is a differential λ-term with its free variables
among x1, . . . , xn, we interpret t by a subset ofMf(SW)×· · ·×Mf (SW)×SW .
In the sequel, γ is a tuple in Mf(SW) × · · · ×Mf(SW) and we use γ(x) for
the projection on the appropriate coordinate.

• [[x]] = {(γ, s)} where γ(x) = [s] and γ(y) = [] otherwise

• [[λx.t]] = {(γ, (µ, s)) | (γx:=µ, s) ∈ [[t]]}

• (γ, s) ∈ [[(t)u]] iff

(γ0, Node(µ, s)) ∈ [[t]] for some µ = [s1, . . . , sn]

s.t. (γi, si) ∈ [[u]] for i = 1, . . . , n

and γ = γ0 + γ1 + . . . + γn;

• [[0]] = ∅;

• [[t1 + t2]] = [[t1]] ∪ [[t2]];

• (γ, µ, s′) ∈ [[D t · u]] iff

(γ1, Node(µ + [s], s′)) ∈ [[t]]

for some (γ2, s) ∈ [[u]] s.t. γ = γ1 + γ2.

Proposition 32 For any closed differential λ-term t, we have that [[t]] is a
safety property for W .

We have thus, in effect, constructed a non-trivial (in the sense that not all
subsets of SW are safety properties) denotational model for the untyped dif-
ferential λ-calculus. This is particularly interesting because the original model
for differential λ-calculus (finiteness spaces) did not have a reflexive object:
they could not interpret fixpoint combinators (see [15]).

5 Classical Linear Logic

If one has in mind the definition of negation (see page 15), the next result can
look quite surprising: interaction systems can interpret classical linear logic.
In other words, for any interaction system w, we have w ≃ w⊥⊥. The reason
behind that is that our notion of morphism is not the notion of “component-
wise” morphism. Even though the actions/reactions in w⊥⊥ are very complex
sets, the way they interact with states remains relatively simple.

28

The reason we haven’t shown this result in section 2 is that the principle at
work is highly non-constructive and that natural generalizations of interaction
systems are unlikely to satisfy it.

Recall that any object can be used to represent ⊥ in the intuitionistic case.
However, in or case, the object I plays a very special role. For ⊥ = I, we have:

Proposition 33 In Int, for any interaction system w, the identity relation
is an isomorphism between w and w⊥⊥.

Equivalently, the object ⊥ is dualizing in Int.

PROOF. The principle at stake in the proof is the contrapositive of the
axiom of choice:

CtrAC : (∃a ∈ A)(∀d ∈ D(a)) ϕ(a, d)

⇔

(∀f ∈
∏

a∈A D(a))(∃a ∈ A) ϕ(a, f(a))

When the domain D(a) for the universal quantifier doesn’t depend on a ∈ A,
we can simplify it into:

CtrAC : (∃a ∈ A)(∀d ∈ D) ϕ(a, d)

⇔

(∀f ∈ A→ D)(∃a ∈ A) ϕ(a, f(a))

Here are the components of w⊥⊥:

A⊥⊥(s) =

 ∏

a∈A(s)

D(s, a)

→ A(s)

D⊥⊥(s, F) =
∏

a∈A(s)

D(s, a)

n⊥⊥(s, F, g) = s[F (g)/g(F (g))] .

29

That equality is a simulation from w⊥⊥ to w takes the form:

(∀s ∈ S) (∀F ∈ A⊥⊥(s))(∃a ∈ A(s))

(∀d ∈ D(s, a))(∃g ∈ D⊥⊥(s, F))

s[a/d] =S s[F (g)/g(F (g))] .

By applying the contraposition of the axiom of choice on ∃a∀d, this is equiv-
alent to

(∀s ∈ S) (∀F ∈ A⊥⊥(s))
(
∀f ∈

∏
a∈A(s) D(s, a)

)

(∃a ∈ A(s))(∃g ∈ D⊥⊥(s, F))

s[a/d] =S s[F (g)/g(F (g))] .

We can swap quantifiers and obtain, by the definitions of A⊥, D⊥ and A⊥⊥,

(∀s ∈ S) (∀f ∈ A⊥(s))(∀F ∈ A⊥(s) → D⊥(s,))

(∃g ∈ D⊥⊥(s, F))(∃a ∈ D⊥(s, f))

s[a/f(a)] =S s[F (g)/g(F (g))] .

We can now apply the contraposition of the axiom of choice on ∀F∃g to get
the equivalent formulation

(∀s ∈ S) (∀f ∈ A⊥(s))(∃g ∈ D⊥⊥(s, F))

(∀b ∈ D⊥(s, g))(∃a ∈ D⊥(s, f))

s[a/f(a)] =S s[b/g(b)] .

Since D⊥⊥ is equal to A⊥, this is obviously true.

Thus, we can conclude that equality is a simulation from w⊥⊥ to w. 2

We obtain a surprising corollary:

Corollary 34 Any interaction system is isomorphic to an interaction where
the sets of reactions do not depend on a particular action. (More precisely, for
any state s, the function a 7→ D(s, a) is constant.)

PROOF. Just notice that w⊥⊥ satisfies this property. 2

30

Finally, we have

Corollary 35 The category Int is ⋆-autonomous (see [19]), we can thus in-
terpret classical linear logic.

PROOF. Once we know that ⊥ is dualizing, the remaining condition are
fairly easy to check: the following diagram should be commutative

w1 ⊸ w2

⊥
- w⊥

2 ⊸ w⊥
1

w⊥⊥
1 ⊸ w⊥⊥

2

⊥

?

d −1w
1 ·
· d

w
2

-

where dw is the natural isomorphism from w to w⊥⊥. This is immediate
since dw is the identity on S and ⊥ is the “converse” operation of a rela-
tion. (See footnote 9 on page 27.)

We can then unfold all the usual technology to give a denotational model for
classical linear logic.

2

It is interesting to highlight some aspects of this model

• Int is a “games” model for full classical linear logic. The isomorphism be-
tween w and w⊥⊥ is given by the identity relation.
• The constructions are quite different from usual games constructions; in

particular, they have a strong synchronous feeling.
• The notion of strategy is not used to define morphisms; rather, we use the

notion of simulation.
• The fact that w ≃ w⊥⊥ seems rather accidental as it is not expected to

hold in any generalized version of interaction systems. (See the discussion
about containers in section 6.2). This fact is also highly non-constructive
and almost counter-intuitive.

Putting the model of the differential λ-calculus with the dualizing object ⊥,
it is expected that we get a model for Lionel Vaux’s “differential λµ-calculus”
(see [20]), either in Vaux’s setting (typed) or in an untyped setting.

31

6 Related Notions

6.1 Predicate Transformers

The category Int has a very concrete feeling. In [2], we have developed a
model for full linear logic with a different intuition: the category of predicate
transformers with forward data-refinements:

Definition 36 If S is a set, a predicate transformer on S is a monotonic
(w.r.t. inclusion of subsets) function from P(S) to P(S).

If F1 and F2 are predicate transformers respectively on S1 and S2, a forward
data-refinement from P1 to P2 is a relation r ⊆ S1×S2 s.t. 〈r〉·F1 ⊆ F2 ·〈r〉.

10

(Extensional ordering.)

Such predicate transformers with forward data-refinements form a category
called PT.

An interaction system can be seen as a concrete representation for a predicate
transformer. More precisely:

Proposition 37 The operation w 7→ w◦ from Int to PT defined as

s ∈ w◦(x) ⇔ (∃a ∈ w.a(s))(∀d ∈ w.D(s, a)) s[a/d] ∈ x

can be extended to a full and faithful functor from Int to PT.

The intuition in s ∈ w◦(x) is that the Angel has a foolproof way to reach x in
exactly one interaction.

PROOF. The action on morphisms is just the identity: we thus need to show
that r is a simulation from w1 to w2 iff r is a forward data-refinement from w◦

1

to w◦
2. The proof is not very difficult and can be found in [10]. 2

The interesting point is that all the constructions presented above are the
concrete versions of the constructions presented in [2]. For example, we have

(w1 ⊗ w2)
◦ = w◦

1 ⊗ w◦
2

10 Where 〈r〉 is the direct image of r: s2 ∈ 〈r〉(x) iff (∃s1) (s1, s2) ∈ r ∧ s1 ∈ x.

32

where ⊗ on the left is the synchronous tensor on interaction systems and the
tensor on the right is the tensor on predicate transformers. 11

Another interesting example is the fact that (w⊥)◦ = (w◦)⊥. This is interesting
because the definition of duality in the case of predicate transformers is very
simple, and involutivity is trivial:

F⊥(x) = F (x)

where x represents the S-complement of x (i.e. x = S \ x).

Surprisingly, proposition 37 can be strengthened in an ad-hoc way to read:

Proposition 38 The categories Int and PT are equivalent. Moreover, this
equivalence is a “retract”.

PROOF. By “retract”, we mean the following: there is a functor F from
PT to Int which satisfies F(F)◦ = F and F(w◦) ≃ w. In other words, we
obtain equal object in one direction but only isomorphic objects in the other
direction.

This functor F is defined as follows: let F be a predicate transformer on S,
define F to be the interaction system on S with components

F(F).A(s) = {x ⊆ S | s ∈ F (x)}

F(F).D(s, x) = x

F(F).n(s, x, s′) = s′

Checking that this operation does define a functor is left as an exercise.
(See [10].) 2

Once more, we separate propositions 37 and 38 because while we expect propo-
sition 37 to hold for different generalizations of interaction systems / predicate
transformers (see theorem 3.4 in [3]), proposition 38 seems very specific to this
particular case.

11 (s1, s2) ∈ F1⊗F2(r) iff (∃x⊆S1)(∃y⊆S2)x×y ⊆ r ∧ s1 ∈ F1(x) ∧ s2 ∈ F2(y)

33

6.2 Containers

In [3], the authors study the notion of container, a structure bearing several
similarities with the notion of interaction system. They work in a variant of
Martin-Löf type theory ([21,22]), a dependent predicative type theory.

Mild knowledge about this type theory is assumed in this section.

Simply, a container is given by the following:

• a set A of shapes ;
• and for any a ∈ A, a set D(a) of positions.

A morphisms from (A1, D1) to (A2, D2) is given by a pair (f, u) where f is a
function f : A1 → A2 and u is a family of functions indexed by A1 and we
have ua1

: D2(f(a1))→ D1(a1).

This is reminiscent of interaction systems in the following way: any interaction
system on the set of states {∗} (singleton set) can be seen as a container, and
any container can be seen as an interaction system on {∗}.

The links between container morphisms and simulations is subtler: a simu-
lation from w1 to w2 (two interaction systems on {∗}) is given by a rela-
tion r ⊆ {∗} × {∗} ≃ {∗}. In Martin-Löf type theory, a subset is seen as a
propositional function r : {∗} → Set, i.e. a set. The condition required to
make this “relation” a simulation is the following:

r ⇒ (∀a1 ∈ A1)(∃a2 ∈ A2)

(∀d2 ∈ D2(a2))(∃d1 ∈ D1(a1)) r .

We can apply the (constructive) axiom of choice to skolemize this and we
obtain

r ⇒ (∃f : A1 → A2)
(
∃u :

∏
a1∈A1

D2(f(a1))→ D1(a1)
)

(∀a1 ∈ A1)(∀d2 ∈ D2(f(a1))) r

which is logically equivalent to

r ⇒ (∃f : A1 → A2)
(
∃u :

∏
a1∈A1

D2(f(a1))→ D1(a1)
)
⊤

where ⊤ denotes the true proposition (or the singleton set in Martin Löf type
theory).

34

Thus, a constructive (in the sense of Martin-Löf type theory) simulations
between two interaction systems on {∗} is given by:

• a set r;
• and a function r → (Σf : A1 → A2)

∏
a1∈A1

D2(f(a1))→ D1(a1).

Equivalently, a simulation between two interaction systems on {∗} is nothing
but a family of container morphisms between the corresponding containers!

However, the difference is that while container morphisms are identified when
the functions acting on actions / reactions are extensionally equal, simulations
are identified when the relations between states are extensionally equal. In
other words, two simulations (r1, (f1, u1)) and (r2, (f2, u2)) between interaction
systems on {∗} are equal when there are “translating functions” r1

→
← r2. 12

If we adopt a classical point of view, then everything is rather boring: there
is at most one non-empty simulation between two interaction systems on {∗}:
the relation {(∗, ∗)}. The links with container morphisms is then the following:

if there is at least one container morphisms from w1 to w2, then there will
be exactly one non-empty simulation from w2 to w2;
if there are no container morphism from w1 to w2, then the only simulation
from w1 to w2 will be the empty simulation.

This whole theory of containers can be extended to work in a large class of
locally cartesian closed categories. (See [3].) In such a setting, one needs to
take care of additional coherence diagrams, but the idea is similar.

There is currently some work being done on generalizing containers to a no-
tion of dependent containers, i.e. interaction systems. The idea, following the
original intuition of [23] and [24] is to define a dependent container in a locally
cartesian closed category C as:

• an object S in C;
• an object A in C/S;
• an object D in C/(ΣSA); 13

• a morphism n in C(ΣΣSAD , S).

The appropriate notion(s) of morphism is not entirely clear and still under
heavy discussion...

12 Note that since r1 and r2 are “propositions”, we do not require that those trans-
lating functions are inverse of each other.
13 Recall that in a locally cartesian closed category, if B is a slice in C/A, we
write ΣAB for the codomain of B.

35

Conclusion

We have developed a new category where objects are games to model linear
logic or λ-calculus. What is rather new is the use of a notion of simulation
for morphisms: the notion of strategy is not used in this model! Strategies
do however appear implicitly in the notion of safety property which are the
“points” of our model: a safety property is set of states for which there is an
infinite strategy which restrict interaction to stay in the safety property. This
strategy is only guaranteed to exists, but there is in general no way to obtain
it.

Some of the interesting points about this model are that is allows to model
full linear logic (it can even be extended to second order). Moreover, and this
is relatively new, it can interpret the untyped differential λ-calculus.

An interesting project is to see whether one can apply the technology devel-
oped here in order to give denotational models for more interesting program-
ming languages. PCF-like languages ought to be rather easy, but interaction
systems (or predicate transformers) are rooted in “real” programming 14 so
that we might expect to have access to many programming features...

A The Simply Typed Differential λ-calculus

The syntax of the simply typed differential λ-calculus is given by the following
grammar:

t, u, t1, t2 ::= x | (t1) t2 | λx.t |

0 | (t1 + t2) | D t · u

We define β-reduction in the usual way:

(λx.t) u ;β t[u/x]

14 Predicate transformers were used to give a semantics to sequential programs by
Dijkstra (wp or wlp calculus) and have been extended to deal with specifications
as well (whole field of refinement calculus); interaction systems, as hinted in the
first section seem appropriate to describe interfaces.

36

where substitution is extended in the following “obvious” way:

x[u/x] = u

y[u/x] = y if y 6= x

(t)v [u/x] = (t[u/x])v[u/x]

λx.t [u/x] = λx.t

λy.t [u/x] = λy . t[u/x] if y 6= x

0[u/x] = 0

t1 + t2 [u/x] = t1[u/x] + t2[u/x]

D t · v [u/x] = D t[u/x] · v[u/x]

Differential reduction is defined as:

D(λx.t) · u ;D λx .
∂t

∂x
· u

where ∂t/∂x · u, the linear substitution of x by u in t is defined as:

∂x/∂x · u = u

∂y/∂x · u = 0 if y 6= x

∂(t)v/∂x · u = (∂t/∂x · u)v + (D t · (∂v/∂x · u))v

∂λx.t/∂x · u = λx.t

∂λy.t/∂x · u = λy.(∂t/∂x · u) if y 6= x

∂0/∂x · u = 0

∂(t1 + t2)/∂x · u = ∂t1/∂x · u + ∂t2/∂x · u

∂(D t · v)/∂x · u = D(∂t/∂x · u) · v + D t · (∂v/∂x · u)

Terms are quotiented by the (contextual closure of the) following equations:

• 0 = (0)u = λx.0 = D 0 · t = D t · 0;
• (t1 + t2) u = (t1)u + (t2)u;
• λx.(t1 + t2) = λx.t1 + λx.t2;
• D(t1 + t2) · u = D t1 · u + D t2 · u;
• D t · (u1 + u2) = D t · u1 + D t · u2;
• D(D t · u) · v = D(D t · v) · u.

37

The typing rules are

(1)
Γ ⊢ x : τ

if “x : τ” appears in Γ;

(2)
Γ, x : τ ⊢ t : σ

Γ ⊢ λx.t : σ → τ
;

(3)
Γ ⊢ t : τ → σ Γ ⊢ u : σ

Γ ⊢ (t) u : τ
;

(4)
Γ ⊢ 0 : τ

and
Γ ⊢ t : τ Γ ⊢ u : τ

Γ ⊢ t + u : τ
;

(5)
Γ ⊢ t : τ → σ Γ ⊢ u : τ

Γ ⊢ D t · u : τ → σ
.

Typed terms enjoy the Church-Rosser property and strong normalization
(w.r.t. β/differential reduction).

References

[1] T. Ehrhard, L. Regnier, The differential lambda calculus, Theoret. Comput.
Sci. 309 (1) (2003) 1–41.

[2] P. Hyvernat, Predicate transformers and linear logic: yet another denotational
model, in: J. Marcinkowski, A. Tarlecki (Eds.), 18th International Workshop
CSL 2004, Vol. 3210 of LNCS, Springer-Verlag, 2004, pp. 115–129.

[3] M. Abott, T. Altenkirch, N. Ghani, Containers - constructing strictly positive
types, Theoretical Computer Science 342 (2005) 3–27, applied Semantics:
Selected Topics.

[4] S. Abramsky, R. Jagadeesan, P. Malacaria, Full abstraction for PCF,
Information and Computation 163 (2) (2000) 409–470.

[5] J. M. E. Hyland, L. C.-H. Ong, On full abstraction for PCF: I, II and III,
Information and Computation 163 (2) (2000) 285–408.

[6] S. Abramsky, D. Ghica, L. Ong, A. Murawski, Applying game semantics to
compositional software modelling and verification, in: Tools and Algorithms for
the Construction and Analysis of Systems, Vol. 2988 of LNCS, Springer-Verlag,
2004, pp. 421–435.

[7] P. Hancock, A. Setzer, Interactive programs in dependent type theory, in:
Computer science logic (Fischbachau, 2000), Vol. 1862 of Lecture Notes in
Computer Science, Springer, Berlin, 2000, pp. 317–331.

38

[8] P. Hancock, A. Setzer, Specifying interactions with dependent types, in:
Workshop on subtyping and dependent types in programming, Portugal, July
7th 2000, 2000.

[9] P. Hancock, P. Hyvernat, Programming interfaces and basic topology, Annals
of Pure and Applied Logic 137 (1-3) (2006) 189–239.

[10] P. Hyvernat, A logical investigation of interaction systems, Thèse de doctorat,
Institut mathématique de Luminy, Université Aix-Marseille II (2005).

[11] S. M. Lane, Categories for the working mathematician, 2nd Edition, Vol. 5 of
Graduate Texts in Mathematics, Springer-Verlag, New York, 1998.

[12] R. Milner, Calculi for synchrony and asynchrony, Theoret. Comput. Sci. 25 (3)
(1983) 267–310.

[13] P. A. Melliès, Categorical models of linear logic revisited, to appear in
Theoretical Computer Science, (2002).

[14] Y. Lafont, Logiques, catégories et machines, Thèse de doctorat, Université Paris
7 (1988).

[15] T. Ehrhard, Finiteness spaces, Mathematical Structures in Computer Science
15 (4) (2005) 615–646.

[16] L. Vaux, λ-calculus in an algebraic setting, unpublished note (2006).

[17] R. F. Blute, J. R. B. Cockett, R. A. G. Seely, Differential categories, to appear
in Mathematical Structures in Computer Science (2005).

[18] R. M. Amadio, P.-L. Curien, Domains and lambda-calculi, Vol. 46 of
Cambridge Tracts in Theoretical Computer Science, Cambridge University
Press, Cambridge, 1998.

[19] M. Barr, ∗-autonomous categories and linear logic, Mathematical Structures in
Computer Science. A Journal in the Applications of Categorical, Algebraic and
Geometric Methods in Computer Science 1 (2) (1991) 159–178.

[20] L. Vaux, Differential λµ-calculus, technical report (2005).

[21] P. Martin-Löf, Intuitionistic type theory, Bibliopolis, Naples, 1984, notes by
Giovanni Sambin.

[22] B. Nordström, K. Petersson, J. M. Smith, Programming in Martin-Löf’s type
theory. An introduction, The Clarendon Press Oxford University Press, New
York, 1990.

[23] R. A. G. Seely, Locally Cartesian closed categories and type theory,
Mathematical Proceedings of the Cambridge Philosophical Society 95 (1) (1984)
33–48.

[24] M. Hofmann, On the interpretation of type theory in locally cartesian closed
categories, in: CSL ’94: Selected Papers from the 8th International Workshop
on Computer Science Logic, Springer-Verlag, London, UK, 1995, pp. 427–441.

39

