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Realizability of the axiom of choice in HOL.

(An analysis of Krivine’s work)

Christophe Raffalli∗

Frédéric Ruyer †‡

March 14, 2007

Abstract

This paper is an introduction to recent works in realizability, mainly
Krivine’s work to realize the dependent choice axiom. We also show how
to improve programs extracted from classical proofs by distinguishing for-
mulas with and without algorithmic contents.

1 Introduction

This work gives a way of realizing the axiom of choice (AC) in higher order
logic (HOL). It follows from an idea of J-L Krivine developed in [7], consisting
in introducing a new constant in the λC-calculus which could be interpreted
with a “clock”.

However, the theorem ACclock which is realized by this clock is not the usual
axiom of choice. Nevertheless, it implies the dependant axiom of choice ACD

(and in fact the non extensional axiom of choice ACNE) and we will give and
study the behaviour of the program extracted from the proof of ACNE using
the ACclock axiom realized by a clock instruction.

To get more readable terms, we also use a part of the formalism of system ST
developed in [13, 15, 16] inspired by the work of Michel Parigot [11], Christine
Paulin [12], Catherine Parent [10], Stephano Berardi [1] and Philippe Curmin [4]
which allows to remove computationally useless parts of a proof. Our first goal
was to “prune” the proof given in the original paper [7], for example by remov-
ing parts concerning comparison of integers, or equality tests. But in the paper
to appear [8] the author gives almost the same result as us. What is different
in our approach is that we address more strictly the gap between synctactic ty-
pability (⊢ t : A) and semantic realizability (t  A), using propositions without
algorithmic contents in the type syntax thanks to the special arrow ⇀.
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†email: frederic.ruyer@univ-savoie.fr
‡address: Laboratoire de Mathématique, Université de Savoie, 73376 Le Bourget-du-Lac
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For example, it allows us to avoid the uncomfortable notations like ∩m<n({m} →
. . . which are replaced by ∀m(m < n ⇀ Nm → . . . We also can give a type to
the term Comp (see fact 3), whereas in [8] it is used only on the semantic side.

Remark: All the terms given in this article have been produced by the PhoX
proof assistant developed by C.Raffalli [14].

2 λC-calculus

We use the same formalism as in [7], stacks allowing to handle easily lists of
arguments, although it adds some steps of reduction.

2.1 Terms and stacks

We suppose given a denumerable set V of variables, and one constant : C. The
sets Λc and Π are defined by mutual induction as follows:

• Λc = V
⋃

{C}
⋃

{λx.t; t ∈ Λc}
⋃

{(tu); t, u ∈ Λc}
⋃

{kπ;π ∈ Π}

• Π = {ǫ}
⋃

{t.π; t ∈ Λc, π ∈ Π}

2.2 Execution of processes and weak head reduction

The set of processes is defined as P = Λc × Π; we write t ⋆ π for (t, π). There
are four rules of reduction:

1. (push) (tu) ⋆ π ≻ t ⋆ u.π

2. (pop) λx.t ⋆ u.π ≻ t[x := u] ⋆ π

3. (store) C ⋆ t.π ≻ t ⋆ kπ.π

4. (restore) kπ ⋆ t.π′ ≻ t ⋆ π

This formalism has one drawback: it increases the number of steps. Effectively,
we have usually (λx.u v)v1 · · · vn ≻w.h.r u[x := v]v1 · · · vn, and it is here simu-
lated by (λx.u v)v1 · · · vn ⋆ π ≻n+2 u[x := v] ⋆ v1 · · · vn.π. But we will see soon
that it gives an elegant way of defining the value of a formula.

2.3 Evaluable processes

We say that a set of process P ⊂ P is saturated if it is closed by anti-reduction:

∀p ∈ P, q ≻ p implies q ∈ P

Suppose we have defined a set ⊥⊥ of evaluable processes, which is saturated. If
S ⊂ Π, we note S⊥ = {t ∈ Λc;∀π ∈ S, t ⋆ π ∈ ⊥⊥}. Every L ⊂ Λc such that
there is an S ⊂ Π such that L = S⊥ is called a truth value. This means we call
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truth value the orthogonal of a set of stacks. Sets of stacks themselves could be
considered as counter proofs or falsity values.

It is clear that .⊥ is decreasing, that is:

S ⊂ S′ =⇒ S′⊥ ⊂ S⊥

Therefore, Π⊥ is the least truth value, and ∅⊥ = Λc the largest one.

The semantics we will define for HOL will always be (implicitly) parametrised
by the choice of a saturated set ⊥⊥ of evaluable processes. Moreover, some specific
results may depend upon specific properties of this set.

We now end this section by one last definition (which is used for the interpre-
tation of implication): if Φ is a set of λ-terms and S is a set of stacks then:

Φ.S = {t.π; t ∈ Φ and π ∈ S}

3 HOL with propositions and types

Here we define HOL [2], with two sorts of formulas:

• Propositions: which are formulas without algorithmic content. Their in-
terpretation will be either true or false.

• Types: which are formulas with algorithmic content. They will be inter-
preted by set of programs of the form S⊥ in order to be able to realize
Peirce’s law.

In fact this will be two copies of the same logic (except that we will extract pro-
grams only for one of them) which interact only through one special implication
written ⇀ with a proposition on the left and a type on the right.

The interpretation of P ⇀ A will be the interpretation of A when P is true and
the largest possible interpretation Λc = ∅⊥ when P is false. This connective is
similar to parigots A ↾ P in [11] which is a conjunction instead of an implication.

3.1 Sorts, terms and formulas

The set of sorts S is defined by the grammar:

S = V|C|S → S

V is a denumerable set of variables of sorts, and C is a set of sorts constants.
In the rest of the paper, we will suppose that {τ ; o;ω} ⊂ C, τ denoting the sort
of types, o denoting the sort of propositions and ω denoting the sort of natural
numbers.
We associate to each sort s a denumerable set of variables Vs, whose elements
are noted xs and define the set of terms T as the set of simply-typed λ-terms
using the set of sorts S as simple types and using at least the following constants
with their given sorts:
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0 : ω; s : ω → ω;
→ : τ → τ → τ ; → : o → o → o;
∀s : (s → τ) → τ ; ∀s : (s → o) → o

⇀: o → τ → τ















There are two arrows that we write in the same way but which have distinct
sorts. There are also two polymorphic universal quantifiers. The context and
the following convention will avoid confusion:

We will use the capital letters A, B, C for types (that is expressions of sort τ)
and the letter P , Q, R for propositions that is expressions of sort o. Therefore,
if we write A → B we know that the arrow here is of sort τ → τ → τ .

We note as usual ∀xA instead of ∀(λx.A), A → B for (→A B) and ∀x:A B for
∀x(A(x) → B). We use these notations both for types and propositions.

3.2 Deduction rules

A context Γ is a finite set of propositions of sort o and pairs (x,A), x being a
λ-variable and A a type of sort τ . We note x : A instead of (x,A). We write a
context:

Γ = P1, · · ·Pn, x1 : A1, · · ·xm : Am

In proofs, we will manipulate two kinds of sequents: Γ ⊢ t : A when we prove a
type A (here t is a λ-term) and Γ ⊢ P when P is a proposition.

The rules for HOL with propositions and types are given in figure 1.

Lemma 1 If σ is a substitution on variables, we note A[σ] (resp. Γ[σ]) the
result of the substitution on the formula A(resp. the context Γ).

If Γ ⊢ A then Γ[σ] ⊢ A[σ]

Proof: Immediate induction on the size of the derivation. �

Remark: The semantics of the new connective ⇀ is reflected by its rules, because
there is nothing to prove when P is false in the introduction rule. However, one
could consider a rule saying Γ ⊢ ¬P implies Γ ⊢ t : P ⇀ A for any term t.
This rule is not derivable because in a derivation the free variables of a term
are always declared in the context.

4 Values and realizability

4.1 Valuation in a model

A model M is a triple (|M|, s 7→ s,⊥⊥) such that

• |M| is a set of sets with the following properties : if m ∈ |M| and n ∈ |M|
then n → m ∈ |M| (here n → m is the set of all functions from n to m).

• The function s → s has the following properties:
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Axiom : Axiom’ :

Γ, x : A ⊢ x : A Γ, P ⊢ P

→ - Intro : →′ - Intro :
Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A → B

Γ, P ⊢ Q

Γ ⊢ P → Q

→ - Elim : →′ - Elim :
Γ ⊢ t : A → B Γ ⊢ u : A

Γ ⊢ (tu) : B

Γ ⊢ P → Q Γ ⊢ P

Γ ⊢ Q

∀ - Intro : ∀′ - Intro :
Γ ⊢ t : A

Γ ⊢ t : ∀xA
If x not free in Γ.

Γ ⊢ P

Γ ⊢ ∀xP
If x not free in Γ.

∀ - Elim ∀′ - Elim :
Γ ⊢ t : ∀xsA

Γ ⊢ t : A[x := v]
For every v of sort s.

Γ ⊢ ∀xsP

Γ ⊢ P [x := v]
For every v of sort s.

⇀- Intro : ⇀- Elim :

Γ, P ⊢ t : A

Γ ⊢ t : P ⇀ A

Γ ⊢ t : P ⇀ A Γ ⊢ P

Γ ⊢ t : A

Peirce law : Peirce law’ :

Γ ⊢ C : (((A → B) → A) → A) Γ ⊢ (((P → Q) → P ) → P )

Figure 1: HOL rules with propositions and types
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– for every s ∈ V ∪ C , s ∈ M.

– s → s′ = s → s′. Remark: we should allow for non full model to allow
completeness result even for realizability (see [5, 5]), but this is not
needed important here.

We will assume that ω is the set of natural numbers N, τ = P(Π) and
o = {0; 1}.

• ⊥⊥ is a saturated set of processes.

Once a model M is defined, we can build the set of terms with parameters in
M : we just need to consider that

⋃

s∈S
{a; a ∈ s} is a subset of C (the set

of constants), and that each of these constants has the intended sort (or sorts,
because the same element may appear in the interpretation of more that one
sort) : a ∈ s, then a : s.

Now, we define the notion of interpretation (or value) of a closed term with
parameters in the model. We write it ‖.‖M and it is defined by induction as
follows:

• for every a in |M|, ‖a ‖ = a

• ‖0ω‖ = 0 and ‖sω→ω‖ = x 7→ x + 1.

• ‖ →τ→τ→τ ‖ = A 7→ B 7→ (A⊥.B).

• ‖ →o→o→o ‖ = P 7→ Q 7→ if P = 1 then Q else 0.

• ‖ ⇀ ‖ = P 7→ A 7→ if P = 1 then A else ∅.

• ‖∀(s→τ)→τ‖ = A 7→
⋃

x∈s

A(x).

• ‖∀(s→o)→o‖ = P 7→ if (for all x in s, P (x) = 1) then 1 else 0.

• ‖(t)u‖ = ‖t‖(‖u‖).

• ‖λx.t‖ = a 7→ ‖t[x := a]‖.

• for every other constant of sort s, cs in C, ‖cs‖ ∈ s should be given with
the definition of the model.

We will need a little lemma on substitutions:

Lemma 2 For all terms A and v, if x is a F.V. of A, then ‖A[x := v]‖ =
‖A[x := ‖v‖]‖.

Proof: It is an easy proof on the structure of the term A. �

When the context is clear, to lighten the writing, we will often allow us not to
underline a parameter and not to write the model as exponent.

The truth value of a type A (of sort τ), written |A| is ‖A‖⊥.

6



Remark : |∀X X| is the least truth value.

We now give some comments about the choices in the way the semantics is
presented:

• We choose not to interpret the terms with free variables. In fact there are
two equivalent alternatives: use terms with parameters in the model and
substitute all variables by terms before computing the interpretation, or
parametrise the valuation with a function giving the value of the variables.

• For a type, as we said, ‖A‖ is not the truth value but a set of counter
proofs. This explains why the definition are the dual of the natural defi-
nition for truth value. The truth value of a predicate is |A| = ‖A‖⊥. This
is because we choose τ = P(Π).

It would have been equivalent to take for τ the set of sets of terms which
are the dual of a set of stacks. This would require to change a bit the
interpretation of the connectives (for instance ∀ becomes an intersection).
This alternative gives a definition which is the same as the one used for
intuitionist system F or AF2 [9], but requires a few easy lemmas in the
classical case to prove that the interpretation of the connectives preserves
the property of being a dual of a set of stacks.

These, notions are also related to game semantics, as explained in the work
of Coquand [3]: intuitively, a stack might be seen as the environment, and
a term as a program that will give an answer to the environment, i.e.
“sending” the environment in ⊥⊥. For the reader, things might become
clearer after reading the interpretation of the term that computes the
minimum of a predicate (see theorem 2 below), the semantic interpreta-
tion of its type (together with the behaviour of the program) allowing to
describe the play between ∃löıse and ∀belard (see also the work of Hayashi
[6] for a more detailed presentation of the subject).

4.2 Adequation lemma

We say that a term t realizes a type A in a model M if t ∈ |A|M, and we write
M � t  A (or t  A if the context is clear enough).

We say that a formula without algorithmic content P is satisfied in M, and we
write M � P if ‖P‖ = 1.

We say that a substitution σ = [x1 := t1, . . . , xm = tm] realizes a context
Γ = P1 · · ·Pn, x1 : A1 · · ·xm : Am in a model M if and only if:

• for all 1 ≤ i ≤ m and M � ti  Ai

• and for all 1 ≤ i ≤ n, M � Pi

We write this M � σ  Γ (or σ  Γ if the context is clear enough).

Our aim is to show the following theorem:
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Theorem 1 (adequation lemma) Let us fix a model M. For all context Γ, if
σ  Γ and Γ ⊢ t : A then tσ  A.

We first show a lemma about propositions:

Lemma 3 For all contexts Γ, if σ  Γ and Γ ⊢ P then M � P .

Proof: We make the proof by induction on the length of the deduction.

Axiom’

Γ = P1 · · ·Pn, x1 : A1 · · ·xm : Am ⊢ Pi

trivial because M � Pj for all 1 ≤ j ≤ n.

→′ - Intro
Γ, P ⊢ Q

Γ ⊢ P → Q

We suppose that M � Pi for all 1 ≤ i ≤ n. We have ‖P → Q‖ = 1 if
and only if ‖P‖ = 0 of ‖Q‖ = 1. Therefore, we assume ‖P‖ = 1, and by
induction hypothesis, we have M � Q which means ‖Q‖ = 1.

→′ - Elim
Γ ⊢ P → Q Γ ⊢ P

Γ ⊢ B′

We suppose that M � Pi for all Pi in Γ. By I.H., ‖P‖ = 1 and ‖P →
Q‖ = 1. Thus, ‖Q‖ = 1.

∀′ - Intro
Γ ⊢ P

Γ ⊢ ∀xsP

with x not free in Γ. We need lemma 1. It is here easy to conclude with
I.H. and the interpretation of ∀.

∀′ - Elim
Γ ⊢ ∀xsP

Γ ⊢ P [x := u]

For every u of sort s. Immediate with the interpretation of ∀.

�

Proof: We can now prove the adequation lemma by induction on the length of
the deduction.

Axiom

Γ = P1 · · ·Pn, x1 : A1 · · ·xm : Am ⊢ xi : Ai

trivial because tσ = ti.
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→ - Intro
Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A → B

We have to show that (λx.t)σ ∈ |A → B|. We have (λx.t)σ = λx.(tσ)
because we can rename the bound variable x to avoid capture. Take π in
‖A → B‖, by the interpretation of →, there is tA in |A| an πB in ‖B‖
such that π = tA.πB. We have:

(λx.t)σ ⋆ π ≻ tσ[x := tA] ⋆ πB

By I.H. , tσ[x := tA] belongs to |B| (because σ[x := tA]  Γ, x : A).
Therefore, tσ[x := tA] ⋆ πB ∈ ⊥⊥, so (λx.t)σ ⋆ π too by saturation.

→ - Elim
Γ ⊢ t : A → B Γ ⊢ u : A

Γ ⊢ (tu) : B

We have (tu)σ = (tσ uσ). Take π in ‖B‖.

(tu)σ ⋆ π ≻ tσ ⋆ uσ.π

By I.H., we have uσ ∈ |A| and tσ ∈ |A → B|, then it is clear that
tσ ⋆ uσ.π ∈ ⊥⊥ by definition of the interpretation of →, and (tσ uσ) ⋆ π

too by saturation.

⇀- Intro
Γ, A ⊢ t : B

Γ ⊢ t : A ⇀ B

Suppose that M � A. By the interpretation of ⇀, we have ‖A ⇀ B‖ =
‖B‖ and by I.H. , we have tσ ∈ |B|. It is OK.
Else, we have ‖A ⇀ B‖ = ∅ and |A ⇀ B| = Λc and we don’t need any
I.H. to conclude.

⇀- Elim
Γ ⊢ t : A ⇀ B Γ ⊢ A

Γ ⊢ t : B

By the previous lemma 3, we have M � A, and thus ‖A ⇀ B‖ = ‖B‖.
By I.H., tσ ∈ |A ⇀ B|, and so tσ ∈ |B|.

Peirce law

Γ ⊢ C : ∀A∀B(((A → B) → A) → A)

Take A and B in the model, π ∈ ‖A‖ and t ∈ |((A → B) → A)|. We have

Ct ⋆ π ≻ t ⋆ kπ.π

We just have to check that kπ ∈ |A → B|. Take π′ ∈ ‖A → B‖; by the
interpretation of →, there is tA in |A| an πB in ‖B‖ such that π′ = tA.πB.

kπ ⋆ π′ = kπ ⋆ tA.πB ≻ tA ⋆ π

The conclusion is immediate.
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∀ - Intro
Γ ⊢ t : A

Γ ⊢ t : ∀xA

with x not free in Γ. Take π ∈ ‖∀xA‖ = ‖∀λxs.A‖. There is an a in s such
that π ∈ ‖λxs.A‖(a) = ‖A[x := a]‖. By lemma 1, and the I.H. , we have
tσ ∈ ‖A[x := a]‖.

∀ - Elim
Γ ⊢ t : ∀xsA

Γ ⊢ t : A[x := v]

Take v of sort s. We have to check that tσ ∈ A[x := v]. It is easy be-
cause ‖A[x := v]‖ = ‖A[x := ‖v‖]‖ = ‖λx.A‖(‖v‖), which is a subset of
‖∀xsA‖. Therefore, |∀xsA| is a subset of |A[x := v]|, and the conclusion
is immediate from the I.H.

�

5 Conjunction and existential

In this section, to ease reading, we really start to use notation introduced at
the end of section 3.1.

We define the type (A × B) = ∀K ((A → B → K) → K) and the three terms
pair[a, b] = λx (x a b), pi1[c] = (c λa λb a), and pi2[c] = (c λa λb b).

Fact 1 We extract the following constructor and destructors for pairs:

• If Γ ⊢ a : A and Γ ⊢ b : B then Γ ⊢ pair[a, b] : A × B.

• If Γ ⊢ c : A × B then Γ ⊢ pi1[c] : A and Γ ⊢ pi2[c] : B

We define the type ∃x A(x) = ∀K (∀x:A K → K) and the λ-term box[a] =
λx (x a).

Fact 2 We extract the following constructor and destructor for existential:

• If Γ ⊢ a : A(x) then Γ ⊢ box[a] : ∃x A(x).

• If Γ ⊢ b : ∃x A(x) and Γ ⊢ f : ∀x:A B then Γ ⊢ b f : B.

We now have a conjunction × and an existential quantifier ... however, very
often, to simplify the extracted program and to deal with conjunction mixing
types and propositions, we will use specific coding. For instance, if we want to
write an existential on two type Ax, Bx and a proposition Px, we will use the
formula:

∀K (∀x:A (B(x) → P(x) ⇀ K) → K).
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5.1 Leibniz equality and extensionality

The equality can be defined both as a type or a proposition, using Leibniz
definition. One remarkable point, is that the interpretation of the equality type
can only be two values (as for propositions). This fact will be essential to realize
axioms involving equality like ∀x(0 6= sx).

The type and proposition a = b are defined by ∀X(Xa → Xb) (this is two
distinct definitions, but we only write one, since we use the same notation for
both implication and quantification).

Lemma 4 When a = b is a proposition, ‖a = b‖ = 1 if and only if ‖a‖ = ‖b‖.

Proof: Recall that ‖Xa‖ = ‖X‖(‖a‖) and choose for ‖X‖ the characteristic
function of {‖a‖} when ‖a‖ 6= ‖b‖. �

Corollary 1 The following rules preserve the adequation lemma (and will sim-
plify extracted λ-terms):

Equality Equality’
Γ ⊢ t : A[x := a] Γ ⊢ a = b

Γ ⊢ t : A[x := b]

Γ ⊢ P [x := a] Γ ⊢ a = b

Γ ⊢ P [x := b]

Extensionality
Γ ⊢ P ↔ Q

Γ ⊢ P = Q

where the formula P ↔ Q := (P → Q) ∧ (Q → P ).

Proof: Immediate from the previous lemma. One just have to notice that ‖P [x :=
a]‖ = ‖P [x := ‖a‖]‖ and M � P ↔ Q implies ‖P‖ = ‖Q‖. �

Corollary 2 For any model and any terms t1, . . . , tp (possibly with x free in ti
or p = 0), we have λx (x t1 . . . tp)  ∀n(0 6= sn) and λx x  ∀n, m(sn = sm →
n = m) (here x 6= y := x = y → ∀X X). This means that the axioms ∀n(0 6= sn)
∀n, m(sn = sm → n = m) may be used both at the level of propositions and
type while preserving the adequation lemma.

Proof: Let us choose a model M. We use that fact that in M the sort ω

is interpreted by natural numbers in the standard way. Therefore, we have
‖0‖ 6= ‖sa‖ and ‖sa‖ = ‖sb‖ implies a = b.

For the first result, we take n ∈ ω and u ∈ |(0 = sn)| and π ∈ ‖∀X X‖ = Π and
we have to show that λx (x t1 . . . tp)⋆u.π ∈ ⊥⊥. We have λx (x t1 . . . tp)⋆u.π ≻
u⋆ t′1 . . . t′p.π and t′1 . . . t′p.π ∈ ‖∀n(0 = sn)‖ by the previous lemma. This gives
the wanted result because u ∈ |∀n(0 = sn)|.

The second result is immediate because the previous lemma and the choice of
models implies ‖sa = sb‖ = ‖a = b‖. �
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Important remark: the previous rules allow to deduce Γ ⊢ λx x : a = b from
Γ ⊢ a = b. This means that the equality as a proposition implies the equal-
ity as a type. The converse is not true, because sometimes, an equality proof
may contain a kπ constant that will arrive in head position. This means an
equality proof may raise an exception and in this case we can not derive the
corresponding propositional equality.

Remark: all the previous results are even simpler (like in recent Krivine’s work
[8]) if one consider a new type predicate x 6= y with the interpretation ‖a 6=
b‖ = Π when a 6= b and ‖a 6= b‖ = ∅ when a = b. Then, t  ∀n(0 6= sn) for
any term and we can realize the equivalence between Leibniz equality and the
negation of our new type predicate a 6= b.

6 Some results on integers

In this section, we give some more or less well-known results on integers. We
note, for n ∈ N, nC the Church integer λx.λf.fnx.

6.1 Recursion principle and induction principle

We define the formulas N(x) = ∀X (X(0) → ∀y:X X(S(y)) → X(x)), we add a
new propositional predicate a < b with the sort ω → ω → o interpreted
by the usual ordering on natural numbers (we could also define a < b =
∀X (X(Succ[a]) → ∀n:X X(Succ[n]) → X(b)), but it makes no difference to use
a new constant with axioms or a definition, at the level of propositions, for ex-
tracted programs).

We also define the following λ-terms which are the two constructors on nat-
ural numbers, the recursor and a term comp that compares two integers and
distinguish three cases (equal, less or greater):

• Zero = λx λf x,

• Succ[n] = λx λf (f (n x f)),

• NRec[t0, tS, n] =

pi2[n pair[Zero, t0] λp pair[Succ[pi1[p]], tS pi1[p] pi2[p]]]

• comp = λn NRec[comp1, comp2, n], with

– comp1 = λp (p λa λb λc a λx λa λb λc b) and

– comp2 = λn λr λp NRec[λa λb λc c, λp′ λr′ (r p′), p].

Fact 3 The previous programs were extracted from the following proofs:

• For all n ∈ N, ⊢ nC : N(n), and especially ⊢ Zero : N(0).

• ⊢ λn Succ[n] : ∀n(Nn → Nsn).
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• If ⊢ t0 : X(0), u : N(y), v : X(y) ⊢ tS(u,v) : X(S(y)) and ⊢ n : N(p) then
⊢ NRec[t0, tS, n] : X(p).

• ⊢ comp : ∀X ∀n,p:N

(

(n = p ⇀ X) → ((n < p) ⇀ X) →
((p < n) ⇀ X) → X

)

Proof: The first three items are very usual.

For the last one let us explain the behaviour of the term: if we suppose that
n  Nn′ and p  Np′ then comp n p a b c reduces to a if n = p, b if n < p

and c if p < n.

If we did not use the special arrow ⇀ in the type of comp, then a, b and c would
receive as argument the proof of the relation between n and p. We here see the
purpose of mixing propositions and types.

Now, for the proof itself, it is a double recursion on n and p, using the exten-
sionnality in the last case to be able to replace Sn = Sp by n = p. �

Let Y be a fixpoint operator i.e. such that for all π and f : Y ⋆f.π ≻ f ⋆ (Y f).π.
We will see that the fact that < is well founded is associated directly to a
fixpoint combinator. We have the following fact:

Fact 4 Y  ∀X (∀a (∀b:N ((b < a) ⇀ X(b)) → N(a) → X(a)) → ∀a:N X(a)).
This means we can use this as axiom and keep the adequation lemma.

Proof: Take X, and f  ∀a (∀b:N ((b < a) ⇀ X(b)) → N(a) → X(a)). We
want to prove that for all n ∈ N, if t  Nn and π ∈ ‖Xn‖, then Y ⋆ f.t.π ∈ ⊥⊥.
We have:

Y ⋆ f.t.π ≻ f ⋆ (Y f).t.π

We can assume as induction hypothesis that for all m < n, s  Nm and
π′ ∈ ‖Xm‖ we have (Y f) ⋆ s.π′ ≻ Y ⋆ f.s.π′ ∈ ⊥⊥. So, (Y f)  (Nm → m <

n 7→ Xm), that is (Y f)  ∀b(Nb → b < n 7→ Xb). So, with our hypothesis on
f , we have f ⋆ (Y f).t.π ∈ ⊥⊥. �

6.2 Minimum principle

The formula No lt expressing that no natural number less than n satisfies the
predicate Q) is defined as:

No lt(n, Q) = ∀p:N (Q(p) → (p < n) ⇀ ∀XX)

We define three terms to prove the minimum principle:

• Minunique =
λn λn′ λq λq′ λm λm′ λe

(

comp n n′ e
(

m′ n q
) (

m n′ q′
))

• Minfix[k] = (Y λr λa λq λf (f a q λb λq′ (k (r b q′))))

• Minexists = λn λq (C λk (Minfix[k] n q))

13



Fact 5 (Unicity of the minimum)

⊢ Minunique : ∀Q ∀n,p

(

N(n) → N(p) → Q(n) → Q(p) → No lt(n, Q) →
No lt(p, Q) → ∀X ((n = p ⇀ X) → X)

)

Proof: We apply the hypothesis No lt(n, Q) and No lt(p, Q) with respectively
N(n), Q(n) and N(p), Q(p) to get then the premises of comp in Fact 3 ! �

The behaviour of Minunique is easy to understand with the help of comp.

Fact 6 (existence of the minimum) Let us define the type that expresses that
the minimum of the predicate Q exists:

∃Min Q = ∀K (∀n:N (Q(n) → No lt(n, Q) → K) → K)

We have
⊢ Minexists : ∀Q ∀n:N (Q(n) → ∃Min Q)

Proof: Choose an integer n with n′ : N(n), q : Q(n). We use the Peirce law with
k : (∃Min Q) → ∀X X, and we have to deduce that Minfix[k] m q : ∃Min Q.
Using fact 4, what we have to prove is that

λr λa λq0 λf
(

f a q0 λb λq′
(

k
(

r b q′
)))

:

∀a
(

∀b:N
(

(b < a) ⇀ Q(b) → ∃Min Q
)

→ N(a) → Q(a) → ∃Min Q
)

Now, we have the hypothesis r : ∀b:N ((b < a) ⇀ Q(b) → ∃Min Q), A : N(a)
and q′ : Q(a), and we have to show:

λf (f A q′ λb λq′0 (k (r b q′0))) : ∃Min Q

We assume f : ∀n0:N (Q(n0) → No lt(n0, Q) → K)

and we use it with a. We have to prove λb λq′0 (k (r b q′0)) : No lt(a, Q) and
that leads to deduce k (r B q′′) : ∀XX from B : N(b) and q′′ : Q(b), and it
is immediate using k : (∃Min Q) → ∀XX and
r : ∀b0:N ((b0 < a) ⇀ Q(b0) → ∃Min Q). �

To understand how Minexists works, we run the program:

Minexists ⋆ a.q.f.π ≻ Minfix[kf.π] ⋆ a.q.f.π

≻ f ⋆ a.q.M.π with M = λb λq′ (Minfix[kf.π] b q′)

If the above was typed, we have

a ∈ |N(n)|, q ∈ |Q(n)|, M ∈ |No lt(n, Q)| ,
f ∈ |∀n:N (Q(n) → No lt(n, Q) → K)| and π ∈ ‖K‖.

Having f in head position with the stack a.q.M.π means that the program
pretends that n is the minimum.

To get a more precise understanding of how the program behaves, we introduce
a new constant κ wich will play the role of the opponent (you may read [8]
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for the relation between games theory and realizability). We suppose given a
term s for the successor (e.g λnSucc[n]), and 0 = Zero. Assume Q is a decidable
predicate (which makes κ possibly recursive), and the constant has the following
behaviour:

κ ⋆ sn0.q.ξ.π ≻ ξ ⋆ sp0.q′.π′

for a p < n and a term q′  Q(p) if there exists one. Else,

κ ⋆ sn0.q.ξ.π ≻ sn0 ⋆ ǫ

If we take a storage operator T as defined in [8], we have the following:

Theorem 2 For every integer n and any program ⊢ q : Q(n), using a constant
κ associated to Q as above, every reduction of ((Minexists)sn0)q ⋆ Tκ.π ends
on the Church integer p ⋆ ǫ with p the least integer such that Q(p) is inhabited.

In fact, the proof does not depend on the specific behaviour of Minexists, but
only on its specification.

Proof: We take ⊥⊥ = {p such that every reduction of p ends on kn⋆ǫ}. We have
to show that ((Minexists)sn0)q ⋆ Tκ.π ∈ ⊥⊥. By the adequation lemma, we
have:

((Minexists)sn0)q  ∀x(Nx → No lt(x,Q) → ⊥) → ⊥

By definition of , we have to show that Tκ  ∀x(N(x) → Q(x) → No lt(x,Q) →
⊥). Take n ∈ N; we must have:

Tκ  N(n) → Q(n) → No lt(n, Q) → ⊥

By theorem 11 of [8] concerning the behaviour of T , it is sufficient to show that
for every π, for every q  Q(n), and ξ  No lt(n, Q), κ ⋆ sn0.q.ξ.π ∈ ⊥⊥. Here,
two things can happen:

• either n is the least integer satisfying Q, in this case the execution stops
at the good state.

• either there is a p < n and a q′  Q(p). In this case, we have: κ⋆sn0.q.ξ.π ≻
ξ⋆sp0.q′.π′ Now he have to show that ξ⋆sp0.q′.π′ ∈ ⊥⊥. By the specification
of ξ, we just have to check that π′ ∈ (p < n) ⇀ ∀XX which is immediate
by the semantics.

�

We shall notice that the previous remark concerning the behaviour of Minexists
shows us that the term keeps Tκ in the head of its stored continuation, which is
coherent with the intuitive meaning of the program given thanks to the game-
semantics style interpretation we gave of its type.
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7 Application : realizing AC

The idea is to realize the following shape of the axiom of choice; it is divided
into three parts describing the properties we attend of the choice constructor
C:

• The first part of the specification expresses that if F (x,X) is inhabited,
so is C(F, x,X).

• The second part expresses that C is functional, that is it gives only one
candidate X for each choice of x (the formal definition of Func will be
given later).

• The third part expresses that if X is chosen by C(F, x), then we have
F (x,X).

Thus, our formulation of NAC (the name is explain below) is the following:

∀F∃C

(

∀x∀X(F (x,X) → ∃XC(F, x,X)) × Func(C(F ))×
∀x∀X(C(F, x,X) → F (x,X))

)

Remark: the above formalisation is polymorphic. The variables x and X could
have any sort s and s′ and therefore, F could have any sort of the shape s →
s′ → o.

However, this axiom is not the standard axiom of choice. It is the non exten-
sional axiom of choice (hence it’s name NAC). Nevertheless, when the sort of
x is ω this is really the countable axiom of choice, because C will really be a
choice function with argument in ω.

The reason it is not the usual axiom of choice for sorts more complex that ω is
the following: if the sort of x is ω → o, then one would also expect the following
to hold for C:

∀F, x, x′, X,X ′(∀y, y′(x(y) ↔ x′(y′)) ∧ C(F, x,X) ∧ C(F, x′, X ′) → X = X ′)

This formula means that C is extensional (in general, this formula is defined by
induction on the sort of C), and we did not state this in our formulation, but
only that C was functional which is much weaker.

7.1 A new constant

To realize the axiom of choice, we need to add a new constant to the λ-calculus
and show that it realizes a specific axiom.

Let F (x,X) be a formula with parameter F, x,X in a model M, and φ a λ-term.
Using the axiom of choice, there is a function Ψ such that

φ  F (x,Ψ(F, x, φ)) if and only if ∃X ∈ M φ  F (x,X).

16



Ψ just needs to choose such an X. The problem is that Ψ is not in the model,
since its third argument is a λ-term.

To solve this problem, we consider a surjection n 7→ tn from N to Λ and one
inverse of this surjection t 7→ nt. This means we choose a (non unique) index
nt for each λ-term t. We will use nt as a natural number, but also as a Church
numeral when using it in a λ-term. This means we can write nt  N(nt).

Using this surjection, we define a function Φ(F, x, n) = Ψ(F, x, tn). Now, Φ is
in the model and

φ  F (x,Φ(F, x, nφ)) if and only if ∃X ∈ M φ  F (x,X).

We define a new constant added to Λ, χ, with the following reduction rule.

χ ⋆ t.φ.π ≻ t ⋆ nφ.φ.π

Fact 7 The following axiom preserves the adequation lemma.

⊢ χ : ∀K ∀F ∀x (∀n:N (F(x,Φ(F,x,n)) → K) → ∀X (F(x,X) → K)).

Proof: Take K, F , x and x in the model and u : ∀n:N (F(x,Φ(F,x,n)) → K)
and φ : F (x,X). We just have to show nφ.φ.Π ∈ ‖∀n:N (F(x,Φ(F,x,n)) → K)‖
which is immediate using the definition of Φ. �

7.2 Realization of NAC

We will proceed with three lemmas:

We want to be able to choose X such that F (x,X) if there exists one. To do so,
we can take Φ(F,x,n) where n is the smallest integer satisfying this property.

We define the following predicate:

Z1(F,x,n) = No lt(n, λpF(x,Φ(F,x,p)))

However, Z1 describes an integer n, and we want to choose the second argument
of F (i.e. Φ(F, x, n)). For this, we define:

Z(F,x,X) = ∀K



∀n:N





F(x,Φ(F,x,n)) →
Z1(F,x,n) →

X = Φ(F,x,n) ⇀ K



 → K





Z(F,x,X) means that X = Φ(F,x,n) where n is the smallest integer such that
F(x,Φ(F,x,n)) if there is one. This definition is a coding of existential and con-
junction specific to our need (with a propositional equality) to make the ex-
tracted term as simple as possible.

Now, our first lemma will show that Z does choose an X such that F (x,X)
when there exists one. To do so, we need the following terms:

• T′1 = λn λf λg (Minexists n f λa λq λm (g λx (x a q m)))
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• T1 = χ T′1

Lemma 5 Using our new constant χ, we can prove:

T1 : ∀F ∀x ∀X′(F(x,X′) → ∃X Z(F,x,X))

Proof: Using the axiom for the constant χ, it is enough to prove

⊢ T′1 : ∀F ∀x ∀n:N (F(x,Φ(F,x,n)) → ∃X Z(F,x,X))

Assume m : N(n), f : F(x,Φ(F,x,n)) and g : ∀X (Z(F,x,X) → K). We must show
Minexists m f λa λq λm0 (g λx0 (x0 a q m0)) : K, using fact 6, what is
left to prove is:

λa λq λm0 (g λx0 (x0 a q m0)) :

∀n0:N (F(x,Φ(F,x,n0)) → No lt(n0, λn0F(x,Φ(F,x,n0))) → K)

It means we want (g λx0 (x0 A q m)) : K with A : N(a), q : F(x,Φ(F,x,a))
and m : No lt(a, λn0F(x,Φ(F,x,n0))). This is immediate using the definition of
Z. �

Then next lemma will show that Z defines a function. To define when a predicate
is a function, we use the following definition:

Func(Q) = ∀x ∀X,X′ (Q(x,X) → Q(x,X′) → (X = X′)).

Remark: we can not use propositional equality here. Indeed, the algorithmic
content of the next lemma, may trigger some backtracking as we will explain
later with more details. Therefore, in the next lemma, Func and = are used as
type.

Lemma 6 We define the term

T2 = λz λz′ (z (z′ λn λf λm λn′ λf′ λm′ (Minunique n n′ f f′ m m′ λx x)))

and we have ⊢ T2 : ∀F Func(Z(F));

Proof: This is an immediate application of the fact 5. �

The last lemma shows that Z always chooses a well suited X:

Lemma 7 We define the term

T3 = λz (z λa λb λc b)

and we have ⊢ T3 : ∀F ∀x ∀X:Z(F,x) F(x,X).

Proof: Immediate from the definition of Z. �

Finally, if we put together the previous three lemmas, and if we quantify over
Z (with an existential), we realize the following theorem:

∀F ∃C

(

∀x ∀X (F(x,X) → ∃X C(F,x,X)) × Func(C(F)) ×
∀x ∀X (C(F,x,X) → F(x,X))

)

Now, we will encode the conjunction and existential as usual to simplify the
term, and we get the following theorem:
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Theorem 3 (a realizer of NAC) We define the term TNAC = λx (x T1 T2 T3)
and we get

⊢ TNAC : ∀F ∀K



∀C





∀x ∀X (F(x,X) → ∃X C(F,x,X)) →
Func(C(F)) →
∀x ∀X (C(F,x,X) → F(x,X)) → K



 → K





Proof: Immediate from the three previous lemmas. �

We can briefly and intuitively deduce from the behaviour of the program for
the minimum principle the behaviour of TNAC : To be able to choose an X such
that F (x,X), you have to give a witness. As in the minimum principle, TNAC

will always choose this witness! However, when you use the fact that the choice
is functional, you will have access to the two natural numbers build by the χ

constant for two previous choices. Then the term will backtrack to the choice
with the smallest natural number to make the two choices identical.

In fact we could change the behaviour of the term χ with

χ ⋆ t.φ.π ≻ t ⋆ clock.φ.π

where clock is the current time. In this case, when TNAC detects that two choices
should have been identical, then, it will backtrack to the latest choice, which
seems the most efficient behaviour. You may read [8] for a proof that χ realizes
the same formula using the clock in specific models called generic models.

Remark: the previous theorem shows that the axiom of choice is realized. We
proved it using a new constant χ in the λ-calculus, a new constant Z in the
logic and a new axiom relating both. This shows that the derivation used in the
previous theorem preserve the adequation lemma in all models.

However, as previously mentioned, we only realize the non extensional axiom of
choice. Nevertheless, this non extensional axiom of choice is sufficient to prove
the countable axiom of choice or the dependant axiom of choice, which suffices
for analysis in general.

The next challenge for realisability is therefore the extensional axiom of choice,
or at least the extensional choice on real numbers. . .
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