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Abstract. In the standard sequent presentations of Girard’s Linear
Logic [10] (LL), there are two ”non-decreasing” rules, where the premises
are not smaller than the conclusion, namely the cut and the contraction
rules. It is a universal concern to eliminate the cut rule. We show that,
using an admissible modification of the tensor rule, contractions can be
eliminated, and that cuts can be simultaneously limited to a single initial
occurrence.
This view leads to a consistent, but incomplete game model for LL with
exponentials, which is finitary, in the sense that each play is finite. The
game is based on a set of inference rules which does not enjoy cut elimi-
nation. Nevertheless, the cut rule is valid in the model.

1 Overview

In an effort to strengthen the connection between

– categories of sequent calculus proofs modulo cut elimination and
– categories of winning strategies,

we try to push forward the idea of neutrality, introduced by Delande and Miller [7]
(see also our [13]). The idea there is to understand provability in MALL (Mul-
tiplicative Additive Linear Logic) as a graphical game4, as follows.

Positions of the game are graphs with edges labelled by formulae. The edges
adjacent to each vertex form a sequent, the vertex itself representing a player
trying to prove that sequent. Each move acts upon exactly one edge; its re-
strictions to each end of the edge correspond to inference rules in the sequent
calculus. Finally, a formula A is valid when, on the following graph, the left-
hand vertex (Proponent △) has a winning strategy against the right-hand vertex
(Opponent N):

△ N

A .

⋆ MoDyFiable and Choco ANR projects
4 Graphical game here means a game where positions are graphs. We do not give any

formal definition.



In this paper, we extend this approach to exponential connectives, for which
we recall the four standard rules:

Γ, A

Γ, ?A

Γ

Γ, ?A

Γ, ?A, ?A

Γ, ?A

?Γ, A

?Γ, !A

(where ?Γ denotes a list of ? formulae).

Interpreting these rules as moves in a graphical game raises the issue of
infinite plays, for which deciding who wins is problematic.

In this paper, we explore the following way around this problem. We first
replace the usual (right) tensor rule by an admissible variant

Γ, ?Θ, A ∆, ?Θ, B

Γ, ∆, ?Θ, A ⊗ B
Tens’,

which is still somehow decreasing, yielding an equivalent set of inference rules
which we call LL′. We then show that every sequent provable in LL′ admits a
bounded proof, i.e., a contraction-free one where cuts are reduced to at most one
initial occurrence.

Using this, one may devise a graphical game for LL′ without contraction, and
derive from it a model of LL′ provability, which is consistent (but incomplete).
We sketch this, and explain why the result is not satisfactory: the model validates
A ⊸ !A.

We then investigate one possible explanation for this deficiency: the absence
of n-ary dereliction. Restoring it leads to a set of inference rules which we call
NLL, where !A has the more standard decomposition

�
n∈N

A⊗n. The notion of
a bounded proof makes sense in NLL, and we show that bounded proofs yield
a model of LL′, albeit an incomplete one. We show that NLL does not satisfy
cut elimination, but does satisfy admissibility of cut, i.e., if Γ, A and A⊥, ∆ have
bounded proofs, then so does Γ, ∆.

NLL yields a more satisfactory graphical game, in which winning strategies
form a model of NLL, again consistent. Analogously to previous work [13], this
model is not complete w.r.t. NLL (there is a winning strategy for ⊥ ⊗ ⊥ for
instance). However, we are confident that our notion of local strategy, defined
in [13] for the MALL fragment, will extend smoothly to NLL, and yield a com-
plete model.

We thus have (by composition) a graphical game model of LL (which, again,
will not be complete for LL, because NLL itself is not). We finally prove that
admissibility of cut holds in this model.

We may sum up our models of LL in a diagram



LL �
∼= - LL′

Theorem 3 -
� �

Proposition 4

NLL

Game of Section 3

Proposition 2

?

� Proposition 3

6

Game of Section 5

Proposition 7 �

6

Theorem 6

?

where an edge between two notions of validity indicates that the target is a model
of the source, and a negated edge in the other direction indicates that the model
is not complete. We conjecture that the vertical negated edges may be rectified
by passing to local strategies in the sense of [13]. However, the horizontal negated
arrow cannot be rectified.

Related work The idea of a game semantics for logic goes back at least to Loren-
zen [19], and to Blass [4] for linear logic. Blass’ approach was extended by Abram-
sky et al. [1], Hyland and Ong [14], Abramsky and Melliès [2,20]. Laurent in-
vestigated the polarised case [18]. Among these standard approaches, only some
handle exponential connectives, and among them none rule out infinite plays.
Instead, they have to resort to smart criteria to decide who wins these infinite
plays.

Delande and Miller’s [7] game, our previous work [12,13], and Girard’s lu-
dics [11] of course were a source of inspiration for this paper.

Kashima [15] and Dyckhoff et al. [8,9] have already observed certain forms
of contraction elimination in other settings.

Organisation of the paper In Section 2, we prove that any sequent provable in
LL has a bounded proof in LL′. In Section 3, we build a first graphical game
from the rules of LL′ minus contraction. We then prove that it yields a consistent
model of LL′ provability, which is however incomplete. In Section 4, we define
our set of inference rules with n-ary dereliction, called NLL, and prove that it
yields a model of LL′ provability, which is again incomplete. We also show that
NLL does not enjoy cut elimination. We then move on in Section 5 to define
our graphical game for NLL, which we prove to yield a consistent model of NLL
(hence NLL is itself consistent), which is again incomplete. In Section 7 we prove
the cut rule to be admissible in the model.

Acknowledgments We warmly thank Olivier Laurent for his constant “Linear
Logic Hotline” and many useful examples and counterexamples. We also thank
Paul-André Melliès for encouragements, and René David and Karim Nour for
a very efficient consulting session. Finally, we thank the anonymous referees for
very careful reading and helpful suggestions.



2 Bounded proofs in LL

In this section, we prove our result on linear logic, namely that any provable
sequent admits a bounded proof.

First, we recall LL formulae, defined by the grammar

A, B, C, . . . ::= 0 | 1 | A ⊗ B | A ⊕ B | ?A
| ⊤ | ⊥ | A�B | A & B | !A,

and decree that formulae on the first line are positive, the others being neg-
ative. De Morgan duality, or linear negation, A⊥ is defined as usual (sending
a connective to that vertically opposed to it). Observe that we do not handle
propositional variables; the sequent calculus part extends easily to variables, but
for games, this is not yet clear to us. We use the usual priorities, e.g., !A ⊸ B⊗C

means (!A) ⊸ (B ⊗ C). Finally, sequents Γ, ∆, . . . are lists of formulae, and we
use Γ ⊢ ∆ as a notation for Γ⊥, ∆, when visually easier.

Now, consider the following variant of the tensor rule

Γ, ?Θ, A ∆, ?Θ, B

Γ, ∆, ?Θ, A ⊗ B
Tens’,

which goes back at least to Andreoli [3]. We observe that it is derivable in LL.
Letting LL′ denote the set of inference rules obtained by replacing the usual
tensor rule with Tens’, the following should be clear:

Proposition 1. Provability in LL′ is equivalent to provability in LL.

Thanks to rule Tens’, we further have:

Lemma 1. For any formula A, the formula δA = !(!A ⊸ !A ⊗ !A) is provable
with neither cuts nor contractions in LL′, and furthermore for any Γ , the rule

Γ, ?A⊥, ?A⊥

Γ, ?A⊥, δ⊥A
Dup

is derivable without cuts nor contractions.

(Here, A ⊸ B denotes A⊥ �B, as usual.)

Proof. Here is a proof of δA:

?A⊥, !A ?A⊥, !A

?A⊥, !A ⊗ !A

!A ⊸ (!A ⊗ !A)

!(!A ⊸ (!A ⊗ !A)).

Here is a derivation of Dup:

Γ, ?A, ?A

Γ, ?A� ?A ?A, !A⊥

Γ, ?A, !A⊥ ⊗ (?A� ?A)

Γ, ?A, ?(!A⊥ ⊗ (?A � ?A)).



⊓⊔

We call duplicators the formulae of the shape δA. Using this, we construct
bounded proofs for provable sequents in LL′, in the following sense.

Definition 1. A proof in LL′ is cc-free when it is cut-free and contraction-free.
It is bounded when it is either cc-free, or of the form

π1

A

π2

A⊥, Γ

Γ

with π1 and π2 cc-free.

Lemma 2. For any sequent Γ provable in LL′, there is a list δ of duplicators

such that Γ, δ
⊥

admits a cc-free proof.

(Here δ
⊥

denotes the list of duals of formulae in δ.)

Proof. By cut elimination in LL, we may assume the given proof cut-free. The
construction is then a mere induction on it, using the fact that duplicators are
! formulae. The non trivial case is contraction: from a given proof

π

Γ, ?A, ?A

Γ, ?A

one obtains by induction hypothesis a proof π′ of Γ, ?A, ?A, δ
⊥

, for some list of
duplicators δ. One then derives (up to exchange):

π′

Γ, ?A, ?A, δ
⊥

Γ, ?A, δ
⊥

, δ⊥A .
Dup

(This does not use contraction or cut.) For other cases, one just shows that a list
of new hypotheses starting with ? do not hinder the derivation too much. This
only adds weakenings and Exchange rules, but no cuts nor contractions. ⊓⊔

Finally, we conclude:

Theorem 1. In LL′, each provable sequent admits a bounded proof.

Proof. Consider a provable sequent Γ in LL′. By Lemma 2, Γ has a cc-free LL′

proof π of Γ, δ
⊥

, for some δ = (δ1, . . . , δn). So, the proof

δ1 . . . δn

⊗ (δ)

π

Γ, δ
⊥� (δ)⊥, Γ

Γ

of Γ is bounded. ⊓⊔



3 A naive game for LL′

We have shown that we can dispense with the contraction rule of LL, at the cost
of a single initial cut and a modified tensor rule.

Starting from our previous game [13], we now build an extension of it to
these rules.

3.1 Positions

As sketched above, the idea of positions in our game is as follows: positions
are graphs, whose edges are labelled by formulae. We want to understand the
neighborhood of a vertex, i.e., its adjacent edges, as its sequent. For instance,
the vertex • in the graph

•△

△

△

A
A

B

sees the sequent A, A⊥, B, or equivalently A ⊢ A, B.
The use of graphs may be understood by seeing the cut rule

Γ ⊢ A A ⊢ ∆

Γ ⊢ ∆

as a move

From To

•Γ ∆ • •
A

Γ ∆

between graphs. Starting from the single vertex graph, after a finite number of
cuts, one may reach any connected and acyclic graph (in the undirected sense).
Hence our definition:

Definition 2. A position in our game is a punctured, directed, signed, normally
labelled tree.

By punctured, we mean that a vertex is selected; we say that this vertex holds the
token. By directed we mean that edges are ordered pairs of vertices. By signed,
we mean that a function from vertices to {O, P} is selected. Vertices labelled O,
called opponents, are pictured by N, others, called proponents, are pictured by △.
By labelled, we mean that a function from edges to formulae is selected, and by
normally labelled, we mean that the selected formulae are positive. Finally by
tree, we mean that the underlying undirected graph is a tree.

We will also consider non-normally labelled trees, as a notation for the posi-
tion obtained by normalisation: for each edge labelled with a negative formula,
reverse altogether the edge and the formula.

There is an obvious notion of isomorphism, which turns positions into a
groupoid. Observe that positions may have symmetries (automorphisms).

For each vertex, its adjacent edges determine (up to reordering) its sequent.



From To

• •
A

Γ ∆ • •
A

Γ ∆

• •
1

∆ • ∆

• •

Γ

?Θ

Γ ′

∆
A ⊗ B

•

•

•

Γ

?Θ

?Θ

Γ ′

∆

A

B

• •
A ⊕ B

Γ ∆ • •
A

Γ ∆

• •
A ⊕ B

Γ ∆ • •
B

Γ ∆

• •
?A

Γ ∆ • •
A

Γ ∆

• •
?A

Γ ∆ •Γ

Fig. 1. Naive moves

3.2 Moves

We now define our moves in Figure 1. Moves are the edges of a (huge) graph
with positions as vertices, or equivalently a reduction relation on positions.

Moves go left to right (in each row), and the vertex v holding the token,
pictured as framed, plays the move, or is active. The other vertex v′ is passive.

The move is defined regardless of v and v′ being proponents or an opponents.
Thus, to avoid notational clutter, we define moves as a relation between graphs,
the polarity {O, P} being inherited from the initial position. In the figure, • thus
represents vertices regardless of their polarity.

On the left, the broken edge or formula is shown. It determines two subtrees,
which are pictured as triangles, and named to emphasise the analogy with in-
ference rules. In the initial position of the tensor move (third line), there are
several triangles connected to the left-hand vertex v: they denote subtrees which
have v as only vertex in common.

On the first row, we have negative moves, where A is required to be positive.
The active vertex v passes the token along an input edge. In some sense, v has a
negative formula, and asks the vertex at the other end of this formula to break it.



Thanks to acyclicity of our positions, the token will come back, if ever, through
the same edge, breaking it at the same time. In the case of the negative formula
⊤, the token will never come back, since there is no right introduction rule for
0. In this sense, the corresponding negative move is winning.

Then we have positive moves. The active vertex may act on each of its output
formulae, except the 0’s, and conditionally for the 1’s. The action is simple on
formulae of the form A⊕B: it just changes the formula either into A or into B.
On ?A, the vertex may change it to A, or brutally erase ?A, together with its
whole subtree. The action is pretty simple on the formula 1: if (and only if) that
edge is its sole adjacent edge, the vertex may pass the token along that formula,
and delete itself and the edge from the tree.

It remains to explain the positive move in the case of a tensor formula. This
is the most complex move. Here our active vertex, say v, has an output edge
e labelled with A ⊗ B, ending at the neighbour vertex v′. When deleting e, we
get a tree ∆ on the v′ side, and another tree on the v side, which v has to split
into three subtrees Γ, Γ ′, and ?Θ, sharing only their root v. Furthermore, the
subtree ?Θ must exclusively consist of outputs of the form ?C. Then our vertex
v becomes two vertices v1 and v2, where v1 inherits A (linked to v′), Γ and a
copy of ?Θ, while v2 inherits B (also linked to v′), Γ ′ and a second copy of ?Θ.
On the other side, v′ keeps ∆ unchanged, and inherits both input formulae A

and B, plus the token.
Our formalism allows to define cut moves and contraction moves (e.g., by

changing ?A to ?A� ?A), but we leave them out of the picture.

3.3 Plays, strategies, validity

We now define plays and (winning) strategies, and show that the latter yield a
consistent model of LL′ provability (which is incomplete).

Having defined moves, plays on a position U follow: they are (directed, possi-
bly countable) paths from U in the graph of positions and moves, or equivalently
reduction sequences. They happen to be finite:

Lemma 3. In the above graph of positions and moves, there is no infinite path
(i.e., in our game, all plays are finite).

Proof. This is a consequence of our later Theorem 4. ⊓⊔

For a position U , we then define a strategy to be a welcoming, prefix-closed
set of plays from U , containing the empty play, and stable under isomorphism.
The latter means that a strategy must contain two isomorphic plays

U - U1
- U2

- . . .

. . .

V1

∼=
?

-
-

V2

∼=
?

- . . .

at the same time. By welcoming, we mean that the strategy accepts any move
from opponents. In a strategy S, a play is maximal when S contains no extension
of it.



Definition 3. A strategy is winning if, in all its maximal positions, the token
is held by an opponent.

We then define validity. This is a bit more delicate, because the game does
not feature contraction, so for proofs to yield winning strategies, we account for
the needed initial cut:

Definition 4. A formula A is GLL′-valid (G stands for “Game”) iff there exists
a tree U such that for all trees V , the vertices of U have a winning strategy against
those of V in the graph

△ NU V
A

wherever the token is placed initially.

Using the same methods as in Section 6 below, one may show that GLL′-
validity yields a consistent model of LL′:

Theorem 2. GLL′-validity is consistent, i.e., two dual formulae are not both
GLL′-valid.

Proposition 2. Any formula provable in LL′ is GLL′-valid.

The proofs are as in Section 6, so we do not repeat them here.
We consider this game unsatisfactory, because its exponentials are terribly

non standard:

Proposition 3. The formula A ⊸ !A is GLL′-valid.

We first observe:

Lemma 4. Axioms A ⊢ A are GLL′-valid.

Then:

Proof (of Proposition 3). One reaches a sequent A ⊢ !A, where, roughly, one may
pass the token along !A, and then either be erased (and hence win), or become
A ⊢ A (and win again). ⊓⊔

The remainder of the paper patches this deficiency by allowing n-ary dere-
liction. We start by considering a new set of inference rules.

4 NLL

Let us start from the rules of LL′. We want to patch them to add n-ary derelic-
tion. This means that instead of contraction, weakening, and dereliction, we use
the rules:

Γ,⊥

Γ, ?A

Γ, A

Γ, ?A
. . .

Γ,�nA

Γ, ?A
. . .



with �0A = ⊥ and �n+1A = �nA�A.
To preserve the symmetry between dual connectives, we use for ! the rule

∆,1 ∆, A . . . ∆,⊗nA . . .

∆, !A

which has infinitely many premises.
The idea behind these rules is to encode !A as an infinitary additive con-

junction
�

n∈N
A⊗n, which is an old idea, at least as old as Lafont’s work on

categorical models of LL [16,17].
This yields a set of inference rules, which we sum up in Figure 2 and call

NLL. Since we have infinitary rules, let us precisely define proofs.

Definition 5. A proof in NLL is a tree whose branches are all finite, and whose
nodes are labelled with inference rules as usual.

However, we are mainly interested in bounded proofs, in the following sense:

Definition 6. A proof in NLL is bounded when it is either cut-free, or of the
form

π1

A

π2

A⊥, Γ

Γ
(1)

with π1 and π2 cut-free.

We now show that:

– NLL is a model of LL provability;
– This model is incomplete, i.e., the converse does not hold;
– NLL does not enjoy cut elimination.

Lemma 5. Axioms A ⊢ A have bounded proofs in NLL.

Theorem 3. Each provable sequent in LL′ admits a bounded proof in NLL.

Proof. By induction on a given bounded proof in LL′, we construct a bounded
proof (of the same sequent) in NLL. All cases but promotion are obvious by
induction hypothesis (because the rules of LL′ are almost the same as those of
NLL). For promotion, assume given a proof of ?Γ, A. We need to find an NLL
proof of each ?Γ,⊗nA: for each n, we split the n-fold tensor, and reduce to
proving ?Γ, A or ?Γ,1, which are both have bounded proofs in NLL (the former
by induction hypothesis, the latter straightforwardly). Since we only introduce
tensor and 1 rules, this results in a bounded proof. ⊓⊔

We have thus shown that bounded proofs in NLL are a model of LL′ prov-
ability. However, the converse does not hold, thanks to an example of Olivier
Laurent:

Proposition 4. LL′ is not a model of NLL.



Positive rules Negative rules

1

Γ

Γ,⊥

Γ,⊤

Γ, ?Θ, A ∆, ?Θ, B

Γ, ∆, ?Θ, A ⊗ B

Γ, A, B

Γ, A�B

Γ, A

Γ, A ⊕ B

Γ, B

Γ, A ⊕ B

Γ, A Γ, B

Γ, A & B

Γ,�n

A

Γ, ?A

Γ,1 . . . Γ,⊗
n

A . . .

Γ, !A

Γ, B, A, ∆

Γ, A, B, ∆

Γ, A ∆, A
⊥

Γ, ∆

Fig. 2. Inference rules for NLL

Proof. The sequent ⊥⊕(X⊥�?X⊥), !X has a bounded proof in NLL, as follows:

. . .

⊥,1

⊥⊕ (X⊥ � ?X⊥),1

X⊥, X

X⊥ � ?X⊥, X

⊥⊕ (X⊥ � ?X⊥), X . . .

⊥⊕ (X⊥ � ?X⊥), !X.

However, it is not provable in LL. There could be a problem since it uses a
variable, but taking X = ⊥⊗⊥ makes everything work the same. ⊓⊔

Finally:

Proposition 5. NLL does not enjoy cut elimination.

Proof. Consider the sequent X & ((X & Y ) � Y ) ⊢ ?(X & Y ). It admits the
following LL′ proof:

X ⊢ X

X ⊢ ?(X & Y ), X

X & ((X & Y )� Y ) ⊢ ?(X & Y ), X

Y ⊢ Y

X & Y ⊢ X & Y

X & Y ⊢ ?(X & Y )

((X & Y )� Y ) ⊢ ?(X & Y ), Y

X & ((X & Y )� Y ) ⊢ ?(X & Y ), Y

X & ((X & Y )� Y ) ⊢ ?(X & Y ), (X & Y )

X & ((X & Y )� Y ) ⊢ ?(X & Y ), ?(X & Y )

X & ((X & Y )� Y ) ⊢ ?(X & Y ),



hence has a bounded proof in NLL by Theorem 3. However, careful inspection
shows that it has no cut-free proof. Again, we do this using variables, which
are not in the syntax. It all works the same by taking X and Y such that none
entails the other, e.g., X = ⊥⊗⊤ and Y = 1� 0. ⊓⊔

Nevertheless, we have:

Proposition 6. NLL features admissibility of cut, i.e., if Γ, A and A⊥, ∆ both
have bounded proofs, then so does Γ, ∆.

Proof. Assuming first that the given bounded proofs have the shape:

π1

Γ, A, B

π2

B⊥

Γ, A

π3

∆, A⊥, C

π4

C⊥

∆, A⊥

with the πi’s cut-free. We then form the bounded proof:

π1

Γ, A, B

π3

∆, A⊥, C

Γ, ∆, (A ⊗ A⊥), B, C

Γ, ∆, (A ⊗ A⊥)�B � C

π2

B⊥

π4

C⊥

B⊥ ⊗ C⊥ A⊥, A

(A⊥ �A) ⊗ B⊥ ⊗ C⊥

Γ, ∆.

Cases where not both proofs start with a cut behave essentially the same. ⊓⊔

We now proceed to define a graphical game interpretation of NLL.

5 A graphical game for NLL

The positions of our game are exactly as in Section 3. Moves are as in Figure 1,
with both exponential moves replaced by the single move scheme:

From To

• •
?A⊥

Γ ∆ • •
⊗nA

Γ ∆

(using the conventions of Figure 1).
Plays are as in Section 3: (directed, possibly countable) paths in the graph

of positions and moves. As in Section 3, we have:

Theorem 4. All plays are finite.

We prove this by adapting to our graphical setting the syntactic techniques of
David and Nour [5,6].



We will need an auxiliary move, which we call the exotic move:

From To

• •
1

Γ ∆ • •
0

Γ ∆ .

(2)

Call a position U strongly normalizable (sn for short) if, even if we add the
above exotic move, all plays from U are finite. Why do we need a new move?
We want to be sure that if a position is sn, so are all its subpositions, in the
sense of subgraphs. And the problem with this is that, although most moves on
a subposition come from a move on the full position, this is not the case for a
1-move. Indeed, consider the bare 1-move

From To

• •
1

• .

If we embed the initial position into the bigger

• • •
10

we obtain a position without any possible move. Our exotic move allows the
token to be passed to the right. The intuition is that it transforms 1-moves into
“one-way” moves, merely passing the token along 1 without any hope for return.
Which has roughly the same effect as deleting the edge.

Thanks to the exotic move, we have:

Lemma 6. Any subposition of an sn position is again sn.

Now, consider a tuple U = (U, v, a1, . . . , an) where U is a position with
marked vertices a1, . . . , an, and v is the vertex owning the token. Consider also
a tuple V = ((V1, b1), . . . , (Vn, bn)) of positions (bi is the node having the token),
and a formula A. From these data, we build a new position W = W (U, V, A) by
taking the union of U with the Vi’s, and adding n new edges from ai to bi for
each i, labelling these with A (which could be negative), and putting the token
at v.

Using this notation, the theorem follows (by an easy induction on the number
of vertices) from the following lemma:

Lemma 7. If U and the Vi’s are sn, then so is W .

Proof. We proceed by lexicographic induction on the triple (A, U, n), using the
following orderings:

Formulae: We use the ordering determined by the following four rules:
– A formula is greater than each of its subformulae and their duals;
– 1 is greater than ⊤;
– A formula ?C is greater than �nC for each n (and similarly for ! and

⊗);



– A negative formula is greater than its linear negation.
Positions: We order sn positions by putting U ≥ V iff there is a path in the

graph of moves, or equivalently a reduction sequence, from U to V . Since we
limit this to sn positions, it is well-founded.

Numbers: Finally, we use the standard ordering for natural numbers.

In order to prove that there is no infinite play starting at W , it is enough to
show that all positions reached from W after one move are sn. We proceed by a
case analysis on this first move.

If it is a move inside U : U → U ′, we apply the induction hypothesis to the
new position W0. We have to explain how it has the required form. Indeed, we
have W0 = W (U ′, V ′, A), where:

– the marked points in U ′ remain the same, except in the case of a 1 move,
where some ai’s may be deleted, and in the case of a ⊗ move where some
ai’s may be duplicated;

– V ′ is like V , except in case the move is a 1 move, where possibly some Vi’s
have to be deleted, and in case of a ⊗ move, where some Vi’s have to be
duplicated.

Hence in the present case, n may increase, but A is constant, and U strictly
decreases.

Suppose now v = aj and our move W → W0 is on the j-th A edge between
aj and bj .

We treat separately the most delicate case where A = B⊗C. The move then
looks like:

From To

• •

Γ

?Θ

Γ ′

Vj
B ⊗ C

•

•

•

Γ

?Θ

?Θ

Γ ′

Vj

B

C

.

But both positions

U ′ = •

Γ

?Θ and U ′′ = •?Θ

Γ ′

are sn by induction hypothesis: they both have the shape W (X, Y, A) with X ≤
U and Y strictly shorter than V , because Vj has been removed. But Vj itself is
sn by hypothesis, so by induction hypothesis again, the position

•

•

Γ

?Θ

Vj

B⊥



is again sn, since it is obtained as W ′ = W (Vj , U
′, B⊥). Finally, by induction

hypothesis, W0 = W (W ′, U ′′, C⊥) is also sn.
For all other cases, we apply the inductive hypothesis twice: one for the new

V , with smaller n, and one for the new U , with a smaller A. ⊓⊔

By the way, Lemma 3 follows by remarking that any play in the game of
Section 3 is simulated by a play in the new game (with the exotic move (2)).

6 Soundness

So we have a game for NLL. Let us now show that it defines a model of NLL (and
hence of LL). The definition of (winning) strategies is exactly as in Section 3,
thanks to Theorem 4. As in Section 3, we put:

Definition 7. A formula A is GNLL-valid (again, G stands for “Game”) iff
there exists a tree U such that for all trees V , the vertices of U have a winning
strategy against those of V in the graph

△ NU V
A

wherever the token is placed initially.

We immediately have consistency:

Theorem 5. A formula and its dual are not both GNLL-valid.

Proof. Given two trees U and V as above, and strategies S and S′ for them, they
both contain the empty play so S ∩ S′ is non-empty. By Theorem 4, we have a
maximal play in S ∩ S′. In its final position, the token is held by some vertex v.
If v is a proponent then S is not winning, otherwise S′ is not winning. ⊓⊔

As a consequence, since NLL has a consistent model, we have:

Corollary 1. NLL is consistent.

We now prove:

Theorem 6. GNLL-validity is a model of NLL (bounded) provability.

We start with:

Lemma 8. A strategy is winning iff it is total, i.e., for each reached position
where a proponent holds the token, it has an extension by a move.

We then observe:

Lemma 9. For any position U , equipped with, for each proponent vertex v ∈ U ,
a cut-free NLL proof πv of its sequent, there exists a winning strategy on U .



Proof. Before constructing such a strategy, let us observe that the following rules
are admissible in NLL, and moreover for any cut-free proof of their premise, there
is a cut-free proof of their conclusion:

Γ,⊥

Γ

Γ, A�B

Γ, A, B

Γ, A & B

Γ, A

Γ, A & B

Γ, B

Γ, !A

Γ,⊗nA
·

We say that going from premise to conclusion in one of these rules is an anodyne
modification.

Assume now given a position U , and a cut-free proof πv for each proponent
v ∈ U , and let us construct a winning strategy on U . We describe this by defining
a new graph G, which embeds into the graph of positions and moves. It has as
vertices all positions U equipped with a cut-free proof πv for each proponent
v ∈ U . We now define edges from any such U .

First assume the token is held by opponents in U . After each move U → V ,
if the token is still held by opponents in V , then proponent sequents remain
unchanged, and we add an edge U → V in G. On the other hand, if the token is
now held by a proponent, the corresponding sequent may have been anodynely
modified. As observed above, we still may choose a cut-free proof for this sequent,
as well as for the unmodified ones, and we add an edge U → V in G.

Now if the token is held by proponents in U , we consider the first step
of the proof of the involved sequent. If it is a positive rule, we consider the
corresponding move U → V . In V , we still have cut-free proofs for all proponents’
sequents, and we add an edge U → V in G. If the proof starts with a negative
rule, we add as an edge in G the move passing the token along the corresponding
formula (in the new position, proponents’ sequents are unchanged, hence we still
have cut-free proofs for them).

This graph G determines a strategy on each of its vertices, since it accepts all
opponent moves. And furthermore this strategy is total thanks to proofs, hence
it is winning by Lemma 8. ⊓⊔

Proof (Proof of Theorem 6). Consider any formula B with a bounded proof in
NLL. We have to choose a graph U such that for all V , vertices in the position

△ NU V
B (3)

have a winning strategy.
If the given proof of B is cut-free, then Lemma 9 provides a winning strategy

for U = △, the single vertex (for any V and initial placement of the token).
Otherwise the bounded proof has the shape

π1

A

π2

A⊥, B

B.

We then choose U to be



△ △

A

so that for any V , the position (3) becomes

△ △ N V.
BA

In this position, we have cut-free proofs (π1 and π2) for each proponent vertex,
hence a winning strategy by Lemma 9 (for any placement of the token).

However, we have:

Proposition 7. GNLL-validity is complete neither w.r.t. LL, nor w.r.t. NLL.

Proof. Indeed, exactly as in the game for MALL [13], ⊥⊗⊥ is GNLL-valid but
provable neither in LL nor in NLL. ⊓⊔

We expect that local strategies [13] will remedy incompleteness w.r.t. NLL.

7 Admissibility of cut

We now define a notion of GNLL-validity for arbitrary sequents, which extends
that for formulae, and prove that the cut rule holds in our model, i.e., if two
sequents Γ, A and A⊥, ∆ are GNLL-valid, then so is Γ, ∆.

Definition 8. A sequent Γ = (A1, . . . , An) is GNLL-valid iff there is a position
U with dangling edges A1, . . . , An, such that for all tuples of positions U1, . . . , Un,
the vertices in U have a winning strategy S on the position

U

U1
. . . Un

A1 An

We say that U is its base position.

Theorem 7. The cut rule holds, i.e., if two sequents Γ, A and A⊥, ∆ are GNLL-
valid, then so is Γ, ∆.

We first consider slightly generalised positions U , with three teams instead of
two, say, P , P ′, and O. The teams P and P ′ are to be thought of as a partition
of proponents. For such a generalised position U , call (U, P ) the non-generalised
position with P as proponents and P ′∪O as opponents; and similarly for (U, P ′),
(U, P ∪ P ′), and (U, O). We have:

Lemma 10. For a generalised position U , given winning strategies S on (U, P )
and S′ on (U, P ′), the set of plays S ∩ S′ is a winning strategy on (U, P ∪ P ′).

Proof. It is a strategy because it is obviously prefix-closed, accepts all moves by
O. Furthermore, it is total, hence winning by the previous lemma. ⊓⊔



Proof (of Theorem 7). Assume given two GNLL-valid sequents Γ, A and A⊥, ∆,
with associated base positions U and V , and with Γ = (A1, . . . , An) and ∆ =
(B1, . . . , Bm). Then, choose as a base for Γ, ∆ the position

U V
A .

Then, for any tuple (U1, . . . , Un, V1, . . . , Vm), consider the corresponding position

U V
A

U1

. . .

Un

A1

An

V1

. . .
Vm

B1

Bm . (4)

The GNLL-validity of Γ, A induces a winning strategy S for the vertices of U

in (4), and that of A⊥, ∆ induces a winning strategy S′ for the vertices of V

in (4). This yields the winning strategy S ∩ S′ for U ∪ V on (4). Hence Γ, ∆ is
GNLL-valid.

References

1. Samson Abramsky and Radha Jagadeesan. Games and full completeness for mul-
tiplicative linear logic. Journal of Symbolic Logic, 59(2):543–574, 1994.
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