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Two-way embedding algorithms: a review

submitted to Ocean Dynamics: Special Issue on Multi-Scale Modelling:

Nested Grid and Unstructured Mesh Approaches

Laurent Debreu · Eric Blayo

Abstract Local mesh refinement features have now been added to a number of numer-

ical ocean models. In its crudest form, a high resolution grid is embedded (or nested)

in a coarse resolution grid, which covers the entire domain, and the two grids inter-

act. The aim of this paper is to review existing two way grid embedding algorithms.

The basic algorithms and specificities related to ocean modelling are first described.

Then we address several important issues: conservation properties, design of interpo-

lation/restriction operators and noise control techniques.

Keywords Two way embedding · Mesh refinement · Structured grids

1 Introduction

An increase of the horizontal resolution of a numerical ocean model still remains a

key point in the improvement of the realism of its solutions, mainly through a bet-

ter representation of small scales and domain geometry. This increase of resolution is

generally not performed everywhere in the domain, both because it is not necessary

from a physical point of view and because of limited computational resources. That is

why a number of ocean models include local mesh refinement features. The idea is to

refine the mesh where (and potentially when) necessary according to the objective of

the simulation.

For models based on a structured grid, a possible way to locally increase the resolution

is to use a grid with variable resolution. Starting from a uniform grid, a mapping is

introduced to produce a grid with increased resolution in areas of interest (Zhuo and

Qingcun 1995). This approach has the advantage that the model is still written on a

single grid and thus there is almost no additional coding complexity and properties

like conservation are easily handled. The disadvantages lie mainly in the difficulty of
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generating grids with good numerical properties, and in the fact that the time step con-

straint relies on the smallest grid cell (in the case of explicit time stepping schemes).

The second approach, which is the subject of the present paper, is to embed a high

resolution (HR) version of the same model at a specific location. The information is

exchanged in two ways between the coarse resolution (CR) solution and the HR solu-

tion: the coarse grid provides the boundary conditions of the child grid, while the high

resolution solution is used to update the coarse grid solution in the common domain.

The major interest of this approach is that the coarse grid provides accurate boundary

conditions for incoming information along the HR grid boundaries while the update (or

feedback) step enables outgoing information to leave the fine grid much better than

in one way interaction (i.e. without feedback from the HR to the CR solution). In

this approach, even if the same model is applied, numerical schemes and/or physical

parameterizations can be adapted to the grid resolution.

We will discuss here only refinement of the mesh along the horizontal directions. A few

applications of vertical mesh refinement have also been reported. In Fox and Maskell

(1995), the vertical refinement is applied to the whole water column. For similar rea-

sons to the non decomposition of the vertical direction in parallel applications (use of

implicit schemes and particular treatment of the barotropic mode), local mesh refine-

ment on the vertical introduces additional difficulties, some of them very close to the

ones reported in this paper for horizontal refinement.

Concerning horizontal refinement, we will focus here on several important aspects in-

cluding conservation, intergrid transfer operators and noise control techniques. We

begin in section 2 with a description of the basic algorithms underlying the two way

mesh refinement method and then give an overview of difficulties that can arise in prac-

tical numerical simulations. Conservation issues are addressed in section 3. In section 4,

intergrid transfer operators (interpolations and updates) are examined and important

details of implementations are given. Noise control techniques, which aim at making

the algorithm more robust, are presented in section 5.

2 Two-Way nesting: Algorithms

In this paper, we will consider only one high resolution grid embedded in the coarse

resolution grid. Extension to more than one grid and/or more than one level of refine-

ment does not present additional complexities.

So let’s consider Ω the domain covered by the coarse grid and a subdomain ω, covered

by the fine grid. γ is the boundary of ω. At the discrete level, the numerical grids are

denoted by ΩH and ωh (cf. Fig. 1). ωH is the part of the grid ΩH corresponding to

the domain ω.

2.1 Basic Algorithm

The ratio between the coarse and fine horizontal mesh sizes is an integer ρ, the mesh

refinement factor (ρ = 2 on Fig. 1). Typical values of ρ in actual applications range

from 2 to 5. Using larger values introduces a too strong change in the resolved scales

on the different grids. In that case, it may not be appropriate to try to enforce a strong

coupling between the two grids and methods with weaker interactions than the ones

we will discuss in this paper could be of interest (Sheng et al. 2005).



3

ΩH

ωh

γh

Fig. 1 Local mesh refinement of a structured grid with a mesh refinement factor of 2. The
high resolution grid ωh is embedded in the coarse resolution grid ΩH .

Choosing an odd mesh refinement factor simplifies grid interactions since in that case

a coarse grid point has always one underlying high resolution point. Figure 2 shows,

for B and C grids (using the Arakawa classification), that if a variable is staggered (cell

or face centered) and if the mesh refinement factor is even, then a coarse grid point

does not have a corresponding point on the fine grid.

Without Refinement ρ = 2 ρ = 3

B grid

C grid

Coarse grid Fine grid
T, η points

v points

u points

Fig. 2 Refinement of a cell with even (ρ = 2) and odd (ρ = 3) refinement factors for a B
and a C grid. Only one coarse cell is shown. When ρ = 3, a coarse grid point has always a
corresponding fine grid point.

Associated with this spatial mesh refinement, time refinement may also be applied.

Most of the ocean models now use explicit time integration algorithms both for com-

putational reasons (efficiency on distributed memory parallel computers) and for ac-
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curacy reasons (smaller dispersion errors than implicit schemes). The model is then

subject to a given CFL (Courant Friedrichs Lewy) stability condition and the ratio

Δt/Δx must be kept smaller than a given value on the whole grid hierarchy. As we

shall see, refining in time induces several difficulties but is required for some applica-

tions, especially when only a small portion of the coarse grid domain is refined or when

there are several levels of refinement. In these cases, keeping the same time step over

the whole grid hierarchy greatly increases the computational cost.

The integration algorithm for a time refinement factor ρt of 3 is depicted on Fig. 3.

1

2
ωh

ΩH

3 4

∆tc

∆tf ∆tf ∆tf

Interpolation

Update

Model Integration

Fig. 3 Integration algorithm for a time refinement factor of 3

The model is first integrated on the coarse grid with a time step equal to Δtc and

then the fine grid is integrated ρt times with Δtf = Δtc/ρt. Interpolations of coarse

grid boundary data occur at the end of each fine grid time step and updates occur at

the end of coarse time step, when the two solutions have been advanced to the same

physical time.

Let L represent the model integration from time tn to time tn+1 and Lc,Lf its dis-

cretizations on the CR and HR grids. Let P denote the interpolation (or prolongation)

operator from ΩH to γh, the boundary of ωh, and R the update (or restriction) opera-

tor from ωh to ωH . Then, assuming that the model is fully explicit, the algorithm can

be written in the following simplified form :

1. un+1
c = Lc(u

n
c )

2. For m = 1 . . . ρt do

u
n+ m

ρt

f = Lf

(

u
n+

(m−1)
ρt

f

)

u
n+ m

ρt

f |γh

= P (un
c , un+1

c )

3. un+1
c |ωH

= R(un+1

f )

P , the interpolation operator, includes a time interpolation. This time interpolation

is done linearly in most of the applications and thus requires only the knowledge of

uc at time tn and tn+1. To our knowledge, the effect of increasing the interpolation

order in time has not been studied in the literature. This is because, as for numerical

models on a uniform grid, the error relative to time is expected to be lower than the

one relative to spatial interpolation. However, as for numerical models, it may not be

the case anymore due to the increase of horizontal resolution and to the use of higher
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order spatial schemes. New experiments are probably required to test the validity of

the linear interpolation.

Note finally that interpolation and restrictions can also be applied to time tendencies

instead of instantaneous values (Jones 1977; Spall and Holland 1991; Oey and Chen

1992).

2.2 Complexities associated with time stepping

The numerical schemes are seldom as simple as previously described and this can

lead to several complications. In a numerical ocean model, some of them are linked

to the particular treatment of the gravity waves associated with the evolution of the

barotropic mode. This treatment leads either to the use an implicit time stepping, thus

leading to the solution of an elliptic system, or to the use of a time splitting method.

2.2.1 Elliptic systems

Elliptic systems can come from a 2D implicit solve (e.g. implicit treatment of free

surface (Dukowicz and Smith 1994) or rigid lid approximation). A 3D system has also

to be solved if the hydrostatic assumption is removed. If we denote the associated linear

system by :

Av = B

then after discretization, on the nested grid, the simplest choice is to force the high

resolution solution with an interpolation of the coarse grid solution :

a) Acvc = Bc on ΩH , b)

{

Afvf = Bf on ωh

vf|γh

= Pvc
(1)

This implies continuity of the solution at the interface γh but the resulting gradient

across the boundary is discontinuous. Additionally a loss of accuracy is introduced

because errors produced by the coarse grid resolution a) propagate inside the HR

domain through the boundary forcing in step b).

A first step toward better accuracy is to update the right hand side of the coarse grid

equation so that Eq. 1 is replaced by Eq. 2:

a) Acvc =

{

RBf in ωH

Bc in ΩH\ωH
, b)

{

Afvf = Bf on ωh

vf|γh

= Pvc
(2)

In Spall and Holland (1991), this technique is applied to a rigid lid ocean model. The

linear system corresponds to the computation of the streamfunction tendency and the

right hand side is the barotropic vorticity tendency. The barotropic vorticity tendency

on the coarse grid is updated by the one computed on the fine grid.

However, despite this improvement, the gradient of the solution across the interface is

still discontinuous. To be properly solved the two grid system should be handled as a

truly local multilevel system. This can be done using local defect correction methods

(see Laugier et al. 1996 for an application to a rigid lid model and a comparison with

results obtained in Spall and Holland 1991). The system can also be seen as discretized
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on a single composite grid. In this approach, the operator A is modified at the boundary

and involves both coarse and fine grids variables. The resulting system is:
⎛

⎝

Ac 0

0 Af

Acγ Afγ

⎞

⎠

(

vc|ΩH\ωH

vf

)

=

⎧

⎨

⎩

Bc in ΩH\ωH

Bf on ωh

Bγ in γh

(3)

Acγvc|ΩH\ωH
+Afγvf = Bγ is an approximation of the original system on the interface

which leads at convergence to continuity of both the solution and its gradient across

the boundary. See Martin and Cartwright (1996) for applications of the local multilevel

method to the solution of a Poisson equation.

Remarks:

– Algorithms 2 and 3 are more difficult to apply when time refinement is used. Indeed

the right hand side Bc and Bf should be computed at the same time and the way

to write the system at intermediate time steps on the fine grids is not obvious.

– Since we are using two way techniques, the right hand side Bc, which depends on

coarse grid variables that have been updated, is never significantly different from

RBf . In some cases, the update schemes used for the primary variables are precisely

chosen in such a way that Bc = RBf in ωH . However, this leads most of the time

to the use of very simple restriction operators (e.g. average, see Clark and Farley

1984) that do not have good filtering properties and thus can affect the quality of

the solution (see paragraph 4.1).

2.2.2 Free surface and Time splitting

Similar problems are also inherent when a time-splitting is used for the treatment of the

external mode. A number of models now use the time-splitting approach of Blumberg

and Mellor (1987); Killworth et al. (1991). The barotropic time step is set to a fraction

of the baroclinic time step. The barotropic mode is then integrated as a solution of a

shallow water model forced by the vertical integral of the right hand side of the 3D

equations. At the end of this integration, the newly computed barotropic quantities

are used to replace the barotropic part of the 3D fields. In order to prevent aliasing

errors, two approaches can be taken. The first one, as in Killworth et al. (1991), is to

use in the barotropic time steps a time integration scheme that sufficiently damps high

temporal frequencies (e.g. Euler Backward). In this case, the fine and coarse grid can

interact during the small barotropic time steps throughout the barotropic quantities

(see Oey and Chen 1992). This is illustrated on Fig. 4 with a time refinement factor of

2.

The second approach consists in applying a filter to the barotropic quantities to filter

out the high temporal frequencies. The integration extends to a time larger than t+Δtc
and a filtering formula, the result of which is centered at time t + Δtc, is applied. For

example, as shown on Fig. 5, one may extend the integration period to t + 2Δtc and

use flat weights over [t, : t + 2Δtc] (constant weights equals to 1/N where N is the

number of barotropic time steps) to compute the average at time t + Δtc.

When filtering is applied, it is relatively easy to interact between grids when no time

refinement is done as on Fig. 6 (Barth et al. 2005).

However, when both filtering and time refinement are used (cf. Fig. 7) a new problem

arises, due to the fact that some coarse grid points do not have fine grid points located
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t t+∆tc

t t+∆tc/2
t+∆tc

Gc

Gf

Fig. 4 Time splitting algorithm with a time refinement ratio equal to 2. Intermediate times
(due to time refinement) on the fine grid are not shown. Gc is the coarse grid and Gf the fine
grid.

t t+∆tc t+2∆tc

Fig. 5 Time splitting algorithm with filtering using flat weights over [t, : t + 2∆tc] . Interme-
diate instantaneous values are used to compute a filtered value at time t + ∆tc

t
Gc

Gf

t+∆tc t+2∆tc

t t+∆tc t+2∆tc

Fig. 6 Time splitting algorithm without time refinement and with filtering

at the same time. For this reason, the coupling between coarse and fine grids cannot

be done anymore through the instantaneous barotropic quantities.

t
Gc

Gf

t+∆tc t+2∆tc

t t+∆tct+∆tc/2

t+3∆tc/2

?

Fig. 7 Time splitting algorithm with time refinement equal to 2 and with filtering

In that case, a simple choice is to perform the coupling at the baroclinic level (Penven

2006), i.e. the exchange occurs only between filtered quantities. However this is like

having the system in a one-way mode for the external mode and, as for implicit solvers,

errors produced on the coarse grid can then propagate inside the HR grid. One way

to perform the coupling at the barotropic level is to exchange information between

another set of variables corresponding to intermediate quantities (Debreu et al. 2008).

Using intermediate weights, quantities centered at times between t and t + Δtc are
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computed so that coupling as without filtering (Fig. 4) is permitted.

Partial conclusion As we have seen, besides the simple algorithm, several additional

complexities arise when implicit schemes or time splitting schemes are used. Moreover,

it is clear that, in both cases, use of time refinement leads to additional difficulties.

Looking at the problem as a truly multilevel system in the case of elliptic systems or

doing the coupling at the barotropic level in the case of a time splitting scheme are

probably the best choices. Additionally, if more simple techniques are used, then it

brings strong constraints on the update operators in order to maintain the coarse grid

right hand side in agreement with the fine grid right hand side. Most of the time, these

constraints leads to the use of very simple update operators that do not have good

numerical properties (see 4.1).

3 Conservation

On a uniform grid, conservation is guaranteed when internal numerical schemes are

written in flux form. Concerning two-way embedded models, it is not so common that

the resulting system is conservative. Ensuring conservation leads to several computa-

tional issues and imposes strong requirements on intergrid transfer operators that can

lead to a loss of accuracy. However it is recommended for long term integration. After

reviewing the basic requirements for conservation on an embedded grid, two familiar

approaches for the preservation of conservation properties are described.

3.1 Definition and discretization

Let us consider a two dimensional domain and q, a solution of the following equation

written in conservative form
∂q

∂t
+

∂f

∂x
+

∂g

∂y
= 0

where f and g may contain both advective and diffusive fluxes.

Then, assuming that fluxes f and g cancel on the boundaries of Ω, QΩ , integral of q

over the domain Ω, is constant in time (at the continuous level).

QΩ(t) =

∫

Ω

q(x, y, t) dx dy ⇒
dQΩ(t)

dt
=

∫

∂Ω

f ds +

∫

∂Ω

g ds = 0

In the nested grid system, the quantity QΩ is defined by the summation over the high

resolution domain ω and its complement in Ω:

QΩ = Qω + QΩ\ω

Now let us make the following assumptions for the sake of simplicity:

– As shown on Fig. 8, we consider a two dimensional domain infinite in both x and

y directions. The left (resp. right) part of the domain is at coarse (resp. high)

resolution.

– The variable qn
i,j is cell centered
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ΩH ωh

ic if

j

j1

j1+1

j1+2

Fig. 8 The CR domain ΩH on the left and the HR domain ωh on the right for a C-grid with
a mesh refinement factor of 3

– The time stepping scheme is an explicit Euler scheme

qn+1

i,j = qn
i,j −

Δt

ΔxΔy

(

Fi,j − Fi−1,j

)

−
Δt

ΔxΔy

(

Gi,j − Gi,j−1

)

(4)

where Fi,j , Gi,j are volumetric fluxes: Fi,j = fi,jΔy, Gi,j = gi,jΔx.

At discrete level, QΩ at time t = tn is given by

Qn
Ω =

∑

i≤ic,j

ΔxcΔyc qc,n
i,j +

∑

i≥if ,j

ΔxfΔyf qf,n
i,j

where, as shown on Fig. 8, ic and if denote the first coarse and fine indices close to

the interface.

Then after one time step, according to Eq. 4 we obtain

Qn+1

Ω = Qn
Ω − Δtc

∑

j

F c,n
ic,j + Δtf

ρt−1
∑

p=0

j1+ρ−1
∑

jf =j1

F
n+p/ρt

if−1,jf

= Qn
Ω − Δtc

∑

j

⎛

⎝Fn
ic,j −

1

ρt

ρt−1
∑

p=0

j1+ρ−1
∑

jf =j1

F
n+p/ρt

if−1,jf

⎞

⎠

(5)

In general, there will be a misfit between the coarse and fine grid fluxes so that the

flux differences of the right hand side do not cancel and conservation is artificially lost:

Qn+1

Ω �= Qn
Ω .

Conservation can be achieved if the fine grid fluxes derive from a conservative interpo-

lation (in time and space) of the coarse grid flux so that the following relation holds:

1

ρt

ρt−1
∑

p=0

j1+ρ/2
∑

jf =j1−ρ/2

F
n+p/ρt

if−1,jf
= Fn

ic,j (6)
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This approach is applied in several ocean models for volume conservation (q being the

free surface and F, G the vertically integrated transport in x and y directions). It is

indeed sufficient to produce a conservative interpolation of the transport for the global

volume to be conserved. A number of classical conservative interpolation schemes can

then be used (see 4.2).

Let’s consider more generally the computation of a boundary flux on a C-grid as

indicated on Fig. 9 and let’s suppose than the we are trying to compute the flux of a

tracer on the boundary so that:

f = uT

ΩH
ωh

ic if

j

j1

j1+1

j1+2

Fig. 9 Computation of a boundary flux on a C-grid

The computation of fine grid flux on the boundary involves the result of the interpo-

lation of the velocity u on the boundary (grey ellipses on Fig. 9). This interpolation

has to be conservative in order not to create an artificial loss of conservation. The

fine grid flux also involves the computation of the tracer’s value on the interface that

makes use of both interpolated values (grey circles on Fig. 9) and internal values in the

fine grid domain. Thus, we may suppose that the resulting fine grid fluxes are actually

more accurate than the coarse grid ones, so that trying to enforce Eq. 6 is not the best

choice.

Two other approaches to conservation, that share several similarities, are now intro-

duced: the flux correction algorithm and the Kurihara method.

3.2 Flux correction algorithm

The flux correction algorithm comes from the adaptive mesh refinement community.

It follows from the algorithm of Berger and Oliger (1984); Berger and Colella (1989).

The idea is to apply a modification of the coarse grid variables that take into account

the misfit between coarse and fine grid fluxes.

Starting from Eq. 5, a correction is applied to the coarse grid variable at time n + 1
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near the boundary as follows :

qn+1,∗
ic,j = qn+1

ic,j +
Δtc

ΔxcΔyc

⎛

⎝Fn
ic,j −

1

ρt

ρt−1
∑

p=0

j+ρ/2
∑

jf =j−ρ/2

F
n+p/ρt

if−1,jf

⎞

⎠ (7)

Basically it means that the coarse grid variable has been integrated using, on the right

interface, fluxes computed by the fine grid :

qn+1,⋆
ic,j = qn

ic,j −
Δtc

ΔxcΔyc

⎛

⎝

1

ρt

ρt−1
∑

p=0

j+ρ/2
∑

jf =j−ρ/2

F
n+p/ρt

if−1,jf
− Fic−1,j

⎞

⎠ (8)

The algorithm is easy to implement assuming that it is possible to write the time

evolution of q in term of flux divergences as it was indeed the case for the Euler

time scheme. The program stores the fine grid fluxes at the boundary and makes a

summation in time and in space over the fine grid cells.

With other time stepping schemes, e.g. leap-frog associated to an Asselin filter, this is

not achievable (even without the Asselin filter, it is more complex since two arrays of

fluxes should be stored, see Herrnstein et al. 2005).

When using this approach, care must be taken concerning potential stability issues.

Indeed, if the original fluxes are computed in a centered way, the resulting scheme

is always biased and instabilities can occur (Olsson and Petersson 1996; Debreu et

al. 2008). One remedy is to compute the interfacial fluxes using information along

characteristics of the flow (Part-Enander and Sjogreen 1994, and Blayo and Debreu

2005 for an interpretation of usual open boundary conditions in term of characteristic

variables). This is actually the case in the adaptive mesh refinement community where,

due to the hyperbolic nature of the problems, the internal numerical schemes already

make use of decompositions into characteristic variables.

Moreover, there is an associated loss of accuracy at the boundary. Indeed it can be

shown that if the fluxes are computed with a second order accurate approximation, use

of Eq. 8 leads to a first order only approximation of the original equation (Debreu et

al. 2008).

These two remarks also apply to the Kurihara method that we now describe.

3.3 Kurihara method

The Kurihara method (Kurihara et al. 1979) has been used by several authors to enforce

conservation (Kurihara and Bender 1980; Ginis et al. 1998). It is important to note that

it applies to a model with all variables cell centered. To understand the method, it is

first necessary to explain that the scheme makes use of an intermediate area, composed

of two coarse grid cells (grey circles on Fig. 10), where the space resolution is the one

of the coarse grid and the time resolution is the one of the fine grid.

In this method, conservation is achieved thanks to two principles :

– The coarse grid computes its fluxes which are then interpolated in time in a con-

servative way at ✷ points to force the separation area.
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Dynamic Interface Mesh Interface

tn

tn+∆tf

tn+2∆tf

tn+∆tc

Fig. 10 The three zones of the Kurihara method: on the left the coarse grid, on the right the
fine grid. In between, an area composed of two coarse grid cells with the space resolution of
the coarse grid and the time resolution of the fine grid.

– A spatial linear interpolation of variables is performed at △ points and the com-

puted flux is used both for integrating the coarse grid cell on the left and the fine

grid cell on the right. In two dimensions, a summation is applied along the y axis

just as for the flux correction approach.

Thus the resulting scheme is conservative. The problems of loss of conservation due to

time refinement and to space refinement has been treated separately.

It is clear that if there is no time refinement, then the flux correction approach is equiv-

alent to the Kurihara method if the boundary variables used in the flux computation

have also been linearly interpolated.

As already said, the original method is designed for a non staggered grid with all vari-

ables located at the cells center. Like for the flux correction approach, the Kurihara

method is more difficult to implement for non cell-centered variables (for example in

order to preserve conservation of momentum on a C-grid, cf. Sobel 1976).

Partial conclusion We have presented two different approaches for enforcing conserva-

tion. Due to the presence of the transition area, the Kurihara method is more difficult

to implement than the flux correction approach. Additionally, although possible, it is

more difficult to implement such methods for quantities not defined at the centers of

the cells. The flux correction approach is easier to implement; however care about po-

tential stability issues must be taken, especially when the original model computes its

fluxes using second order centered differences.

When conservation properties are not preserved in a two way simulation, it is im-

portant, especially for long term integration, to have an idea of the artificial loss of

conservation. That is why the misfit between coarse and fine grid fluxes on the interface

should always be diagnosed.
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4 Intergrid Transfer operators

For very simple equations (e.g. 1D advection-diffusion), the properties of the two grids

methods can be analyzed with simple techniques related to study of numerical schemes

on non uniform grids (Harrisson and Elsberry 1972; Berger 1985; Olsson and Petersson

1996). In the linear case, it can even be extended to more complex systems of equa-

tions using matrix stability analysis (Heggelund and Bernsten 2002). However in the

more general case, the design of intergrid transfer operators must rely on more crude

considerations.

4.1 Update schemes

Obviously, the restriction operator has a crucial role in two way nesting algorithms. If

we just think in terms of resolved scales, the two following properties should hold :

1. The transfer of information should be maximum for scales well resolved on the

coarse grid.

Otherwise the order of the approximation will be lowered.

2. Small scales should be strongly filtered.

Otherwise, by aliasing, noise will be produced on the coarse grid.

In several applications, authors have made the choice to use the average operator for

the feedback step : the coarse grid value in a cell is replaced by the area weighted sum

of the fine grid values in the same cell :

uc =
1

ΔxcΔyc

∑

i,j

ΔxfΔyfuf

Note that this is often seen as a requirement for conservation but as it has been pre-

viously seen, it is not.

In an adaptive mesh refinement context, the restriction is still made with this aver-

age formula because the grid can move from one time step to another, so that an

average restriction is necessary to maintain globally the conservation before and after

the regridding step (periodic modification of the grid hierarchy following a refinement

criterion). Note that this was also the main reason for using the average restriction op-

erator in the Kurihara paper (Kurihara et al. 1979), where the methodology is applied

to moving mesh methods.

Other familiar restriction schemes are written on Fig. 11 along with their correspond-

ing transfer functions.

Recently in Debreu et al. (2008), it is shown that use of higher order restriction oper-

ators, using a larger stencil (full weighted schemes), can lead to strong improvements.

Even if the full weighted operator damps the well resolved scales a little more, it also

produces a strong damping of the small scales which is required to inhibit aliasing and

noise on the coarse grid.

4.2 Interpolation

Numerous interpolation operators have been used in two way nesting methods. See

Koch and McQueen (1987); Zhang et al. (1986) for the details in several models. The
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Fig. 11 Transfer functions for usual one dimensional restriction operators with a mesh re-
finement factor ρ = 3 for typical filters (k is the wavenumber). The corresponding formula are
also given.

basic idea is that the order of the interpolation order should be high enough not to

lower the global order of approximation and, as usual when using high order interpo-

lation schemes, care must be taken about the potential oscillations produced by the

schemes (this problem is well known, for example, when using Lagrange interpolation

operators). As previously seen, it is also advantageous to have conservative interpola-

tions (in particular for the interpolation of normal velocities on the boundaries). To

fulfill these two conditions several methods can be used: parabolic conservative in-

terpolation or approximation Clark and Farley (1984), parabolic interpolation with

minimization of second order derivative Barth et al. (2005), PPM (Piecewise Parabolic

Method), WENO (Weighted Essentially Non Oscillatory), advection equivalent inter-

polation schemes Alapaty et al. (1998) . . .

Several authors also mention the fact that interpolation and restriction operators must

be devised in agreement one with the other. This is mainly justified when implicit

solvers are used. The main reason is that, after feedback, the right hand side of the

elliptic equation, computed on the coarse grid, must be in agreement with the one of

the fine grid (Clark and Farley 1984). In that case, assuming a conservative interpola-

tion has been used, the average restriction operator is the most natural. Let’s take the

example of the free surface equation written under the following form (Eq. 9):

∂η

∂t
+ ∇ · (U, V ) = 0 (9)

where η is the free surface and (U, V ) the barotropic transports in x and y directions.

If the transport U has been conservatively interpolated on the fine grid boundary, then

a simple update (average in one direction and simple copy in the other direction as
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shown on Fig. 12) of the transports leads to a barotropic divergence in the coarse grid

cell equal to the average of the barotropic divergence on the fine grid cell:

∇ · (Uc, V c) =
1

9

∑

i,j

∇ · (Uf
i , V f

j ) (10)

ΩH ωh

ic if

j

j1

j1+1

j1+2

V c =
1

3

(

V f
if

+V f
if +1

+V f
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)
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(
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Fig. 12 Update and interpolation schemes for the preservation of the barotropic divergence on
a C-grid with a mesh refinement factor of 3. The transport (U) are conservatively interpolated
on the boundary (grey ellipses) and then simple update operators are used at coarse grid points
(black ellipses).

However, as we already saw (paragraph 2.2.1), the constraint given by Eq. 10, which

actually corresponds to an equality between tendencies of the free surface equation

instead of instantaneous values, can be removed if either the right hand side of the

coarse grid is directly updated by the right hand side of the fine grid or if a truly

multilevel solver is used. Removing this constraint allows the use of more scale selective

update operators than those used here.

4.3 Inconsistency at boundary

We now look at a particular problem that also induces differences between implemen-

tation of intergrid transfer operators.

Let’s rewrite the explicit algorithm given in paragraph 2.1

1. un+1
c = Lc(u

n
c )

2. For m = 1 . . . ρt do

u
n+ m

ρt

f = Lf

(

u
n+

(m−1)
ρt

f

)

u
n+ m

ρt

f |γh

= P (un
c , un+1

c )

3. un+1
c |ωH

= R(un+1

f (un+1
c ))
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where we insist on the fact that un+1

f is indeed dependent on un+1
c through the bound-

ary interpolation so that an inconsistency (sometimes called overspecification) is in-

herent to the third step. Note that this does not apply to variables entirely lying on

the interface, like normal velocities on a C− grid, because the coarse grid variables

used in the interpolation (along the interface) are not updated in the feedback step.

On a C−grid, this inconsistency occurs for tracers and tangential velocities. One pos-

sible way to remove this inconsistency is to modify the interpolation step 2 by doing

intermediate updates so that step 2 is modified as follows

u
n+ m

ρt

f |γh

= P (un
c , un+1

c ) → u
n+ m

ρt

f |γh

= P (un
c ,

{

un+1
c in ΩH\ωH

R(u
n+ m

ρt

f |γh

) in ωH

}

)

eventually using a fixed point iteration if the operators P and/or R are non linear.

To our knowledge, this method has not been explored. In the literature, several other

methods have been developed to try to remove this contradiction:

– Interpolation operators

It is possible to write the interpolations so that no coarse grid point, that will be

modified during the feedback step (i.e. inside the HR grid domain) are used in the

interpolation process. In order to do this, a tangential interpolation is first applied,

followed by a normal interpolation. The idea is also to use the HR solution as soon

as available thus lowering interpolation errors (both in space and time).

Note that here too, care must be taken about stability issues. As an example, using

a high order interpolation, which involves several fine grid points inside the fine grid

domain, biases the interpolation schemes and can produce unstable solutions if the

flow is actually entering the fine grid. So that in practice the normal interpolation

should be computed using the direction of the flow. Again this is especially true

when the model computes its fluxes using second order centered differences.

Interpolation

Interpolation

Tangential

Normal

Fig. 13 Tangent interpolation followed by a normal interpolation. A set of fictitious points
(squared boxes) are first obtained by interpolation along the tangential direction, this is fol-
lowed by a normal interpolation that, in addition to these points, uses fine grid points inside
the fine grid domain. Note that the coarse grid points inside the fine grid domain are not used
in the interpolation process.
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– Update operators - Separation of dynamic and feedback interface

Another remedy to remove this inconsistency is to modify the feedback step. Sev-

eral authors have proposed to separate the feedback interface from the dynamic

interface (sometimes also called input interface) where the boundary values are

interpolated (Phillips and Shukla 1973; Zhang et al. 1986; Oey and Chen 1992).

Similarly, the Kurihara method can also be seen as introducing a separation be-

tween forcing and feedback interfaces. Figure 14 shows a separation of the dynamic

and feedback interface by one coarse grid cell. This separation can also be com-

posed of two coarse grid cells. In these cases, the contradiction has been removed

since the coarse grid points used in the interpolations are not updated.

Dynamic Interface

Feedback Interface

at v points

at T, u points

Dynamic Interface

at v points

at T, u points

Feedback Interface

at T, v points

at u points

Dynamic Interface

Dynamic Interface Feedback Interface

at u points

Feedback Interface

at T, v points

Fig. 14 Separation of dynamic and feedback interface on a C− grid for a mesh refinement
factor of 3. Without a separation of these interfaces, the tracers and tangential velocities would
also be updated in the light grey area.

Another reason for using a mesh separation between dynamic and feedback inter-

faces is that if noise is produced, it will be larger near the dynamic interface so

that it is safer not to use the fine grid values near the dynamic interfaces.

However, as mentioned by Spall and Holland (1991), setting the feedback interface

closer to the dynamic interface maximizes the information transferred to the coarse

grid. In addition since there is no feedback in this area, the consistency between

coarse and fine solutions will be less than with feedback and this inconsistency

has to be lowered by use of noise control techniques that will indeed recombine

and smooth the HR and CR solutions in the area between dynamic and feedback

interfaces.

Partial conclusion From the authors’ experience, update operators have a greater im-

pact on the quality of the solution than interpolation operators (assuming that these

last ones are properly built, e.g. conservative when they have to be). The usual update

operators (average, Shapiro filter . . . ) do not have sufficiently good numerical proper-

ties to lead to stable simulations. In particular, use of update operators that produce

a stronger damping of small scales is required.

The technique of separation of dynamic and feedback interfaces can be used associated

with noise control techniques to make robust two way embedding simulations. However

errors introduced by these methods may be found to be very large when quantitatively

evaluated.
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5 Noise Control

Two principles can motivate the use of noise control techniques :

– Maintain a strong consistency between HR and CR solutions in the area where

solutions interact (i.e. near the common interface).

– Prevent waves reflection: waves unresolved on the coarse grid reflect inside the fine

grid domain and have to be filtered in some way.

It is generally accepted that one criterion for choosing the noise control technique is

that the associated modifications should cancel if the refinement ratio is equal to 1, so

that if the simulation is made with a mesh refinement factor of 1, the result is identical

to the result computed with a uniform grid.

Of course, use of noise control techniques modify the original differential operator near

the interface and thus lower the order of approximation.

Two-way embedding models can make use of noise control techniques that are tra-

ditionally used in open boundary and/or one way embedded simulations. We briefly

recall here some of them:

– Use of a time stepping algorithm or other internal numerical schemes that damps

small wavelengths. This is the crudest form of noise control technique: the original

model solution is sufficiently damped so that small scales are strongly removed.

– Relaxation methods

– Blending (Flow Relaxation Scheme)

q⋆
f = (1 − μx,∂ω)qf + μx,∂ω Pqc

μx,∂ω is a coefficient varying from 1 on the interface ∂ω to 0 away to the

interface (Davies 1976). This is used in Oey and Chen (1992) in the separation

area between feedback and dynamic interfaces.

– Nudging
∂qf

∂t
= . . . −

(qf − Pqc)

Td

The discrete form of nudging is equivalent to the flow relaxation scheme (Mar-

tinsen and Engedahl 1987).

– Increase of dissipation coefficient - Sponge Layer

When using a sponge layer it is advantageous to apply it to the difference between

external (coarse resolution) and internal (high resolution) fields

∂qf

∂t
= . . . + (−1)n+1(Δ)n

[

μx,∂ω(qf − Pqc)
]

(11)

Here the objective is clearly to damp small scales as defined by the restriction

operator. Since the coarse grid variable qc has been updated (qc = Rqf ), the

diffusion term mostly acts on the scales lying in the kernel of the restriction operator

(Rqf = 0). Note that the preceding relaxation methods can be put under this

category just by choosing n = 0 in Eq. 11 so that they produce a less selective

damping than for n ≥ 1.

The advantage of this formulation is also that the diffusion term naturally cancels

if there is no refinement. Using differences between coarse and fine grid variables

can also be at the basis of the derivation of open boundary schemes suitable for

embedding methods (e.g. Perkins et al. 1997, Oddo and Pinardi 2008).
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Additionally, in a flux correction approach of conservation, it is easy to maintain

conservation just by adding the diffusive flux of Eq. 11.

Moreover, due to the inability to build ideal restriction operators, it may also be use-

ful to smooth the coarse grid solution inside the fine grid domain. The filtering is only

applied to the coarse grid points inside the fine grid domain in order not to violate con-

servation principles. As an example, the smoothing-desmoothing algorithm of Bender

et al. (1993) can be applied on the first coarse grid points near the interfaces.

Partial conclusion Two way grid embedding algorithms should be first evaluated with-

out using noise control techniques in order not to hide fundamental problems of the

algorithm. Because the primary requirement is that the associated modifications of the

original model should cancel if the refinement factor is equal to 1, most of the meth-

ods are formulated in term of differences between coarse and fine fields as in Eq. 11.

Choosing n = 1 in Eq. 11 (laplacian diffusion) is a good compromise between a low

computational cost and a selective damping of the difference. For n ≥ 1, the correc-

tion can be easily written in term of flux divergences thus allowing the conservation

properties to be maintained (e.g. using the flux correction approach).

6 Conclusion

This paper reviews existing two way embedding techniques. The emphasis has been

put on what are the sources of potential approximations and errors. In particular, we

have shown how the use of implicit solver and/or time splitting algorithms and the use

of refinement in time can introduce several problems in comparison with an idealized

model. Conservation issues can be tackled in a simple way, using the flux correction

approach (at least for quantities based on cell centered variables: mass, tracers . . . ).

There is also a large choice of intergrid transfer operators, the choice between one of

them is a trade-off between conservation, accuracy, robustness and coding complexities.

Some guidelines have been given as partial conclusions of each section.

Several issues related to grid embedding have not been covered. Computational imple-

mentation of embedding can be done by hand or by using dedicated software (e.g.

AGRIF Debreu et al. 2008, RSL Michalakes 1998). In the context of operational

oceanography and production of high resolution forecasts at particular areas of in-

terest, high resolution grid initialization schemes which are in agreement with the two

way interactions have to be derived. As most of the operational systems are now using

data assimilation methods, one possible way to look at the problem is to introduce

the high resolution grid initialisation in the assimilation process and this is an active

research subject.
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