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Abstract

We study the properties of a simple greedy algorithm introduced in [8] for the generation of data-
adapted anisotropic triangulations. Given a function f , the algorithm produces nested triangulations
TN and corresponding piecewise polynomial approximations fN of f . The refinement procedure picks
the triangle which maximizes the local Lp approximation error, and bisects it in a direction which is
chosen so to minimize this error at the next step. We study the approximation error in the Lp norm
when the algorithm is applied to C2 functions with piecewise linear approximations. We prove that
as the algorithm progresses, the triangles tend to adopt an optimal aspect ratio which is dictated by
the local hessian of f . For convex functions, we also prove that the adaptive triangulations satisfy
the convergence bound ‖f − fN‖Lp ≤ CN−1‖

√

det(d2f)‖Lτ with 1

τ
:= 1

p
+ 1, which is known to be

asymptotically optimal among all possible triangulations.

1 Introduction

In finite element approximation, a classical and important distinction is made between uniform and
adaptive methods. In the first case all the elements which constitute the mesh have comparable shape
and size, while these attributes are allowed to vary strongly in the second case. An important feature of
adaptive methods is the fact that the mesh is not fixed in advance but rather tailored to the properties
of the function f to be approximated. Since the function approximating f is not picked from a fixed
linear space, adaptive finite elements can be considered as an instance of non-linear approximation. Other
instances include approximation by rational functions, or by N -term linear combinations of a basis or
dictionary. We refer to [9] for a general survey on non-linear approximation.

In this paper, we focus our interest on piecewise linear finite element functions defined over tri-
angulations of a bidimensional polygonal domain Ω ⊂ IR2. Given a triangulation T we denote by
VT := {v s.t. v|T ∈ Π1, T ∈ T } the associated finite element space. The norm in which we measure the
approximation error is the Lp norm for 1 ≤ p ≤ ∞ and we therefore do not require that the triangulations
are conforming and that the functions of VT are continuous between triangles. For a given function f we
define

eN (f)Lp := inf
#(T )≤N

inf
g∈VT

‖f − g‖Lp,

the best approximation error of f when using at most N elements. In adaptive finite element approxi-
mation, critical questions are:

1. Given a function f and a number N > 0, how can we characterize the optimal mesh for f with N
elements corresponding to the above defined best approximation error.

2. What quantitative estimates are available for the best approximation error eN (f)Lp ? Such esti-
mates should involve the derivatives of f in a different way than for non-adaptive meshes.

3. Can we build by a simple algorithmic procedure a mesh TN of cardinality N and a finite element
function fN ∈ VTN

such that ‖f − fN‖Lp is comparable to eN(f)Lp ?
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While the optimal mesh is usually difficult to characterize exactly, it should satisfy two intuitively
desirable features: (i) the triangulation should equidistribute the local approximation error between each
triangle and (ii) the aspect ratio of a triangle T should be isotropic with respect to a distorted metric
induced by the local value of the hessian d2f on T (and therefore anisotropic in the sense of the euclidean
metric). Under such prescriptions on the mesh, quantitative error estimates have recently been obtained
in [7, 1] when f is a C2 function. These estimates are of the form

lim sup
N→∞

NeN (f)Lp ≤ C‖
√

| det(d2f)|‖Lτ ,
1

τ
=

1

p
+ 1, (1.1)

where det(d2f) is the determinant of the 2× 2 hessian matrix. For a convex C2 function f this estimate
has been proved to be asymptotically optimal in [7], in the following sense

lim inf
N→+∞

NeN(f)Lp ≥ c‖
√

| det(d2f)|‖Lτ . (1.2)

The convexity assumption can actually be replaced by a mild assumption on the sequence of triangulations
which is used for the approximation of f : a sequence (TN )N≥N0 is said to be admissible if #(TN ) ≤ N
and

sup
N≥N0

(

N1/2 max
T∈TN

diam(T )

)

<∞.

Then it is proved in [10], that for any admissible sequence and any C2 function f , one has

lim inf
N→+∞

N inf
g∈VTN

‖f − g‖Lp ≥ c‖
√

| det(d2f)|‖Lτ . (1.3)

The admissibility assumption is not a severe limitation for an upper estimate of the error since it is also
proved that for all ε > 0, there exist an admissible sequence such that

lim sup
N→+∞

N inf
g∈VTN

‖f − g‖Lp ≤ C‖
√

| det(d2f)|‖Lτ + ε. (1.4)

We also refer to [10] for a generalization of such upper and lower estimates to higher order elements.
From the computational viewpoint, a commonly used strategy for designing an optimal mesh consists

therefore in evaluating the hessian d2f and imposing that each triangle of the mesh is isotropic with
respect to a metric which is properly related to its local value. We refer in particular to [3] where this
program is executed using Delaunay mesh generation techniques. While these algorithms fastly produce
anisotropic meshes which are naturally adapted to the approximated function, they suffer from two
intrinsic limitations:

1. They use the data of d2f , and therefore do not apply to non-smooth or noisy functions.

2. They are non-hierarchical: for N > M , the triangulation TN is not a refinement of TM .

In [8], an alternate strategy was proposed for the design of adaptive hierarchical meshes, based on
a simple greedy algorithm: starting from an initial triangulation TN0 , the algorithm picks the triangle
T ∈ TN with the largest local Lp error. This triangle is then bisected from the mid-point of one of its
edges to the opposite vertex. The choice of the edge among the three options is the one that minimizes the
new approximation error after bisection. The algorithm can be applied to any Lp function, smooth or not,
in the context of piecewise polynomial approximation of any given order. In the case of piecewise linear
approximation, numerical experiments in [8] indicate that this elementary strategy generates triangles
with an optimal aspect ratio and approximations fN ∈ VTN

such that ‖f − fN‖Lp satisfies the same
estimate as eN (f)Lp in (1.1).

The goal of this paper is to support these experimental observations by a rigorous analysis. Our paper
is organized as follows:

In §2, we introduce notations which are used throughout the paper and collect some available approx-
imation theory results for piecewise linear finite elements, making the distinction between (i) uniform,
(ii) adaptive isotropic and (iii) adaptive anisotropic triangulations. In the last case, which is in the scope
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of this paper, we introduce a measure of non-degeneracy of a triangle T with respect to a quadratic form.
We show that the optimal error estimate (1.1) is met when each triangle is non-degenerate in the sense of
the above measure with respect to the quadratic form given by the local hessian d2f . We end by briefly
recalling the greedy algorithm which was introduced in [8].

In §3, we study the behavior of the refinement procedure when applied to a quadratic function q such
that its associated quadratic form q is of positive or negative sign. A key observation is that the edge
which is bisected is the longest with respect to the metric induced by q. This allows us to prove that
the triangles generated by the refinement procedure adopt an optimal aspect ratio in the sense of the
non-degeneracy measure introduced in §2.

In §4, we study the behavior of the algorithm when applied to a general C2 function f which is
assumed to be strictly convex (or strictly concave). We first establish a perturbation result, which shows
that when f is locally close to a quadratic function q the algorithm behaves in a similar manner as when
applied to q. We then prove that the diameters of the triangles produced by the algorithm tend to zero
so that the perturbation result can be applied. This allows us to show that the optimal convergence
estimate

lim sup
N→∞

N‖f − fN‖Lp ≤ C‖
√

| det(d2f)|‖Lτ (1.5)

is met by the sequence of approximations fN ∈ VTN
generated by the algorithm.

The extension of this result to an arbitrary C2 function f remains an open problem. It is possible
to proceed to an analysis similar to §3 in the case where the quadratic form q is of mixed sign, also
proving that the triangles adopt an optimal aspect ratio as they get refined. We describe this analysis in
§9.1 of [11]. However, it seems difficult to extend the perturbation analysis of §4 to this new setting. In
particular the diameters of the triangles are no more ensured to tend to zero, and one can even exhibit
examples of non-convex C2 functions f for which the approximation fN fails to converge towards f due to
this phenomenon. Such examples are discussed in [8] which also proposes a modification of the algorithm
for which convergence is always ensured. However, we do not know if the optimal convergence estimate
(1.5)holds for any f ∈ C2 with this modified algorithm, although this seems plausible from the numerical
experiments.

2 Adaptive finite element approximation

2.1 Notations

We shall make use of a linear approximation operator AT that maps continuous functions defined on T
onto Π1. For an arbitrary but fixed 1 ≤ p ≤ ∞, we define the local Lp approximation error

eT (f)p := ‖f −AT f‖Lp(T ).

The critical assumptions in our analysis for the operator AT will be the following:

1. AT is continuous in the L∞ norm.

2. AT commutes with affine changes of variables: AT (f) ◦ φ = Aφ−1(T )(f ◦ φ) for all affine φ.

3. AT reproduces Π1: AT (π) = π, for any π ∈ Π1.

Note that the commutation assumption implies that for any function f and any affine transformation
φ : x 7→ x0 + Lx we have

eφ(T )(f)p = | det(L)|1/peT (f ◦ φ)p, (2.6)

Two particularly simple admissible choices of approximation operators are the following:

• AT = PT , the L
2(T )-orthogonal projection operator:

∫

T
(f − PT f)π = 0 for all π ∈ Π1.

• AT = IT , the local interpolation operator: IT f(vi) = f(vi) with {v0, v1, v2} the vertices of T .
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All our results are simultaneously valid when AT is either PT or IT , or any linear operator that fulfills
the three above assumptions.

Given a function f and a triangulation TN with N = #(TN ), we can associate a finite element
approximation fN defined on each T ∈ TN by fN (x) = AT f(x). The global approximation error is given
by

‖f − fN‖Lp =
(

∑

T∈TN

eT (f)
p
p

)
1
p

,

with the usual modification when p = ∞.

Remark 2.1 The operator BT of best Lp(T ) approximation which is defined by

‖f − BT f‖Lp(T ) = min
π∈Πm

‖f − π‖Lp(T ),

does not fall in the above category of operators, since it is non-linear (and not easy to compute) when
p 6= 2. However, it is clear that any estimate on ‖f − fN‖Lp with fN defined as AT f on each T implies
a similar estimate when fN is defined as BT f on each T .

Here and throughout the paper, when

q(x, y) = a2,0x
2 + 2a1,1xy + a0,2y

2 + a1,0x+ a0,1y + a0,0

we denote by q the associated quadratic form : if u = (x, y)

q(u) = a2,0x
2 + 2a1,1xy + a0,2y

2.

Note that q(u) = 〈Qu, u〉 where Q =

(

a2,0 a1,1
a1,1 a0,2

)

. We define

det(q) := det(Q).

If q is a positive or negative quadratic form, we define the q-metric

|v|q :=
√

|q(v)| (2.7)

which coincides with the euclidean norm when q(v) = x2 + y2 for v = (x, y). If q is a quadratic form
of mixed sign, we define the associated positive form |q| which corresponds to the symmetric matrix |Q|
that has same eigenvectors as Q with eigenvalues (|λ|, |µ|) if (λ, µ) are the eigenvalues of Q. Note that
generally |q|(u) 6= |q(u)| and that one always has |q(u)| ≤ |q|(u).

Remark 2.2 If detQ > 0, then there exists a 2× 2 matrix L and ε ∈ {+1,−1} such that

LtQL = ε

(

1 0
0 1

)

.

The linear change of coordinates φ(u) := Lu, where u = (x, y) ∈ R
2, therefore satisfies q ◦ φ(u) =

ε(x2 + y2). On the other hand, if detQ < 0 then there exists a 2× 2 matrix L such that

LtQL =

(

1 0
0 −1

)

.

Defining again φ(u) := Lu we obtain in this case q ◦ φ(u) = x2 − y2.
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2.2 From uniform to adaptive isotropic triangulations

A standard estimate in finite element approximation states that if f ∈W 2,p(Ω) then

inf
g∈Vh

‖f − g‖Lp ≤ Ch2‖d2f‖Lp ,

where Vh is the piecewise linear finite element space associated with a triangulation Th of mesh size
h := maxT∈Th

diam(T ). If we restrict our attention to uniform triangulations, we have

N := #(Th) ∼ h−2.

Therefore, denoting by eunifN (f)Lp the Lp approximation error by a uniform triangulation of cardinality
N , we can re-express the above estimate as

eunifN (f)Lp ≤ CN−1‖d2f‖Lp. (2.8)

This estimate can be significantly improved when using adaptive partitions. We give here some heuristic
arguments, which are based on the assumption that on each triangle T the relative variation of d2f is
small so that it can be considered as constant over T (which means that f is replaced by a quadratic
function on each T ), and we also indicate the available results which are proved more rigorously.

First consider isotropic triangulations, i.e. such that all triangles satisfy a uniform estimate

ρT =
hT
rT

≤ A, (2.9)

where hT := diam(T ) denotes the size of the longest edge of T , and rT is the radius of the largest disc
contained in T . In such a case we start from the local approximation estimate on any T

eT (f)p ≤ Ch2T ‖d2f‖Lp(T ),

and notice that
h2T ‖d2f‖Lp(T ) ∼ |T | ‖d2f‖Lp(T ) = ‖d2f‖Lτ(T ),

with 1
τ := 1

p+1 and |T | the area of T , where we have used the isotropy assumption (2.9) in the equivalence

and the fact that d2f is constant over T in the equality. It follows that

eT (f)p ≤ C‖d2f‖Lτ(T ),
1

τ
:=

1

p
+ 1.

Assume now that we can construct adaptive isotropic triangulations TN with N := #(TN ) which equidis-
tributes the local error in the sense that for some prescribed ε > 0

cε ≤ eT (f)p ≤ ε, (2.10)

with c > 0 a fixed constant independent of T and N . Then defining fN as AT (f) on each T ∈ TN , we
have on the one hand

‖f − fN‖Lp ≤ N1/pε,

and on the other hand, with 1
τ := 1

p + 1,

N(cε)τ ≤
∑

T∈TN

‖f − fN‖τLp(T ) ≤ Cτ
∑

T∈TN

‖d2f‖τLτ(T ) ≤ Cτ‖d2f‖τLτ .

Combining both, one obtains for eisoN (f)Lp := ‖f − fN‖Lp the estimate

eisoN (f)Lp ≤ CN−1‖d2f‖Lτ . (2.11)

This estimate improves upon (2.8) since the rate N−1 is now obtained with the weaker smoothness
condition d2f ∈ Lτ and since, even for smooth f , the quantity ‖d2f‖Lτ might be significantly smaller
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than ‖d2f‖Lp . This type of result is classical in non-linear approximation and also occurs when we
consider best N -term approximation in a wavelet basis.

The principle of error equidistribution suggests a simple greedy algorithm to build an adaptive isotropic
triangulation for a given f , similar to our algorithm but where the bisection of the triangle T that
maximizes the local error eT (f)p is systematically done from its most recently created vertex in order to
preserve the estimate (2.9). Such an algorithm cannot exactly equilibrate the error in the sense of (2.10)
and therefore does not lead to the same the optimal estimate as in (2.11). However, it was proved in [2]
that it satisfies

‖f − fN‖Lp ≤ C|f |B2
τ,τ
N−1,

for all τ such that 1
τ < 1

p + 1, provided that the local approximation operator AT is bounded in the

Lp norm. Here B2
τ,τ denotes the usual Besov space which is a natural substitute for W 2,τ when τ < 1.

Therefore this estimate is not far from (2.11).

2.3 Anisotropic triangulations: the optimal aspect ratio

We now turn to anisotropic adaptive triangulations, and start by discussing the optimal shape of a
triangle T for a given function f at a given point. For this purpose, we again replace f by a quadratic
function assuming that d2f is constant over T . For such a q ∈ Π2 and its associated quadratic form q,
we first derive an equivalent quantity for the local approximation error. Here and as well as in §3 and §4,
we consider a triangle T and we denote by (a, b, c) its edge vectors oriented in clockwise or anti-clockwise
direction so that

a+ b+ c = 0.

Proposition 2.3 The local Lp-approximation error satisfies

eT (q)p = eT (q)p ∼ |T | 1p max{|q(a)|, |q(b)|, |q(c)|},

where the constant in the equivalence is independent of q, T and p.

Proof: The first equality is trivial since q and q differ by an affine function. Let Teq be an equilateral
triangle of area |Teq| = 1, and edges a, b, c. Let E be the 3-dimensional vector space of all quadratic
forms. Then the following quantities are norms on E, and thus equivalent:

eTeq(q)p ∼ max{|q(a)|, |q(b)|, |q(c)|}. (2.12)

Note that the constants in this equivalence are independent of p since all Lp(T ) norms are uniformly
equivalent on E.

If T is an arbitrary triangle, there exists an affine transform φ : x 7→ x0 + Lx such that T = φ(Teq).
For any quadratic function q, we thus obtain from (2.6)

eT (q) = eT (q) = eφ(Teq)(q) = | detL| 1p eTeq(q ◦ φ) = | detL| 1p eTeq(q ◦ L)

since q ◦ L is the homogeneous part of q ◦ φ. By (2.12), we thus have

eT (q) ∼ | detL| 1p max{|q(La)|, |q(Lb)|, |q(Lc)|},

where {a, b, c} are again the edge vectors of Teq. Remarking that |T | = | detL| and that {La, Lb, Lc} are
the edge vectors of T , this concludes the proof of this proposition. ⋄

In order to describe the optimal shape of a triangle T for the quadratic function q, we fix the area
of |T | and try to minimize the error eT (q)p or equivalently max{|q(a)|, |q(b)|, |q(c)|}. The solution to
this problem can be found by introducing for any q such that det(q) 6= 0 the following measure of
non-degeneracy for T :

ρq(T ) :=
max{|q(a)|, |q(b)|, |q(c)|}

|T |
√

| det(q)|
. (2.13)
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Let φ be a linear change of variables, q a quadratic form and T a triangle of edges a, b, c. Then det(q◦φ) =
(detφ)2 det(q), the edges of φ(T ) are φ(a), φ(b), φ(c) and |φ(T )| = | detφ||T |. Hence we obtain

ρq◦φ(T ) =
max{|q ◦ φ(a)|, |q ◦ φ(b)|, |q ◦ φ(c)|}

|T |
√

| det(q ◦ φ)|
=

max{|q(φ(a))|, |q(φ(b))|, |q(φ(c))|}
| detφ||T |

√

| det(q)|
= ρq(φ(T )).

(2.14)
The last equation, combined with Remark 2.2, allows to reduce the study of ρq(T ) to two elementary
cases by change of variable:

1. The case where det(q) > 0 is reduced to q(x, y) = x2 + y2. Recall that for any triangle T with
edges a, b, c we define hT := diam(T ) = max{|a|, |b|, |c|}, with | · | the euclidean norm. In this case

we therefore have ρq(T ) =
h2
T

|T | , which corresponds to a standard measure of shape regularity in the

sense that its boundedness is equivalent to a property such as (2.9). This quantity is minimized
when the triangle T is equilateral, with minimal value 4√

3
(in fact it was also proved in [5] that the

minimum of the interpolation error ‖q− ITq‖Lp(T ) among all triangles of area |T | = 1 is attained
when T is equilateral). For a general quadratic form q of positive sign, we obtain by change of
variable that the minimal value 4√

3
is obtained for triangles which are equilateral with respect to

the metric | · |q. More generally triangles with a good aspect ratio, i.e. a small value of ρq(T ), are
those which are isotropic with respect to this metric. Of course, a similar conclusion holds for a
quadratic form of negative sign.

2. The case where det(q) < 0 is reduced to q(x, y) = x2−y2. In this case, the analysis presented in [4]
shows that the quantity ρq(T ) is minimized when T is a half of a square with sides parallel to the
x and y axes, with minimal value 2. But using (2.14) we also notice that ρq(T ) = ρq(L(T )) for any
linear transformation L such that q = q ◦ L. This holds if L has eigenvalues (λ, 1

λ), where λ 6= 0,
and eigenvectors (1, 1) and (−1, 1). Therefore, all images of the half square by such transformations
L are also optimal triangles. Note that such triangles can be highly anisotropic. For a general
quadratic form q of mixed sign, we notice that ρq(T ) ≤ ρ|q|(T ), and therefore triangles which are
equilateral with respect to the metric | · ||q| have a good aspect ratio, i.e. a small value of ρq(T ).
In addition, by similar arguments, we find that all images of such triangles by linear transforms L
with eigenvalues (λ, 1

λ) and eigenvectors (u, v) such that q(u) = q(v) = 0 also have a good aspect
ratio, since q = q ◦ L for such transforms.

We leave aside the special case where det(q) = 0. In such a case, the triangles minimizing the error for a
given area degenerate in the sense that they should be infinitely long and thin, aligned with the direction
of the null eigenvalue of q.

Summing up, we find that triangles with a good aspect ratio are characterized by the fact that ρq(T )
is small. In addition, from Proposition 2.3 and the definition of ρq(T ), we have

eT (q)p ∼ |T |1+ 1
p

√

| det(q)|ρq(T ) = ‖
√

| det(q)|‖Lτ(T )ρq(T ),
1

τ
:=

1

p
+ 1. (2.15)

We now return to a function f such that d2f is assumed to be constant on every T ∈ TN . Assuming that
all triangles have a good aspect ratio in the sense that

ρq(T ) ≤ C

for some fixed constant C and with q the value of d2f over T , we find up to a change in C that

eT (f)p ≤ C‖
√

| det(d2f)|‖Lτ(T ) (2.16)

By a similar reasoning as with isotropic triangulations, we now obtain that if the triangulation equidis-
tributes the error in the sense of (2.10)

‖f − fN‖Lp ≤ CN−1‖
√

| det(d2f)|‖Lτ , (2.17)
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and therefore (1.1) holds. This estimate improves upon (2.11) since the quantity ‖
√

| det(d2f)|‖Lτ might
be significantly smaller than ‖d2f‖Lτ , in particular when f has some anisotropic features, such as sharp
gradients along curved edges.

The above derivation of (1.1) is heuristic and non-rigorous. Clearly, this estimate cannot be valid as
such since det(d2f) may vanish while the approximation error does not (consider for instance f depending
only on a single variable). More rigorous versions were derived in [7] and [1]. In these results |d2f | is
typically replaced by a majorant |d2f |+ εI, avoiding that its determinant vanishes. The estimate (1.1)
can then be rigorously proved but holds for N ≥ N(ε, f) large enough. This limitation is unavoidable and
reflects the fact that enough resolution is needed so that the hessian can be viewed as locally constant
over each optimized triangle. Another formulation, which is rigorously proved in [10], reads as follows.

Proposition 2.4 There exists an absolute constant C > 0 such that for any polygonal domain Ω and
any function f ∈ C2(Ω), one has

lim sup
N→+∞

NeN (f)Lp ≤ C‖
√

| det(d2f)|‖Lτ .

2.4 The greedy algorithm

Given a target function f , our algorithm iteratively builds triangulations TN with N = #(TN ) and finite
element approximations fN . The starting point is a coarse triangulation TN0 . Given TN , the algorithm
selects the triangle T which maximizes the local error eT (f)p among all triangles of TN , and bisects it
from the mid-point of one of its edges towards the opposite vertex. This gives the new triangulation
TN+1.

The critical part of the algorithm lies in the choice of the edge e ∈ {a, b, c} from which T is bisected.
Denoting by T 1

e and T 2
e the two resulting triangles, we choose e as the minimizer of a decision function

dT (e, f), which role is to drive the generated triangles towards an optimal aspect ratio. While the most
natural choice for dT (e, f) corresponds to the split that minimizes the error after bisection, namely

dT (e, f) = eT 1
e
(f)pp + eT 2

e
(f)pp,

we shall instead focus our attention on a decision function which is defined as the L1 norm of the
interpolation error

dT (e, f) = ‖f − IT 1
e
f‖L1(T 1

e ) + ‖f − IT 2
e
f‖L1(T 2

e ). (2.18)

For this decision, the analysis of the algorithm is made simpler, due to the fact that we can derive explicit
expressions of ‖f − IT f‖L1(T ) when f = q is a quadratic polynomial with a positive homogeneous part
q. We prove in §3 that this choice leads to triangles with an optimal aspect ratio in the sense of a small
ρq(T ). This leads us in §4 to a proof that the algorithm satisfies the optimal convergence estimate (2.17)
in the case where f is C2 and strictly convex.

Remark 2.5 It should be well understood that while the decision function is based on the L1 norm, the
selection of the triangle to be bisected is done by maximizing eT (f)p. The algorithm remains therefore
governed by the Lp norm in which we wish to minimize the error ‖f−fN‖p for a given number of triangles.
Intuitively, this means that the Lp-norm influences the size of the triangles which have to equidistribute
the error, but not their optimal shape.

Remark 2.6 It was pointed out to us that the L1 norm of the interpolation error to a suitable convex
function is also used to improve the mesh in the context of moving grid techniques, see [6].

We define a variant of the decision function as follows

DT (e, f) := ‖f − IT f‖L1(T ) − dT (e, f).

Note that DT (e, f) is the reduction of the L1 interpolation error resulting from the bisection of the edge
e, and that the selected edge that minimizes dT (·, f) is also the one that maximizes D(·, f). The function
DT has a simple expression in the case where f is a convex function.
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Lemma 2.7 Let T be a triangle and let f be a convex function on T . Let e be an edge of T with endpoints
z0 and z1. Then

DT (e, f) =
|T |
3

(

f(z0) + f(z1)

2
− f

(

z0 + z1
2

))

. (2.19)

If in addition f has C2 smoothness, we also have

DT (e, f) =
|T |
6

∫ 1

0

〈d2f(zt)e, e〉min{t, 1− t}dt, where zt := (1 − t)z0 + tz1. (2.20)

Proof: Since f is convex, we have IT f ≥ f on T , hence

‖f − IT f‖L1(T ) =

∫

T

(IT f − f).

Similarly IT 1
e
f ≥ f on T 1

e and IT 2
e
f ≥ f on T 2

e , hence

DT (e, f) =

∫

T

IT f −
∫

T 1
e

IT 1
e
f −

∫

T 2
e

IT 2
e
f.

Let z2 be the vertex of T opposite the edge e. Since the function f is convex, it follows the previous
expression that DT (e, f) is the volume of the tetrahedron of vertices

(

z0,x + z1,x
2

,
z0,y + z1,y

2
, f

(

z0 + z1
2

))

and (zi,x, zi,y, f(zi)) for i = 0, 1, 2.

where (zi,x, zi,y) are the coordinates of zi. Let u = z0 − z2 and v = z1 − z2. We thus have DT (e, f) =
1
6 | det(M)| where

M :=





ux vx
ux+vx

2

uy vy
uy+vy

2
f(z0)− f(z2) f(z1)− f(z2) f

(

z0+z1
2

)

− f(z2)



 .

Subtracting the half of the first two columns to the third one we find that M has the same determinant
as

M̃ :=





ux vx 0
uy vy 0

f(z0)− f(z2) f(z1)− f(z2) f
(

z0+z1
2

)

− f(z0)+f(z1)
2



 .

Recalling that 2|T | = | det(u, v)| we therefore obtain (2.19). In order to establish (2.20), we observe that
we have in the distribution sense ∂2t (min{t, 1 − t}+) = δ0 − 2δ1/2 + δ1, where δt is the one-dimensional
Dirac function at a point t. Hence for any univariate function h ∈ C2([0, 1]), we have

∫ 1

0

h′′(t)min{t, 1− t}dt = h(0)− 2h(1/2) + h(1).

Combining this result with (2.19) we obtain (2.20). ⋄

3 Positive quadratic functions

In this section, we study the algorithm when applied to a quadratic polynomial q such that det(q) > 0.
We shall assume without loss of generality that q is positive definite, since all our results extend in a
trivial manner to the negative definite case.

Our first observation is that the refinement procedure based on the decision function (2.18) always
selects for bisection the longest edge in the sense of the q-metric | · |q defined by (2.7).

9



Lemma 3.1 An edge e of T maximizes DT (e, q) among all edges of T if and only if it maximizes |e|q
among all edges of T .

Proof: The hessian d2q is constant and for all e ∈ R
2 one has

〈d2qe, e〉 = 2q(e).

If e is an edge of a triangle T , and if q is a convex quadratic function, equation (2.20) therefore gives

DT (e, q) =
|T |
3

q(e)

∫ 1

0

min{t, 1− t}dt = |T |
12

|e|2
q
. (3.21)

This concludes the proof. ⋄

It follows from this lemma that the longest edge of T in the sense of the q-metric is selected for
bisection by the decision function. In the remainder of this section, we use this fact to prove that the
refinement procedure produces triangles which tend to adopt an optimal aspect ratio in the sense that
ρq(T ) becomes small in an average sense.

For this purpose, it is convenient to introduce a close variant to ρq(T ): if T is a triangle with edges
a, b, c, such that |a|q ≥ |b|q ≥ |c|q, we define

σq(T ) :=
q(b) + q(c)

4|T |
√
detq

=
|b|2

q
+ |c|2

q

4|T |
√
detq

. (3.22)

Using the inequalities |b|2
q
+ |c|2

q
≤ 2|a|2

q
and |a|2

q
≤ 2(|b|2

q
+ |c|2

q
), we obtain the equivalence

ρq(T )

8
≤ σq(T ) ≤

ρq(T )

2
. (3.23)

Similar to ρq, this quantity is invariant under a linear coordinate changes φ, in the sense that

σq◦φ(T ) = σq(φ(T )),

From (2.15) and (3.23) we can relate σq to the local approximation error.

Proposition 3.2 There exists a constant C0, which depends only on the choice of AT , such that for any
triangle T , quadratic function q and exponent 1 ≤ p ≤ ∞, the local Lp-approximation error satisfies

C−1
0 eT (q)p ≤ σq(T )‖

√

detq‖Lτ (T ) ≤ C0eT (q)p. (3.24)

where 1
τ := 1

p + 1.

Our next result shows that σq(T ) is always reduced by the refinement procedure.

Proposition 3.3 If T is a triangle with children T1 and T2 obtained by the refinement procedure for the
quadratic function q, then

max{σq(T1), σq(T2)} ≤ σq(T ).

Proof: Assuming that |a|q ≥ |b|q ≥ |c|q, we know that the edge a is cut and that the children have area
|T |/2 and edges a/2, b, (c− b)/2 and a/2, (b− c)/2, c (recall that a+ b+ c = 0). We then have

2|T |
√

detq σq(Ti) ≤ q
(a

2

)

+ q

(

b − c

2

)

(3.25)

= q

(

b+ c

2

)

+ q

(

b− c

2

)

(3.26)

=
q(b) + q(c)

2
(3.27)

= 2|T |
√

detq σq(T ). (3.28)

⋄
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Remark 3.4 When q is the euclidean metric, the triangle that minimizes σq is the half square. This
is consistent with the above result since it is the only triangle which is similar (i.e. identical up to a
translation, a rotation and a dilation) to both of its children after one step of longest edge bisection.

Remark 3.5 A result of similar nature was already proved in [12] : longest edge bisection has the effect
that the minimal angle in any triangle after an arbitrary number of refinements is at most twice the
minimal angle of the initial triangle.

Our next objective is to show that as we iterate the refinement process, the value of σq(T ) becomes
bounded independently of q for almost all generated triangles. For this purpose we introduce the following
notation: if T is a triangle with edges such that |a|q ≥ |b|q ≥ |c|q, we denote by ψq(T ) the subtriangle of
T obtained after bisection of a which contains the smallest edge c. We first establish inequalities between
the measures σq and ρq applied to T and ψq(T ).

Proposition 3.6 Let T be a triangle, then

σq(ψq(T )) ≤ 5

8
ρq(T ) (3.29)

ρq(ψq(T )) ≤ ρq(T )

2

(

1 +
16

ρ2
q
(T )

)

(3.30)

Proof: We first prove (3.29). Obviously, ψq(T ) contains one edge s ∈ {a, b, c} from T , and one half edge
t ∈ {a

2 ,
b
2 ,

c
2} from T . Therefore

σq(ψq(T )) ≤
|s|2

q
+ |t|2

q

4|ψq(T )|
√
detq

≤
|a|2

q
+ |a2 |2q

2|T |
√
detq

=
5

8
ρq(T ).

For the proof of (3.30), we restrict our attention to the case q = x2+y2, without loss of generality thanks
to the invariance formula (2.14). Let T be a triangle with edges |a| ≥ |b| ≥ |c|. If h is the width of T in
the direction perpendicular to a, then

h =
2|T |
|a| =

2|a|
ρq(T )

.

The sub-triangle ψq(T ) of T has edges a
2 , c, d where d = b−c

2 , and the angles at the ends of a
2 are acute.

Indeed

〈c, a/2〉 = 1

4

(

|b|2 − |a|2 − |c|2
)

≤ 0 and 〈d, a/2〉 = 1

4

(

|c|2 − |b|2
)

≤ 0.

By Pythagora’s theorem we thus find

max{
∣

∣

∣

a

2

∣

∣

∣

2

, |c|2, |d|2} ≤
∣

∣

∣

a

2

∣

∣

∣

2

+ h2 =
|a|2
4

(

1 +
16

ρ2
q
(T )

)

.

Dividing by the respective areas of T and ψq(T ), we obtain the announced result. ⋄

Our next result shows that a significant reduction of σq occurs at least for one of the triangles
obtained by three successive refinements, unless it has reached a small value of σq. We use the notation
ψ2
q
(T ) := ψq(ψq(T )) and ψ

3
q
(T ) := ψq(ψ

2
q
(T )).

Proposition 3.7 Let T be a triangle such that σq(ψ
3
q
(T )) ≥ 5. Then σq(ψ

3
q
(T )) ≤ 0.69σq(T ).

Proof: The monotonicity of σq established in Proposition (3.3) implies that

5 ≤ σq(ψ
3
q
(T )) ≤ σq(ψ

2
q
(T )) ≤ σq(ψq(T )).

Combining this with inequality (3.29) we obtain

8 ≤ min{ρq(ψ2
q
(T )), ρq(ψq(T )), ρq(T )}.
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According to inequality (3.30), if a triangle S obeys ρq(S) ≥ 4, then 1
2

(

1 + 16
ρ2
q
(S)

)

≤ 1 and therefore

ρq(ψq(S)) ≤ ρq(S). We can apply this to S = ψq(T ) and S = T , therefore obtaining

ρq(ψ
2
q
(T )) ≤ ρq(ψq(T )) ≤ ρq(T ). (3.31)

We now remark that inequality (3.30) is equivalent to (ρq(S)− ρq(ψq(S)))
2 ≥ ρq(ψq(S))

2 − 16, hence

ρq(S) ≥ ρq(ψq(S)) +
√

ρq(ψq(S))2 − 16 (3.32)

provided that ρq(S) ≥ ρq(ψq(S)). Applying this to S = ψq(T ) and recalling that ρq(ψ
2
q
(T )) ≥ 8 we

obtain
ρq(ψq(T )) ≥ 8 +

√

82 − 16 ≥ 14.9.

Applying again (3.32) to S = T we obtain

ρq(T ) ≥ 14.9 +
√

14.92 − 16 ≥ 29.3.

Using (3.30), it follows that

ρ(ψ3
q
(T ))

ρ(T )
≤ 1

8

(

1 +
16

ρ2
q
(ψ2

q
(T ))

)(

1 +
16

ρ2
q
(ψq(T ))

)(

1 +
16

ρ2
q
(T )

)

≤ 0.171.

Eventually, the inequalities (3.23) imply that

2σq(ψ
3
q
(T )) ≤ ρq(ψ

3
q
(T )) ≤ 0.171ρq(T ) ≤ 0.171(8σq(T ))

which concludes the proof. ⋄

An immediate consequence of Propositions 3.3 and 3.7 is the following.

Corollary 3.8 If (Ti)
8
i=1 are the eight children obtained from three successive refinement procedures from

T for the function q, then

• for all i, σq(Ti) ≤ σq(T ),

• there exists i such that σq(Ti) ≤ 0.69σq(T ) or σq(Ti) ≤ 5.

We are now ready to prove that most triangles tend to adopt an optimal aspect ratio as one iterates the
refinement procedure.

Theorem 3.9 Let T be a triangle, and q a positive definite quadratic function. Let k =
lnσq(T )−ln 5
− ln(0.69) .

Then after n applications of the refinement procedure starting from T , at most Cnk7n/3 of the 2n generated
triangles satisfy σq(S) ≥ 5, where C is an absolute constant. Therefore the proportion of such triangles
tends exponentially fast to 0 as n→ +∞.

Proof: If we prove the proposition for n multiple of 3, then it will hold for all n (with a larger constant)
since σq decreases at each refinement step. We now assume that n = 3m, and consider the octree with
root T obtained by only considering the triangles of generation 3i for i = 0, · · · , n.

According to Corollary 3.8, for each node of this tree, one of its eight children either checks σq ≤ 5
or has its non-degeneracy measure diminished by a factor θ := 0.69. We remark that if σq is diminished
at least k times on the path going from the root T to a leaf S, then σq(S) ≤ 5. As a consequence,
the number N(m) of triangles S which are such that σq(S) > 5 within the generation level n = 3m is
bounded by the number of words in an eight letters alphabet {a1, · · · , a8} with length m and that use
the letter a8 at most k times, namely

N(m) ≤
k
∑

l=0

(

m

l

)

7m−l ≤ Cmk7m,

12



which is the announced result. ⋄

The fact that most triangles tend to adopt an optimal aspect ratio as one iterates the refinement
procedure is a first hint that the approximation error in the greedy algorithm might satisfy the estimate
(1.1) corresponding to an optimal triangulation. The following result shows that this is indeed the
case, when this algorithm is applied on a triangular domain Ω to a quadratic function q with positive
definite associated quadratic form q. The extension of this result to more general C2 convex functions
on polygonal domains requires a more involved analysis based on local perturbation arguments and is
the object of the next section.

Corollary 3.10 Let Ω be a triangle, and let q be a quadratic function with positive definite associated
quadratic form q. Let qN be the approximant of q on Ω obtained by the greedy algorithm for the Lp

metric, using the L1 decision function (2.18). Then

lim sup
N→∞

N‖q − qN‖Lp(Ω) ≤ C‖
√

det(q)‖Lτ (Ω),

where 1
τ = 1

p + 1 and where the constant C depends only on on the choice of the approximation operator
AT used in the definition of the approximant.

Proof: For any triangle T , quadratic function q ∈ Π2, and exponent p, let

e′T (q)p := inf
π∈Π1

‖q − π‖Lp(T )

be the error of best approximation of q on T . Let T0 be a fixed triangle of area 1, then for any q ∈ Π2

and 1 ≤ p ≤ ∞ one has
e′T0

(q)1 ≤ e′T0
(q)p ≤ eT0(q)p ≤ eT0(q)∞.

Furthermore, e′T0
(·)1 and eT0(·)∞ are semi norms on the finite dimensional space Π2 which vanish precisely

on the same subspace of Π2, namely Π1. Hence these semi-norms are equivalent. It follows that

c0 eT0(q)p ≤ e′T0
(q)p ≤ eT0(q)p (3.33)

where c0 is independent q ∈ Π2 and of p ≥ 1. Using the invariance property (2.6) we find that (3.33)
holds for any triangle T in place of T0 with the same constant c0. We also define for any triangulation T ,

eT (f)
p
p :=

∑

T∈T
eT (f)

p
p and e′T (f)

p
p :=

∑

T∈T
e′T (f)

p
p,

and we remark that c0 eT (q)p ≤ e′T (q)p ≤ eT (q)p. For each n, we denote by T u
n the triangulation of Ω

produced by n successive refinements based on the L1 decision function (2.18) for the quadratic function
q of interest (note that #(T u

n ) = 2n). We also define T σ
n := {T ∈ T u

n ; σq(T ) > 5}. Therefore σq(T ) ≤ 5
if T /∈ T σ

n , and on the other hand we know from Proposition 3.3 that σq(T ) ≤ σq(Ω) for any T ∈ T u
n . It

follows from Proposition 3.2 that

eT u
n
(q)p ≤ C0

(

∑

T∈T u
n
(σq(T )|T |

1
τ

√
detq)p

)
1
p

≤ C0

(

5p × 2n + σq(Ω)
p#(T σ

n )
)

1
p
(

|Ω|
2n

)
1
τ √

detq,

where C0 is the constant in (3.24). According to Theorem 3.9, we know that

lim
n→+∞

2−n#(T σ
n ) = 0.

Hence
lim sup
n→∞

2neT u
n
(q)p ≤ 5C0 |Ω|

1
τ

√

detq = 5C0‖
√

detq‖Lτ(Ω).
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We now denote by T g
n the triangulation generated by the greedy procedure with stopping criterion based

on the error ηn := C−1
0 2−

n
τ ‖√detq‖Lτ (Ω). It follows from (3.24) that for all T ∈ T u

k with k ≤ n, one has

eT (q)p ≥ C−1
0 σq(T )‖

√

detq‖Lτ(T ) ≥ C−1
0 2−

k
τ ‖
√

detq‖Lτ(Ω) ≥ ηn,

where we used that |T | = 2−k|Ω| and that the minimal value of σq is 1. This shows that T n
g is a refinement

of T u
n . Furthermore any triangle T ∈ T u

n has at most 2k(T ) children in T g
n , where k(T ) is the smallest

integer such that

ηn ≥ C0 2
−n+k(T )

τ σq(T )‖
√

detq‖Lτ (Ω).

Since 1
2 ≤ τ ≤ 1 we obtain 2k(T ) ≤ 2

k(T )
τ ≤ 2

1
τ C2

0σq(T ) ≤ 4C2
0σq(T ). Hence

#(T g
n ) ≤ 4C2

0

∑

T∈T u
n

σq(T ) ≤ 4C2
0 (5× 2n + σq(Ω)#(T σ

n )) = C12
n(1 + εn),

where C1 = 20C2
0 and εn → 0 as n→ ∞. If TN is the triangulation generated after N steps of the greedy

algorithm, then there exists n ≥ 0 such that TN is a refinement of T g
n (hence a refinement of T u

n ) and
T g
n+1 is a refinement of TN . It follows that #(TN ) ≤ #(T g

n+1) ≤ C12
n+1(1 + εn+1), and

c0 eTN
(q)p ≤ e′TN

(q)p ≤ e′T u
n
(q)p ≤ eT u

n
(q)p,

where we have used the fact that e′T (f)p ≤ e′T̃ (f)p whenever T is a refinement of T̃ . Eventually,

lim sup
N→∞

NeTN
(q)p ≤ lim sup

n→∞

C1

c0
2n+1(1 + εn+1)eT u

n
(q) ≤ 10C0C1

c0
‖
√

det q‖Lτ(Ω),

which concludes the proof. ⋄

4 The case of strictly convex functions

The goal of this section is to prove that the approximation error in the greedy algorithm applied to a C2

function f satisfies the estimate (1.1) corresponding to an optimal triangulation. Our main result is so
far limited to the case where f is strictly convex.

Theorem 4.1 Let f ∈ C2(Ω) be such that

d2f(x) ≥ mI, for all x ∈ Ω

for some arbitrary but fixed m > 0 independent of x. Let fN be the approximant obtained by the greedy
algorithm for the Lp metric, using the L1 decision function (2.18). Then

lim sup
N→∞

N‖f − fN‖Lp ≤ C‖
√

det(d2f)‖Lτ , (4.34)

where 1
τ = 1

p + 1 and where C is an absolute constant (i.e. independent of p, f and m).

Equation (4.34) can be rephrased as follows : there exists a sequence εN (f) such that εN (f) → 0 as
N → ∞ and

‖f − fN‖Lp ≤
(

C‖
√

det(d2f)‖Lτ + εN(f)
)

N−1.

Note also that since ‖
√

det(d2f)‖Lτ > 0, there existsN0(f) such that ‖f−fN‖Lp ≤ 2C‖
√

det(d2f)‖LτN−1

for all N ≥ N0(f). It should be stressed hard that N0(f) can be arbitrarily large depending on the func-
tion f . Intuitively, this means that when f has very large hessian at certain point, it takes more iterations
for the algorithm to generate triangles with a good aspect ratio. The extension of this result to strictly
concave functions is immediate by a change of sign. Its extension to arbitrary C2 functions is so far
incomplete, as it is explained in the end of the introduction. The proof of Theorem 4.1 uses the fact that
a strictly convex C2 function is locally close to a quadratic function with positive definite hessian, which
allows us to exploit the results obtained in §3 for these particular functions.
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4.1 A perturbation result

We consider a triangle T , a function f ∈ C2(T ), a convex quadratic function q and µ > 0 such that on
T

d2q ≤ d2f ≤ (1 + µ) d2q. (4.35)

It follows that det(d2q) ≤ det(d2f) ≤ det((1 + µ)d2q) = (1 + µ)2 det(d2q). Since det(d2q) = 4 det(q), we
obtain

2‖
√

detq‖Lτ (T ) ≤ ‖
√

det(d2f)‖Lτ(T ) ≤ 2(1 + µ)‖
√

detq‖Lτ (T ). (4.36)

The following Lemma shows how the local errors associated to f and q are close

Proposition 4.2 The exists a constant Ce > 0, depending only on the operator AT such that

(1− Ceµ)eT (q)p ≤ eT (f)p ≤ (1 + Ceµ)eT (q)p. (4.37)

Proof: It follows from inequality (4.35) that the functions f − q and (1 + µ)q − f are convex, hence

IT (f − q)− (f − q) ≥ 0 and IT ((1 + µ)q − f)− ((1 + µ)q − f) ≥ 0

on the triangle T . We therefore obtain

0 ≤ (IT f − f)− (IT q − q) ≤ µ(IT q − q).

There exists a constant C0 > 0 depending only on AT such that for any h ∈ C0(T ),

eT (h)p ≤ C0|T |
1
p ‖h‖L∞(T ).

Furthermore according to Proposition 2.3 there exists a constant C1 > 0 depending only on AT such that

|T |1/p‖q − IT q‖L∞(T ) ≤ C1eT (q)p.

Hence

|eT (f)p − eT (q)p| ≤ eT (f − q)p

= eT ((IT f − f)− (IT q − q))p

≤ C0|T |
1
p ‖(IT f − f)− (IT q − q)‖L∞(T )

≤ C0|T |
1
p ‖µ(IT q − q)‖L∞(T )

≤ C0C1µeT (q)p

This concludes the proof of this Lemma, with Ce = C0C1. ⋄

Note that using Proposition 3.2, and assuming that µ ≤ ce :=
1

2Ce
, we have with 1

τ := 1 + 1
p ,

eT (f)p ∼ eT (q)p ∼ σq(T )‖
√

| detq|‖Lτ(T ) ∼ σq(T )‖
√

det(d2f)‖Lτ(T ), (4.38)

with absolute constants in the equivalence.
We next study the behavior of the decision function e 7→ dT (e, f). For this purpose, we introduce the

following definition.

Definition 4.3 Let T be a triangle with edges a, b, c. A δ-near longest edge bisection with respect to the
q-metric is a bisection of any edge e ∈ {a, b, c} such that

q(e) ≥ (1− δ)max{q(a),q(b),q(c)}

Proposition 4.4 Assume that f and q satisfy (4.35). Then, the bisection of T prescribed by the decision
function e 7→ dT (e, f) is a µ-near longest edge bisection for the q-metric.

15



Proof: It follows directly from Equation (2.20) that for any edge e of T ,

DT (e, q) ≤ DT (e, f) ≤ DT (e, (1 + µ)q),

hence we obtain using (3.21)

|T |
12

q(e) ≤ DT (e, f) ≤ (1 + µ)
|T |
12

q(e). (4.39)

Therefore the bisection of T prescribed by the decision function e 7→ dT (e, f) selects an e such that

(1 + µ)q(e) ≥ max{q(a),q(b),q(c)}.

It is therefore a δ-near longest edge bisection for the q-metric with δ = µ
1+µ ≤ µ and therefore also a

µ-near longest edge bisection. ⋄

In the rest of this section, we analyze the difference between a longest edge bisection in the q-metric
and a δ-near longest edge bisection. For that purpose we introduce a distance between triangles : if T1, T2
are two triangles with edges a1, b1, c1 and a2, b2, c2 such that

q(a1) ≥ q(b1) ≥ q(c1) and q(a2) ≥ q(b2) ≥ q(c2), (4.40)

we define
∆q(T1, T2) = max{|q(a1)− q(a2)|, |q(b1)− q(b2)|, |q(c1)− q(c2)|}.

Note that ∆q is a distance up to rigid transformations.

Lemma 4.5 Let T1, T2 be two triangles, let (R1, U1) and (R2, U2) be the two pairs of children from the
longest edge bisection of T1 in the q-metric, and a δ-near longest edge bisection of T2 in the q-metric.
Then, up to a permutation of the pair of triangles (R1, U1),

max{∆q(R1, R2),∆q(U1, U2)} ≤ 5

4
∆q(T1, T2) + δq(a2).

where a2 is the longest edge of T2 in the q-metric.

Proof: We assume that the edges of T1 and T2 are named and ordered as in (4.40). Up to a permutation,
R1 and U1 have edge vectors b1, a1/2, (c1 − b1)/2 and c1, a1/2, (b1 − c1)/2. Two situations might occur
for the pair (R2, U2):

• q(e) < (1− δ)q(a2) for e = b2 and c2. In such a case the triangle T2 is bisected towards a2, so that
up to a permutation, R2 and U2 have edge vectors b2, a2/2, (c2 − b2)/2 and c2, a2/2, (b2 − c2)/2.
Using that q((c − b)/2) = q(c)/2 + q(b)/2− q(a)/4 when a+ b+ c = 0, it clearly follows that

max{∆q(R1, R2),∆q(U1, U2)} ≤ 5

4
∆q(T1, T2).

• q(e) ≥ (1− δ)q(a2) for some e = b2 or c2. In such a case T2 may be bisected say towards b2, so that
up to a permutation, R2 and U2 have edge vectors a2, b2/2, (c2 − a2)/2 and c2, b2/2, (b2 − c2)/2.
But since |q(b2)− q(a2)| ≤ δq(a2), we obtain that

max{∆q(R1, R2),∆q(U1, U2)} ≤ 5

4
∆q(T1, T2) + δq(a2). (4.41)

⋄

We now introduce a perturbed version of the estimates describing the decay of the non-degeneracy
measure which were obtained in Proposition 3.3 and Corollary 3.8.
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Proposition 4.6 If (Ti)
2
i=1 are the two children obtained from a refinement of a triangle T in which a

δ-near longest edge bisection in the q-metric is selected, then

max{σq(T1), σq(T2)} ≤ (1 + 4δ)σq(T ). (4.42)

If (Ti)
8
i=1 are the eight children of a triangle T obtained from three successive refinements in which a

δ-near longest edge bisection in the q-metric is selected, then

• for all i, σq(Ti) ≤ σq(T )(1 + C2δ),

• there exists i such that σq(Ti) ≤ 0.69 σq(T )(1 + C2δ) or σq(Ti) ≤M ,

where C2 = 61
4 and M = 5(1 + C2δ).

Proof: We first prove (4.42), and for that purpose we introduce the two children T ′
1, T

′
2 obtained by

bisecting the longest edge of T in the q-metric. If follows from (4.41) that, up to a permutation of the
pair (T ′

1, T
′
2),

max{∆q(T1, T
′
1),∆q(T2, T

′
2)} ≤ δq(a),

where a is the longest edge of T in the q-metric. Hence

|σq(Ti)− σq(T
′
i )| ≤

2∆q(Ti, T
′
i )

4|Ti|
√

det(q)
≤ 2δ

q(a)

4|Ti|
√

det(q)
≤ 4δσq(T ). (4.43)

We know from Proposition 3.3 that max{σq(T ′
1), σq(T

′
2)} ≤ σq(T ). Combining this point with (4.43) we

conclude the proof of (4.42).

We now turn to proof of the second part of the proposition and for that purpose we introduce the
eight children (T ′

i )
8
i=1 obtained from three successive refinements of T in which the longest edge in the

q-metric is selected. Iterating (4.41), we find that, up to a permutation of the triangles (T ′
i )

8
i=1, one has

max
i=1,··· ,8

∆q(Ti, T
′
i ) ≤

(

1 +
5

4
+

(

5

4

)2
)

δq(a) =
61

16
δq(a) =

C2δ

4
q(a),

where, again, a is the longest edge of T in the q-metric. Repeating the argument (4.43) we find that

max
i=1,··· ,8

|σq(Ti)− σq(T
′
i )| ≤ C2δσq(T ). (4.44)

We know from Corollary 3.8 that σq(T
′
i ) ≤ σq(T ) for all i and that there exists i such that either

σq(T
′
i ) ≤ 0.69 σq(T ) or σq(T

′
i ) ≤ 5. Combining this point with (4.44) we conclude the proof of the

proposition. ⋄

4.2 Local optimality

Our next step towards the proof of Theorem 4.1 is to show that the triangulation produced by the
greedy algorithm is locally optimal in the following sense: if the refinement procedure for the function f
produces a triangle T ∈ D on which f is close enough to a quadratic function q, then the triangles which
are generated from the refinement of T tend to adopt an optimal aspect ratio in the q-metric, and a local
version of the optimal estimate (1.1) holds on T .

We first prove that most triangles adopt an optimal aspect ratio as we iterate the refinement procedure.
Our goal is thus to obtain a result similar to Theorem 3.9 which was restricted to quadratic functions.
However, due to the perturbations by C2µ that appear in Proposition 4.6, the formulation will be slightly
different, yet sufficient for our purposes: we shall prove that the measure of non-degeneracy becomes
bounded by an absolute constant in an average sense, as we iterate the refinement procedure.
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As in the previous section, we assume that f and q satisfy (4.35). For any T , we define T u
n (T ) the

triangulation of T which is built by iteratively applying the refinement procedure for the function f to
all generated triangles up to 3n generation levels. Note that

#(T u
n (T )) = 23n and |T ′| = 2−3n|T |, T ′ ∈ T u

n (T ).

For r > 0, we define the average r-th power of the measure of non-degeneracy of the 23n triangles obtained
from T after 3n iterations by

σr
q
(n) =

1

23n

∑

T ′∈T u
n (T )

σr
q
(T ′).

We also define

γ(r, µ) :=
1

8

(

0.69(1 + C2µ)
)r

+
7

8
(1 + C2µ)

r,

where C2 is the constant in Proposition 4.6. Note that for any r > 0, the function γ(r, ·) is continuous
and increasing, and that 0 < γ(r, 0) < 1. Hence for any r > 0, there exists µ(r) > 0 and 0 < γ(r) < 1
such that γ(r, µ) ≤ γ(r), if 0 < µ < µ(r).

Proposition 4.7 Assume that f and q satisfy (4.35) with 0 < µ ≤ µ(r). We then have

σr
q
(n) ≤ σr

q
(T )γ(r)n +

M r

8(1− γ(r))
,

where M is the constant in Proposition 4.6. Therefore

σr
q
(n) ≤ C3 := 1 +

M r

8(1− γ(r))
,

if 23n ≥ 8σq(T )
λ with λ := 3r ln 2

− ln γ(r) .

Proof: Let us use the notations u = 0.69(1+C2µ) and v = (1+C2µ). According to Proposition 4.6, we
have

σr
q
(n) ≤ E(σr

n),

where E is the expectation operator and σn is the Markov chain with value in [1,+∞[ defined by

• σn+1 = max{σnu,M} with probability α := 1
8 ,

• σn+1 = σnv with probability β := 7
8 ,

• σ0 := σq(T0) with probability 1.

Denoting by µn the probability distribution of σn, we have

E(σr
n+1) =

∫ ∞

1

σrdµn+1(σ)

=

∫ ∞

1

(α(max{uσ,M})r + β(vσ)r) dµn(σ)

= αM r

∫ M/u

1

dµn(σ) + αur
∫ ∞

M/u

σrdµn(σ) + βvr
∫ +∞

1

σrdµn(σ)

≤ αM r + (αur + βvr)E(σr
n)

≤ αM r + γ(r)E(σr
n)

By iteration, it follows that

E(σr
n) ≤ E(σr

0)γ(r)
n +

αM r

1− γ(r)
,

which gives the result. ⋄
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Our next goal is to show that the greedy algorithm initialized from T generates a triangulation which
is a refinement of T u

n (T ) and therefore more accurate, yet with a similar amount of triangles. To this
end, we apply the greedy algorithm with root T and stopping criterion given by the local error

η := min
T ′∈T u

n (T )
eT ′(f)p.

Therefore T ′ is splitted if and only if eT ′(f)p > η. We denote by TN (T ) the resulting triangulation where
N is its cardinality. From the definition of the stopping criterion, it is clear that TN (T ) is a refinement
of T u

n (T ).

Proposition 4.8 Assume that f and q satisfy (4.35) with µ ≤ 1
8 , and define r0 := ln 2

ln 4−ln 3 > 0. We
then have

N ≤ C42
3nσr0

q (n),

where C4 is an absolute constant. Assuming in addition that µ ≤ µ(r0) as in Proposition 4.7, we obtain
that

N ≤ C52
3n,

if 23n ≥ 8σq(T )
λ with λ := 3r0 ln 2

− ln γ(r0)
, and where C5 = C3C4.

Proof: Let T1 be a triangle in T u
n (T ) and T2 a triangle in TN (T ) such that T2 ⊂ T1. We shall give a

bound on the number of splits k which were applied between T1 and T2, i.e. such that |T2| = 2−k|T1|.
We first remark that according to Proposition 3.2 and (4.38), we have

η ≥ c min
T ′∈T u

n (T )
|T ′|1+ 1

p σq(T
′)
√

detq ≥ c|T1|1+
1
p

√

detq,

where c is an absolute constant. On the other hand, using both Proposition 4.2 and Proposition 4.6, we
obtain

eT2(f)q ≤ C|T2|1+
1
p σq(T2)

√
detq

= C|T1|1+
1
p 2−k(1+ 1

p
)σq(T2)

√
detq

≤ C|T1|1+
1
p σq(T1)

(

2−(1+ 1
p
)(1 + 4µ)

)k√
detq.

≤ C
c σq(T1)

(

1+4µ
2

)k

η

≤ C
c σq(T1)(

3
4 )

kη,

where C is an absolute constant. Therefore we see that k is at most the smallest integer such that
C
c σq(T1)(

3
4 )

k ≤ 1. It follows that the total number n(T1) of triangles T2 ∈ TN (T ) which are contained in
T1 is bounded by

n(T1) ≤ 2k ≤ 2

(

C

c
σq(T1)

)r0

,

and therefore

N =
∑

T1∈T u
n (T )

n(T1) ≤ 2

(

C

c

)r0
∑

T1∈T u
n (T )

σq(T1)
r0 = C42

3nσr0
q (n),

with C4 = 2
(

C
c

)r0
. The fact that N ≤ C52

3n when 23n ≥ 8σq(T )
λ with λ := 3r0 ln 2

− ln γ(r0)
is an immediate

consequence of Proposition 4.7. ⋄

4.3 Optimal convergence estimates

Our last step towards the proof of Theorem 4.1 consists in deriving local error estimates for the greedy
algorithm. For η > 0, we denote by fη the approximant to f obtained by the greedy algorithm with
stopping criterion given by the local error η : a triangle T is splitted if and only if eT (f)p > η. The
resulting triangulation is denoted by

Tη = TN , with N = N(η) = #(Tη).
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For this N , we thus have fη = fN . For a given T generated by the refinement procedure and such that
η ≤ eT (f)p, we also define

Tη(T ) = {T ′ ⊂ T ; T ′ ∈ Tη}
the triangles in Tη which are contained in T and

N(T, η) = #(Tη(T )).

Our next result provides with estimates of the local error ‖f − fη‖Lp(T ) and of N(T, η) in terms of η,
provided that µ is small enough.

Theorem 4.9 Assume that f and q satisfy (4.35) with µ ≤ c2 := min{ 1
8 , µ(r0)}, and that η ≤ η0, where

η0 = η0(T ) :=

( |T |
σq(T )λ

)
1
τ
√

detq,

with λ := 3r0 ln 2
− ln γ(r0)

, and 1
τ = 1

p + 1. Then

‖f − fη‖Lp(T ) ≤ ηN(T, η)
1
p , (4.45)

and
N(T, η) ≤ C6η

−τ‖
√

det(d2f)‖τLτ(T ), (4.46)

where C6 is an absolute constant.

Proof: The first estimate is trivial since

‖f − fη‖Lp(T ) =
(

∑

T ′∈Tη(T )

eT ′(f)pp

)
1
p ≤

(

∑

T ′∈Tη(T )

ηp
)

1
p

= ηN(T, η)
1
p .

In the case p = ∞, we trivially have
‖f − fη‖L∞(T ) ≤ η.

For the second estimate, we define n0 = n0(T ) the smallest positive integer such that 23n0(T ) ≥ 8σq(T )
λ

with λ := 3r0 ln 2
− ln γ(r0)

. For any fixed n ≥ n0, we define

ηn := min
T ′∈T u

n (T )
eT ′(f)p.

We know from Proposition 4.8 that with the choice η = ηn

N(T, ηn) ≤ C52
3n. (4.47)

On the other hand, we know from Proposition 4.7, that σr0
q (n) ≤ C3, from which it follows that

min
T ′∈T u

n (T )
σq(T

′) ≤ C
1
r0
3 .

According to Proposition 4.2, we also have

ηn ≤ C min
T ′∈T u

n (T )
|T ′|1+ 1

p σq(T
′)
√

detq ≤ C
1
r0

3 C
( |T |
23n

)
1
τ
√

detq,

where C is an absolute constant, which also reads

23n ≤ C
τ
r0
3 Cτη−τ

n |T |
√

detq
τ
.

Combining this with (4.47), we have obtained the estimate

N(T, ηn) ≤ C5C
τ
r0
3 Cτη−τ

n |T |
√

detq
τ
,
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which by Proposition 4.2 is equivalent to (4.46) with η = ηn. In order to obtain (4.46) for all arbitrary
values of η, we write that ηn+1 < η ≤ ηn for some n ≥ n0, then

N(T, η) ≤ N(T, ηn+1)
≤ C52

3(n+1)

≤ 8C5C
τ
r0

3 Cτη−τ
n |T |√detq

τ

≤ 8C5C
τ
r0

3 Cτη−τ |T |
√
detq

τ
,

which by Proposition 4.2 is equivalent to (4.46). In the case where η ≥ ηn0 , we simply write

N(T, η) ≤ N(T, ηn0)
≤ C52

3n0

≤ 64C5σq(T )
λ

= 64C5η
−τ
0 |T |

√
detq

τ

≤ 64C5η
−τ |T |√detq

τ
,

and we conclude in the same way. ⋄

We remark that combining the estimates (4.45) and (4.46) in the above theorem yields the optimal
local convergence estimate

‖f − fη‖Lp(T ) ≤ C
1
τ

6 ‖
√

det(d2f)‖Lτ(T )N(T, η)−1.

In order to obtain the global estimate of Theorem 4.1, we need to be ensured that after sufficiently many
steps of the greedy algorithm, the target f can be well approximated by quadratic function q = q(T ) on
each triangle T , so that our local results will apply on such triangles. This is ensured due to the following
key result.

Proposition 4.10 Let f be a C2 function such that d2f(x) ≥ mI for some arbitrary but fixed m > 0
independent of x. Let TN be the triangulation generated by the greedy algorithm applied to f using the
L1 decision function given by (2.18). Then

lim
N→+∞

max
T∈TN

diam(T ) = 0,

i.e. the diameter of all triangles tends to 0.

Proof: Let T be a triangle with an angle θ at a vertex z0. The other vertices of T can be written as
z1 = z0 + αu and z2 = z0 + βv where α, β ∈ R+ and u, v ∈ R

2 are unitary. We assume that αu is the
longest edge of T , hence θ ≤ π/2. Observe that

ρ(T ) :=
h2T
|T | =

α2

1
2αβ sin θ

=
2α

β sin θ
,

and

|u− v| = 2 sin

(

θ

2

)

=
sin θ

cos( θ2 )
=

2α

βρ(T ) cos( θ2 )
.

Since
√
2
2 ≤ cos

(

θ
2

)

we thus obtain

|u− v| ≤ 2
√
2α

βρ(T )
≤ 3α

βρ(T )
.

We now set M := ‖d2f‖L∞(Ω) and for all δ > 0 let

ω(δ) := sup
z,z′∈Ω,‖z−z′‖≤δ

‖d2f(z)− d2f(z′)‖.
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For t ∈ IR, we define
Hu

t := d2fz0+tu and Hv
t := d2fz0+tv.

and notice that ‖Hu
t −Hv

t ‖ ≤ ω(t|u− v|). Hence, if 0 ≤ t ≤ β, we have

‖Hu
t −Hv

t ‖ ≤ ω

(

3α

ρ(T )

)

.

Furthermore, for all t we have

|〈Hu
t u, u〉 − 〈Hu

t v, v〉| = |〈Hu
t u, u〉 − 〈Hu

t u− (u− v), u − (u− v)〉|
= |2〈Hu

t u, u− v〉 − 〈Hu
t (u − v), u− v〉|

≤ 2M |u||u− v|+M |u− v|2

≤ M
β2

(

2 3αβ
ρ(T ) +

(

3α
ρ(T )

)2
)

.

Applying the identity (2.20) to the edges e = αu and βv, and using a change of variable, we can write

DT (αu, f) =

∫

R

min{t, α− t}+〈Hu
t u, u〉dt and DT (βv, f) =

∫

R

min{t, β − t}+〈Hv
t v, v〉dt

where we have used the notation r+ := max{r, 0}. Hence, noticing that

∫

R

min{t, λ− t}+dt =
∫ λ

0

min{t, λ− t}dt = (λ+)
2

4
,

and using the previous estimates we obtain

DT (αu, f)−DT (βv, f) =

∫

R

(min{t, α− t}+〈Hu
t u, u〉 −min{t, β − t}+〈Hv

t v, v〉) dt

=

∫

R

(min{t, α− t}+ −min{t, β − t}+)〈Hu
t u, u〉dt

−
∫

R

min{t, β − t}+(〈Hv
t v, v〉 − 〈Hu

t u, u〉)dt

≥ m

∫

R

(min{t, α− t}+ −min{t, β − t}+)dt

−
∫ β

0

min{t, β − t}(|〈Hu
t u, u〉 − 〈Hu

t v, v〉|+ |〈(Hu
t −Hv

t )v, v〉|)dt

≥ m
α2 − β2

4
− M

4

(

2
3αβ

ρ(T )
+

(

3α

ρ(T )

)2
)

− β2

4
ω

(

3α

ρ(T )

)

≥ m
α2 − β2

4
− α2

4

(

6

ρ(T )
+

9

ρ(T )2
+ ω

(

3α

ρ(T )

))

,

where we have used the fact that α > β in the last line. We can therefore write

DT (αu, f)−DT (βv, f) ≥
m

4

(

α2
(

1− ω̃
( 1

ρ(T )

))

− β2
)

, (4.48)

where we have set

ω̃(δ) :=
1

m

(

6δ + 9δ2 + ω(3 diam(Ω)δ)
)

.

The inequality (4.48) shows that dT (·, f) prescribes a ω̃
(

1
ρ(T )

)

-near longest edge bisection in the euclidean

metric for any triangle T . Indeed if the smaller edge βv was selected, we would necessarily have

|βv|2 = β2 ≥
(

1− ω̃
( 1

ρ(T )

))

α2 =
(

1− ω̃
( 1

ρ(T )

))

|αu|2.
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Notice that ω̃(δ) → 0 as δ → 0.
Since f is strictly convex, there does not exists any triangle T ⊂ Ω such that eT (f)p = 0. Let us

assume for contradiction that the diameter of the triangles generated by the greedy algorithm does not
tend to zero. Then there exists a sequence (Ti)i≥0 of triangles such that Ti+1 is one of the children of
Ti, and hTi

→ d > 0 as i → ∞, where hT denotes the diameter of a triangle T . Since |Ti| → 0, this also
implies that ρ(Ti) → +∞ as i → ∞. We can therefore choose i large enough such that h2Ti

< 4
3d

2 and

C2ω̃
(

1
ρ(Tj)

)

≤ 1
2 for all j ≥ i, where C2 is the constant in Proposition 4.6. According to this Proposition,

we have

σ(Ti+3) ≤
3

2
σ(Ti),

where σ stands for σq in the euclidean case q = x2 + y2. On the other hand, we have for any triangle T ,
h2
T

8|T | ≤ σ(T ) ≤ h2
T

2|T | , from which it follows that

h2Ti+3
≤ 4

|Ti+3|σ(Ti+3)

|Ti|σ(Ti)
h2Ti

≤ 3

4
h2Ti

.

Therefore, hTi+3 < d which is a contradiction. This concludes the proof of Proposition 4.10. ⋄

Proof of Theorem 4.1 Since f ∈ C2, an immediate consequence of Proposition 4.10 is that for all
µ > 0, there exists

N1 := N1(f, µ),

such that for all T ∈ TN1 , there exists a quadratic function qT such that

d2qT ≤ d2f ≤ (1 + µ) d2qT .

Therefore our local results apply on all T ∈ TN1 . Specifically, we choose

N1 := N1(f, c2),

with c2 the constant in Theorem 4.9. We then take

η ≤ η0 := min
T∈TN1

{

eT (f)p,
( |T |
σqT

(T )λ

)
1
τ
√

detqT

}

.

We use the notations
fη = fN , Tη = TN , N = N(η) = #(Tη) = #(TN ),

for the approximants and triangulation obtained by the greedy algorithm with stopping criterion given
by the local error η. Note that Tη is a refinement of TN1 , since η ≤ minT∈TN1

eT (f)p, and therefore
N ≥ N1. We obviously have

‖f − fN‖Lp ≤ ηN
1
p .

Using Theorem 4.9, we also have

N =
∑

T∈TN1

N(T, η) ≤ C6η
−τ‖

√

det(d2f)‖τLτ(Ω),

and therefore
‖f − fN‖ ≤ C

1
τ

6 ‖
√

det(d2f)‖Lτ(Ω)N
−1,

which is the claimed estimate. Since we have assumed η ≤ η0, this estimate holds for

N > N0,

where N0 is largest value of N such that eT (f)p ≥ η0 for at least one T ∈ TN . ⋄

Remark 4.11 In [8] a modification of the algorithm is proposed so that its convergence in the Lp norm
is ensured for any function f ∈ Lp(Ω) (or f ∈ C(Ω) when p = ∞). However this modification is not
needed in the proof of Theorem 4.1, due to the assumption that f is convex.
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