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Abstract

We study the properties of a simple greedy algorithm introduced in [9] for the generation of data-
adapted anisotropic triangulations. Given a function f , the algorithm produces nested triangulations
TN and corresponding piecewise polynomial approximations fN of f . The refinement procedure picks
the triangle which maximizes the local Lp approximation error, and bisect it in a direction which is
chosen so to minimize this error at the next step. We study the approximation error in the Lp norm
when the algorithm is applied to C2 functions with piecewise linear approximations. We prove that
as the algorithm progresses, the triangles tend to adopt an optimal aspect ratio which is dictated by
the local hessian of f . For convex functions, we also prove that the adaptive triangulations satisfy
the convergence bound ‖f − fN‖Lp ≤ CN−1‖

p

|det(d2f)|‖Lτ with 1

τ
:= 1

p
+ 1, which is known to be

asymptotically optimal among all possible triangulations.

1 Introduction

In finite element approximation, a classical and important distinction is made between uniform and
adaptive methods. In the first case the all the elements which constitute the mesh have comparable shape
and size, while these attributes are allowed to vary strongly in the second case. An important feature of
adaptive methods is the fact that the mesh is not fixed in advance but rather taylored to the properties
of the function f to be approximated. Since the function approximating f is not picked from a fixed
linear space, adaptive finite elements can be considered as an instance of non-linear approximation. Other
instances include approximation by rational functions, or by N -term linear combinations of a basis or
dictionary. We refer to [10] for a general survey on non-linear approximation.

In this paper, we focus our interest on piecewise linear finite element functions defined over tri-
angulations of a bidimensional polygonal domain Ω ⊂ IR2. Given a triangulation T we denote by
VT := {v s.t. v|T ∈ Π1, T ∈ T } the associated finite element space. The norm in which we measure the
approximation error is the Lp norm for 1 ≤ p ≤ ∞ and we therefore do not require that the triangulations
are conforming and that the functions of VT are continuous between triangles. For a given function f we
define

eN (f)Lp := inf
#(T )≤N

inf
g∈VT

‖f − g‖Lp,

the best approximation error of f when using at most N elements. In adaptive finite element approxi-
mation, critical questions are:

1. Given a function f and a number N > 0, how can we characterize the optimal mesh for f with N
elements corresponding to the above defined best approximation error.

2. What quantitative estimates are available for the best approximation error eN (f)Lp ? Such esti-
mates should involve the derivatives of f in a different way than for non-adaptive meshes.

3. Can we build by a simple algorithmic procedure a mesh TN of cardinality N and a finite element
function fN ∈ VTN such that ‖f − fN‖Lp is comparable to eN(f)Lp ?
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While the optimal mesh is usually difficult to characterize exactly, it should satisfy two intuitively
desirable features: (i) the triangulation should equidistribute the local approximation error between each
triangle and (ii) the aspect ratio of a triangle T should be isotropic with respect to a distorted metric
induced by the local value of the hessian d2f on T (and therefore anisotropic in the sense of the euclidean
metric). Under such prescriptions on the mesh, quantitative error estimates have recently been obtained
in [7, 2] when f is a C2 function. These estimates are of the form

eN(f)Lp ≤ CN−1‖
√

|det(d2f)|‖Lτ ,
1

τ
=

1

p
+ 1, (1.1)

where det(d2f) is the determinant of the 2 × 2 hessian matrix. They can be proved to be asymptotically
optimal in the sense of a lower inequality of the form

liminfN→+∞NeN (f)Lp ≥ c‖
√

|det(d2f)|‖Lτ . (1.2)

We refer in particular to [11] in which such estimates are generalized to higher order elements and proved
to be optimal in the above sense.

From the computational viewpoint, a commonly used strategy for designing an optimal mesh consists
therefore in evaluating the hessian d2f and imposing that each triangle of the mesh is isotropic with
respect to a metric which is properly related to its local value. We refer in particular to [5] where this
program is executed using Delaunay mesh generation techniques. While these algorithms fastly produce
anisotropic meshes which are naturally adapted to the approximated function, they suffer from two
intrinsic limitations:

1. They use the data of d2f , and therefore do not apply to non-smooth or noisy functions.

2. They are non-hierarchical: for N > M , the triangulation TN is not a refinement of TM .

In [9], an alternate strategy was proposed for the design of adaptive hierarchical meshes, based on a
simple greedy algorithm: starting from an initial triangulation TN0

, the algorithm picks the triangle T ∈ Tk

with the largest local Lp error. This triangle is then bisected from one of its vertex to the mid-point of
the opposite edge. The choice of the vertex among the three options is the one that minimizes the new
approximation error after bisection. The algorithm can be applied to any Lp function, smooth or not,
in the context of piecewise polynomial approximation of any given order. In the case of piecewise linear
approximation, numerical experiments in [9] indicate that this elementary strategy generates triangles
with an optimal aspect ratio and approximations fN such that ‖f − fN‖Lp satisfies the same estimate as
eN(f)Lp in (1.1).

The goal of this paper is to support these experimental observations by a rigorous analysis. Our paper
is organized as follows:

In §2, we introduce notations which are used throughout the paper and collect some available approx-
imation theory results for piecewise linear finite elements, making the distinction between (i) uniform,
(ii) adaptive isotropic and (iii) adaptive anisotropic triangulations. In the last case, which is in the scope
of this paper, we introduce a measure of non-degeneracy of a triangle T with respect to a quadratic form.
We show that the optimal error estimate (1.1) is met when each triangles are non-degenerate with in the
sense of the above measure with respect to the quadratic form given by the local hessian d2f . We end
by briefly recalling the greedy algorithm which was introduced in [9]. In §3, we study the behavior of the
refinement procedure when applied to a quadratic function q such that its associated quadratic form q

is of positive or negative sign. A key observation is that the edge which is bisected is the longest with
respect to the metric induced by q. This allows us to prove that the triangles generated by the refinement
procedure adopt an optimal aspect ratio in the sense of the non-degeneracy measure introduced in §2. In
§4, we proceed to a similar analysis in the case where q is of mixed sign, also proving that the triangles
adopt an optimal aspect ratio as they get refined. In §5, we study the behavior of the algorithm when
applied to a general C2 function f which is assumed to be strictly convex. We first prove a perturbation
result, which show that when f is locally close to a quadratic function q the algorithm behaves in a similar
manner as when applied to q. This allows us to show that the optimal convergence estimate (1.1) is met
in the Lp norm. We do not know if a similar result holds when the algorithm is applied to an arbitrary
C2 function, although this seems plausible from the numerical experiments reported in [9].
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2 Adaptive finite element approximation

2.1 Notations

We shall make use of a local approximation operator AT from Lp(T ) onto Π1. Here 1 ≤ p ≤ ∞ is
arbitrary but fixed. We define the local Lp approximation error

eT (f)p := ‖f −AT f‖Lp(T ).

An assumption which will be important in our analysis is that the operator AT commutes with affine
changes of variables:

AT (f) ◦ φ = Aφ−1(T )(f ◦ φ),

for all affine transformation φ. We may consider for AT the operator BT of best Lp(T ) approximation
which is defined by

‖f −BT f‖Lp(T ) = min
π∈Πm

‖f − π‖Lp(T ).

However this operator is non-linear and not easy to compute when p 6= 2. We therefore restrict our
attention to the following two options:

1. AT = PT , the L2(T )-orthogonal projection operator:
∫

T (f − ΠT f)π = 0 for all π ∈ Π1.

2. AT = IT , the local interpolation operator: IT f(vi) = f(vi) with {v0, v1, v2} the vertices of T .

Unless explicitely stated, all our results are simultaneously valid when AT is either PT or IT . Given a
function f and a triangulation TN with N = #(TN ), we can associate a finite element approximation fN

defined on each T ∈ TN by fN (x) = AT f(x). The global approximation error is given by

‖f − fN‖Lp =
(

∑

T∈TN

eT (f)p
p

)
1

p

,

with the usual modification when p = ∞.
Here and throughout the paper, when q is a quadratic polynomial

q(x, y) =
∑

α+β≤2

aα,βx
αyβ ,

we denote by q the associated quadratic form : if u = (x, y)

q(u) = q(u, u) =
∑

α+β=2

aα,βx
αyβ .

It is the restriction to the diagonal of a bilinear form q(u, v) = 〈Qu, v〉 where the entries of the symmetric
matrix Q are given by the coefficients aα,β. We define

det(q) = det(Q).

If q is a positive or negative quadratic form, we define the q-metric

|v|q :=
√

|q(v)|

which coincides with the euclidean norm when q(v) = x2 + y2 for v = (x, y). If q is a quadratic form
of mixed sign, we define the associated positive form |q| which corresponds to the symmetric matrix |Q|
that has same eigenvectors as Q with eigenvalues (|λ|, |µ|) if (λ, µ) are the eigenvalues of Q. Note that
|q|(u) 6= |q(u)| and that one always has |q(u)| ≤ |q|(u).
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2.2 From uniform to adaptive isotropic triangulations

A standard estimate in finite element approximation states that if f ∈W 2,p(Ω) then

inf
g∈Vh

‖f − g‖Lp ≤ Ch2‖d2f‖Lp ,

where Vh is the piecewise linear finite element space associated with a triangulation Th of mesh size
h := maxT∈Th

diam(T ). If we restrict our attention to uniform triangulations, we have

N := #(Th) ∼ h−2.

Therefore, denoting by eunif
N (f)Lp the Lp approximation by a uniform triangulation of cardinality N , we

can re-express the above estimate as

eunif
N (f)Lp ≤ CN−1‖d2f‖Lp. (2.3)

This estimate can be significantly improved when using adaptive partitions. We give here some heuristic
arguments, which are based on the assumption that on each triangle T the relative variation of d2f is
small so that it can be considered as constant over T (which means that f is replaced by a quadratic
function on each T ), and we also indicate the available results which are proved more rigorously.

First consider isotropic triangulations, i.e. such that all triangles satisfy a uniform estimate

ρT =
hT

rT
≤ A, (2.4)

where hT := diam(T ) and rT is the radius of the largest disc contained in T . In such a case we start
from the local approximation estimate on any T

eT (f)p ≤ Ch2
T ‖d2f‖Lp(T ),

and notice that
h2

T ‖d2f‖Lp(T ) ∼ |T | ‖d2f‖Lp(T ) = ‖d2f‖Lq(T ),

with 1
q := 1

p +1 and |T | the area of T , where we have used the isotropy assumption (2.4) in the equivalence

and the fact that d2f is constant over T in the equality. It follows that

eT (f)p ≤ C‖d2f‖Lτ(T ),
1

τ
:=

1

p
+ 1

Assume now that we can construct adaptive isotropic triangulations TN with N := #(TN ) which equidis-
tributes the local error in the sense that for some prescribed ε > 0

cε ≤ eT (f)p ≤ ε, (2.5)

with c > 0 a fixed constant independent of T and N . Then defining fN as AT (f) on each T ∈ TN , we
have on the one hand

‖f − fN‖Lp ≤ N1/pε,

and on the other hand, with 1
τ := 1

p + 1,

N(cε)τ ≤
∑

T∈TN

‖f − fN‖τ
Lp(T ) ≤ Cτ

∑

T∈TN

‖d2f‖τ
Lτ(T ) ≤ Cτ‖d2f‖τ

Lτ .

Combining both, one obtains for eisoN (f)Lp := ‖f − fN‖Lp the estimate

eisoN (f)Lp ≤ CN−1‖d2f‖Lτ . (2.6)

This estimate improves upon (2.3) since the rate N−1 is now obtained with the weaker smoothness
condition d2f ∈ Lτ and since, even for smooth f , the quantity ‖d2f‖Lτ might be significantly smaller
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than ‖d2f‖Lp . This type of result is classical in non-linear approximation and also occurs when we
consider best N -term approximation in a wavelet basis.

The principle of error equidistribution suggests a simple greedy algorithm to build an adaptive isotropic
triangulation for a given f , similar to our algorithm but where the bisection of the triangle T that that
maximizes the local error eT (f)p is systematically done from its most recently created vertex in order to
preserve the estimate (2.4). Such an algorithm cannot exactly equilibrate the error in the sense of (2.5)
and therefore does not lead to same the optimal estimate as in (2.6). However, it was proved in [4] that
it satisfies

‖f − fN‖Lp ≤ C|f |B2
τ,τ
N− s

2 ,

for all τ such that 1
τ <

1
p + 1. Here B2

τ,τ denotes the usual Besov space which is a natural substitute for

W 2,τ when τ < 1. Therefore this estimate is not far from (2.6).

2.3 Anisotropic triangulations: the optimal aspect ratio

We now turn to anisotropic adaptive triangulations, and start by discussing the optimal shape of a
triangle T for a given function f at a given point. For this purpose, we again replace f by a quadratic
function assuming that d2f is constant over T . For such a q ∈ Π2 and its associated quadratic form q,
we first derive an equivalent quantity for the local approximation error. Here and as well as in §3 and §4,
we consider a triangle T and we denote by (a, b, c) its edge vectors oriented in clockwise or anticlockwise
direction so that

a+ b+ c = 0.

Proposition 2.1 The local Lp-approximation error satisfies

eT (q)p = eT (q)p ∼ |T | 1p max{|q(a)|, |q(b)|, |q(c)|},

where the constant in the equivalence is independent of q, T and p.

Proof: The first equality is trivial since q and q differ by an affine function. Let T be an equilateral
triangle of area |T | = 1, and edges a, b, c. Let E be the 3-dimensional vector space of all quadratic forms.
Then the following quantities are norms on E, and thus equivalent:

eT (q)p ∼ max{|q(a)|, |q(b)|, |q(c)|}.

Note that the constants in this equivalence are independent of p since all Lp(T ) norms are uniformly
equivalent on E. If T is now an arbitrary triangle, we obtain the claimed equivalence with the same
constants by a change of variable. ⋄

In order to describe the optimal shape of a triangle T for the quadratic function q, we fix the area
of |T | and try to minimize the error eT (q)p or equivalently max{|q(a)|, |q(b)|, |q(c)|}. The solution to
this problem can be found by introducing for any q such that det(q) 6= 0 the following measure of
non-degeneracy for T :

ρq(T ) :=
max{|q(a)|, |q(b)|, |q(c)|}

|T |
√

|det(q)|
. (2.7)

It is easily checked that for any linear change of variable φ, we have

ρq◦φ(T ) = ρq(φ(T )). (2.8)

This allows to reduce the study of ρq(T ) to two elementary cases by change of variable:

1. The case where det(q) > 0 is reduced to q(x, y) = x2 + y2. In this case we have ρq(T ) =
h2

T

|T | ,

which corresponds to a standard measure of shape regularity in the sense that its boundedness is
equivalent to a property such as 2.4. This quantity is minimized when the triangle T is equilateral,
with minimal value 4√

3
. For a general quadratic form q of positive sign, we obtain by change of

variable that the minimal value 4√
3

is obtained for triangles which are equilateral with respect to

the metric | · |q. More generally triangles with a good aspect ratio are those which are isotropic with
respect to this metric. Of course, a similar conclusion hold for a quadratic form of negative sign.
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2. The case where det(q) < 00 is reduced to q(x, y) = x2 − y2. In this case, elementary yet tedious
computations show that the quantity ρq(T ) is minimized when T is a half of a square with sides
parallel to the x and y axes, with minimal value 2. But we also notice that ρq(T ) is left invariant
by a linear transformation of T with eigenvalues (λ, 1

λ) and eigenvectors (1, 1) and (−1, 1) for any
λ 6= 0. Therefore, the triangles with a good aspect ratio are not necessarily isotropic. For a general
quadratic form q of mixed sign, we find that triangles which are isotropic with respect to the metric
| · ||q| have a good aspect ratio. But so do all triangles obtained from such isotropic triangles by a

linear transformation with eigenvalues (λ, 1
λ) and eigenvectors (u, v) in the null cone of q, i.e. such

that q(u) = q(v) = 0.

We leave aside the special case where det(q) = 0. In such a case, the triangles minimizing the error for a
given area degenerate in the sense that they should be infinitely long and thin, aligned with the direction
of the null eigenvalue of q.

Summing up, we find that triangles with a good aspect ratio are characterized by the fact that ρq(T )
is small. In addition, from Proposition 2.1 and the definition of ρq(T ), we have

eT (q)p ∼ |T |1+ 1

p

√

|det(q)|ρq(T ) = ‖
√

|det(q)|‖Lτ (T )ρq(T ),
1

τ
:=

1

p
+ 1. (2.9)

We now return to a function f such that d2f is assumed to be constant on every T ∈ TN . Assuming that
all triangles have a good aspect ratio in the sense that

ρq(T ) ≤ C

for some fixed constant C and with q the value of d2f over T , we find up to a change in C that

eT (f)p ≤ C‖
√

|det(d2f)|‖Lτ(T ) (2.10)

By a similar reasoning as with isotropic triangulations, we now obtain that if the triangulation TN

equidistributes the error in the sense of (2.5),

‖f − fN‖Lp ≤ CN−1‖
√

|det(d2f)|‖Lτ , (2.11)

and therefore (1.1) holds. This estimate improves upon (2.6) since the quantity ‖
√

|det(d2f)|‖Lτ might
be significantly smaller than ‖d2f‖Lτ , in particular when f has some anisotropic features, such as sharp
gradients along curved edges.

The above derivation of (1.1) is heuristic and non-rigourous. Clearly, this estimate cannot be valid as
such since det(d2f) may vanish while the approximation error does not (consider for instance f depending
only on a single variable). More rigorous versions were derived in [7] and [2]. In these results |d2f | is
typically replaced by a majorant |d2f | + εI, avoiding that A(f) vanishes. The estimate (1.1) can then
be rigorously proved but holds for N ≥ N(ε, f) large enough. This limitation is unavoidable and reflects
the fact that enough resolution is needed so that the hessian can be viewed as locally constant over each
optimized triangle. Another formulation which is rigorously proved in [11] is of the form

lim sup
N→+∞

NeN (f)Lp ≤ C‖
√

|det(d2f)|‖Lτ ,

where C is an absolute constant.

2.4 The greedy algorithm

Given a target function f , our algorithm iteratively builds triangulations TN with N = #(TN ) and finite
element approximations fN . The starting point is a coarse triangulation TN0

. Given TN , the algorithm
selects the triangle T which maximizes the local error eT (f)p among all triangles of TN , and bisects it
from one of its vertex ai towards the mid-point of the opposite edge. This give the new triangulation
TN+1.

The critical part of the algorithm lies in the choice of the edge e ∈ {a, b, c} from which T is bisected.
Denoting by Te,1 and Te,2 the two resulting triangles, we choose e as the minimizer of a decision function
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dT (e, f), which role is to drive the generated triangles towards an optimal aspect ratio. While the most
natural choice for dT (e, f) corresponds to the optimal split

dT (e, f) = eTe,1(f)p
p + eTe,2(f)p

p,

we shall instead focus our attention on decision functions which are either based on the L2 projection
error,

dT (e, f) = ‖f − PTe,1f‖2
L2(Te,1) + ‖f − PTe,2f‖2

L2(Te,2), (2.12)

or the sum of the L∞ interpolation errors,

dT (e, f) = ‖f − ITe,1f‖L∞(Te,1) + ‖f − ITe,2f‖L∞(Te,2). (2.13)

With these two choices the analysis of the algorithm is made simpler, due to the fact that we can derive
explicit expressions when f = q is a quadratic polynomial. We prove in §3 and §4 that both choices lead
to triangles with an optimal aspect ratio in the sense of a small ρq(T ). This leads us in §5 to a proof
that the algorithm satisfies the optimal convergence estimate (2.11) in the case where f is C2 and strictly
convex.

3 Positive quadratic functions

In this section, we study the algorithm when applied to a quadratic polynomial q such that det(q) > 0.
We shall assume without loss of generality that q is positive definite, since all our results extend in a
trivial manner to the negative definite case.

We first establish that the refinement procedure - either based on the decision functions (2.12) or
(2.13) - always selects the vertex opposite to the longest edge in the sense of the q-metric | · |q. This is
used to prove that the refinement procedure produces triangles which tend to adopt an optimal aspect
ratio.

3.1 The L
∞-based split

Let us denote by
αT (f) = ‖f − IT f‖L∞(T ),

the interpolation error in the sup norm. The decision function (2.13) can be re-expressed as

dT (e, f) = αTe,1(f) + αTe,2(f). (3.14)

Theorem 3.1 If |a|q > max{|b|q, |c|q}, then dT (a, q) < min{dT (b, q), dT (c, q)}. Therefore the refinement
procedure based on (3.14) selects the longest edge in the sense the q-metric.

This theorem means that for the quadratic function q(x, y) = x2 + y2, our refinement procedure is
equivalent to the longest edge bisection algorithm which has been extensively studied, see e.g. [13], and
which is known to promote isotropic triangles. This gives us a first insight on why our algorithm might
generates triangles which are locally adapted to the hessian without computing this quantity. In order
to prove this result, we first study the interpolation error in more detail.

Proposition 3.2 Let T be a triangle with edges a, b, c such that |a|q ≥ |b|q ≥ |c|q, and let w ∈ R
2 and

r > 0 be the center and radius of the circumscribed circle for the q-metric, i.e. such that |v−w|q = r for
all the vertices v of T . Then

|a|2
q

4
≤ αT (q) ≤ r2.

Right equality holds if T is acute, i.e. q(b, c) ≤ 0. Left equality holds if T is obtuse, i.e. q(b, c) ≥ 0.
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Proof: At any point u ∈ IR2, we have

(q − IT q)(u) = |u− w|2
q
− r2.

This function is negative on T with maximal value 0 at the vertices. If T is acute, then its minimal
value on T is −r2 and is attained at w ∈ T . If T is not acute, then the minimum is attained at ma,
the midpoint of a, and if we choose a vertex v at one end of a, we obtain the value at the minimum by
Pythagora’s identity which gives

(q − IT q)(ma) = |ma − w|2
q
− r2 = |ma − w|2

q
− |v − w|2

q

= −|v −ma|2q = −|a|2
q
/4.

⋄

The dichotomy in the above result is illustrated in the case of the euclidean metric on figure 4. Note
that it would be sufficient to establish the above proof in this particular case, since we can perform an
affine coordinate change φ = Q−1/2 such that q ◦ φ is the standard euclidean form and that the L∞

interpolation error is left invariant by this coordinate change.

v

w w

r r

ma

a

Figure 4: maximum point for the L∞ interpolation error

We now prove the following result which clearly implies Theorem 4.5.

Proposition 3.3 Let T be a triangle with edges |a|q ≥ |b|q ≥ |c|q. We then have :

dT (b, q) − dT (a, q) ≥ 1

4
(q(a) − q(b))

dT (c, q) − dT (a, q) ≥ 1

4
(q(a) − (

|b|q + |c|q
2

)2).

b

T

T
T

a

Ta

b

b

Tc

c

1

T

2

1

2
12

a

c

Figure 5: Notations in the proof of Proposition (3.3)

Proof: We introduce sub-triangles T i
e , i = 1, 2 and e = a, b, c, as defined in Figure 5, which correspond

to the three refinement scenarios. With such definitions, the following inequalities are easily derived from
Proposition (3.2)

4αT 2
a
(q) = q(b) (since T 2

a is obtuse)

4αT 1

b
(q) ≥ q(a)

4αT 1
c
(q) ≥ q(a)

4αT 2
c
(q) ≥ q(b)
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On the other hand, we shall prove
αT 1

a
(q) ≤ αT 2

b
(q), (3.15)

and

4αT 1
a
(q) ≤

( |b|q + |c|q
2

)2

. (3.16)

The proof of (3.15) follows from elementary geometric observations. Let L be a line which is parallel
to c but does not contain it, and for x ∈ L denote by Tx the triangle of vertices x and the end points
of c. Denoting respectively by u(x) and v(x) the diameter of Tx and of its circumscribed circle for the
q-metric, we remark that these functions decrease monotonously as x tends to a point xc which is the
orthogonal projection (also for the q-metric) of the mid-point of c onto L. Since the function x 7→ αTx(q)
is continuous in x and equal to u(x) or v(x) at all x, we conclude that this function also decreases
monotonously as x tends to xc. Applying this observation to the line that contains ma and mb the
mid-points of a and b, and remarking that ma is closer to xc than mb, we conclude that (3.15) holds.

From (3.15) and the first set of inequalities, we obtain the first statement of the theorem since

dT (b, q) − dT (a, q) = αT 1

b
(q) + αT 2

b
(q) − αT 2

a
(q) − αT 1

a
(q)

≥ αT 1

b
(q) − αT 2

a
(q) ≥ 1

4 (q(a) − q(b)).

The proof of (3.16) also follows from elementary geometric observations. In the case where T 1
a is

obtuse, one of its edges e is such that 4αT 1
a

= q(e), and (3.16) follows since |e|q ≤ 1
2 (|b|q + |c|q) for all

e, using triangle inequality. In the case where T 1
a is acute, the center w of its circumscribed circle for

the q-metric is inside T 1
a , and its diameter is not larger than 1

2 (|b|q + |c|q) by convexity, as illustrated on
Figure 6 when q is the euclidean metric.

From (3.16) and the first set of inequalities, we obtain the second statement of the theorem since

dT (c, q) − dT (a, q) = αT 2
c
(q) + αT 1

c
(q) − αT 2

a
(q) − αT 1

a
(q)

≥ 1
4 (q(b) + q(a) − q(b) − (

|b|q+|c|q
2 )2)

= 1
4 (q(a) − (

|b|q+|c|q
2 )2).

⋄

c/2

r

r

o

b/2

Figure 6: The case where T 1
a is acute.

3.2 The L
2-based split

We now denote by
βT (f) = ‖f − ΠT f‖L2(T ),

the orthogonal projection error in the L2 norm. The decision function (2.12) now writes

dT (e, f) = βTe,1(f)2 + βTe,2(f)2. (3.17)

We shall prove that the refinement procedure based on (3.17) behaves in a similar way as (3.14).

9



Theorem 3.4 If (d, e) ∈ {a, b, c} are two edges such that |d|q < |e|q, then dT (e, q) < dT (d, q). Therefore
the refinement procedure based on (3.17) selects the longest edge in the sense of | · |q.

In order to prove this result, we first provide with an algebraic expression of βT (q) which is valid for
any quadratic function q.

Proposition 3.5 Let T be a triangle with edges a, b, c and area |T |, and let q be a quadratic function.
Then

β2
T (q) = |T |

(

c1(q(a) + q(b) + q(c))2 − c2 det(q)|T |2
)

. (3.18)

with constants c1 = 1
1200 and c2 = c1

64
3 = 4

225 .

Proof: We first prove (3.18) on the triangle R of vertices {(0, 0), (0, 1), (1, 0)}. It is easy to compute
the integrals on R of monomials xkyl, k + l ≤ 4. Using these quantities, we can derive the orthogonal
projection of a quadratic function thanks to a formal computing program, which gives us

q = ux2 + vy2 + 2wxy ⇒ ΠRq = −u+ v + w

10
+

2x

5
(2u+ w) +

2y

5
(2v + w).

This yields the following expression for the L2-squared error between q and its projection

∫

R

(q − ΠRq)
2 =

1

300

(

u2 + (2uv)/3 + v2 − 2uw − 2vw + (7w2)/3
)

,

which is equivalent to (3.18).
For an arbitrary triangle T , using an affine bijective transformation φ from R to T , we have

βT (q)2 = JφβR(q̃)2,

where q̃ = q ◦ φ and Jφ is the constant jacobian of φ. Using the validity of (3.18) on R and the fact that
|T | = Jφ|R|, we thus obtain

βT (q)2 = |T |
(

c1(q̃(ã) + q̃(b̃) + q̃(c̃))2 − c2 det(q̃)|R|2
)

,

where q̃ is the quadratic form associated to q̃ and ẽ denotes the edge segment of R mapped onto e by φ.
Since q̃(ẽ) = q(e) and det(q̃) = J2

φ det(q), we obtain (3.18) for T . ⋄

We now prove the following result which clearly implies Theorem 3.4.

Corollary 3.6 Let T be a triangle with edges a, b, c and area |T |, with |a|q ≥ |b|q and |a|q ≥ |c|q. Then,

dT (b, q) − dT (a, q) ≥ 5

4
c1|T |(q(a)2 − q(b)2)

dT (c, q) − dT (a, q) ≥ 5

4
c1|T |(q(a)2 − q(c)2)

Proof: The children triangles all have area |T |/2, and take their edges among a, b, c, a/2, b/2, c/2 and
a−b
2 , b−c

2 , c−a
2 (recall that a+ b + c = 0), on which the quadratic form q can be expressed only in terms

of q(a),q(b),q(c). In particular, for the last group a−b
2 , b−c

2 , c−a
2 , we use the identity

q(u + v) + q(u− v) = 2q(u) + 2q(v),

which valid for all quadratic forms, and implies

q(
b − c

2
) =

q(b) + q(c)

2
− q(a)

4
.

10



Using (3.18), this allows us to compute the local projection errors for the childrens of T . For example
bisecting the edge a creates two children T ′ and T ′′ with edges a/2, b, (c− b)/2 and a/2, c, (b− c)/2, and
therefore

β2
T ′(q) = |T ′|

(

c1

(

q(a/2) + q(b) + q(
c− b

2
)

)2

− c2 det(q)|T ′|2
)

=
|T |
2

(

c1

(

3q(b) + q(c)

2

)2

− c2 det(q)
|T |2
4

)

and similarly

β2
T ′′(q) =

|T |
2

(

c1

(

3q(c) + q(b)

2

)2

− c2 det(q)
|T |2
4

)

.

Adding up, we thus obtain

dT (a, q) = |T |
(

c1(3q(b) + q(c))2 + c1(q(b) + 3q(c))2 − 2c2 det(q)|T |2
)

/8. (3.19)

Subtracting this from the analog expressions for dT (b, q) and dT (c, q), we obtain the announced inequal-
ities. ⋄

3.3 Convergence toward the optimal aspect ratio

We have proved that the refinement procedure - either based on the L∞ or L2 decision function -
systematically picks the vertex opposite to the edge of largest length in the q-metric. The purpose of this
section is to study the iteration of several refinement steps and show that the generated triangle tend to
adopt an optimal aspect ratio in the sense of the measure of non-degeneracy ρq(T ) introduced in §2.

For this purpose, it will be convenient to introduce a close variant to ρq(T ): if T is a triangle with
edges a, b, c, such that |a|q ≥ |b|q ≥ |c|q, we define

σq(T ) :=
q(b) + q(c)

4|T |√detq
=

|b|2
q

+ |c|2
q

4|T |√detq
. (3.20)

Using the inequalities |b|2
q

+ |c|2
q
≤ 2|a|2

q
and |a|2

q
≤ 2(|b|2

q
+ |c|2

q
), we obtain the equivalence

ρq(T )

8
≤ σq(T ) ≤ ρq(T )

2
. (3.21)

Similar to ρq, this quantity is invariant by a linear coordinate changes φ, in the sense that

σq◦φ(T ) = σq(φ(T )),

From (2.9) and (3.21) we can relate σq to the local approximation error.

Proposition 3.7 The local Lp-approximation error satisfies

eT (q)p = eT (q)p ∼ |T | 1

τ σq(T ),
1

τ
:=

1

p
+ 1,

where the constants in the equivalence only depend on the choice of AT between IT , PT or the best Lp(T )
approximation. The same holds with eT replaced by αT with p = ∞ or βT with p = 2.

Our next result shows that σq(T ) is always reduced by the refinement procedure.

Proposition 3.8 If T is a triangle with children T1 and T2 obtained by the refinement procedure for the
quadratic function q, then

max{σq(T1), σq(T2)} ≤ σq(T ).

11



Proof: Assuming that |a|q ≥ |b|q ≥ |c|q, we know that the edge a is cut and that the children have area
|T |/2 and edges a/2, b, (c− b)/2 and a/2, (b− c)/2, c (recall that a+ b+ c = 0). We then have

2|T |
√

detq σq(Ti) ≤ q(a/2) + q(
b − c

2
) (3.22)

= q(
b + c

2
) + q(

b − c

2
) (3.23)

=
q(b) + q(c)

2
(3.24)

= 2|T |
√

detq σq(T ). (3.25)

⋄

Remark 3.9 When q is the euclidean metric, the triangle that minimizes σq is the half square. This is
consistent with the above result since it is the only triangle which is conformal to both of its children after
one step of longest edge bisection.

Remark 3.10 It was already proved in [13] that longest edge bisection has the effect that the minimal
angle in any triangle after an arbitrary number of refinements is at most twice the minimal angle of the
initial triangle.

Our next objective is to show that as we iterate the refinement process, the value of σq(T ) becomes
bounded independently of q for almost all generated triangles. For this purpose we introduce the following
notation: if T is a triangle with edges such that |a|q ≥ |b|q ≥ |c|q, we denote by ψq(T ) the subtriangle of
T obtained after bisection of a which contains the smallest edge c. We first establish inequalities between
the measures σq and ρq applied to T and ψq(T ).

Proposition 3.11 Let T be a triangle, then

σq(ψq(T )) ≤ 5

8
ρq(T ) (3.26)

ρq(ψq(T )) ≤ ρq(T )

2

(

1 +
16

ρ2
q
(T )

)

(3.27)

Proof: We first prove (3.26). Obviously, ψq(T ) contains one edge s ∈ {a, b, c} from T , and one half edge
t ∈ {a

2 ,
b
2 ,

c
2} from T . Therefore

σq(ψq(T )) ≤
|s|2

q
+ |t|2

q

4|ψq(T )|
√

detq
≤

|a|2
q

+ |a2 |2q
2|T |

√
detq

=
5

8
ρq(T ).

For the proof of (3.27), we restrict our attention to the case q = x2 +y2, without loss of generality thanks
to the invariance formula (2.8).

Let T be a triangle with edges |a| ≥ |b| ≥ |c|. If h the width of T in the direction perpendicular to a,
then

h =
2|T |
|a| =

2|a|
ρq(T )

.

The sub-triangle ψq(T ) of T has edges a
2 , c, d where d = b−c

2 , and the angles at the ends of a
2 are acute.

Indeed

〈a
2
, c〉 =

1

4

(

|b|2 − |a|2 − |c|2
)

≤ 0 and 〈d, a
2
〉 =

1

4

(

|c|2 − |b|2
)

≤ 0.

By Pythagora’s theorem we thus find

max{
∣

∣

∣

a

2

∣

∣

∣

2

, |c|2, |d|2} ≤
∣

∣

∣

a

2

∣

∣

∣

2

+ h2 =
|a|2
4

(

1 +
16

ρ2
q
(T )

)

.
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Dividing by the respective areas of T and ψq(T ), we obtain the announced result. ⋄

Our next result shows that a significant reduction of σq occurs at least for one of the triangles obtained
by three successive refinements, unless it has reached a small value of σq.

Proposition 3.12 Let T be a triangle such that σq(ψ3
q
(T )) ≥ 5. Then σq(ψ3

q
(T )) ≤ 0.69σq(T ).

Proof: The equation (3.26) tells us that ρq(ψ2
q
(T )) ≥ 8

5σq(ψ3
q
(T )) = 8. Moreover, solving a second

degree equation, the inequality (3.27) gives for any triangle S:

If ρq(ψq(S)) ≥ 4 then ρq(S) ≥ ρq(ψq(S)) +
√

ρq(ψq(S))2 − 16.

Applying this to S = ψq(T ) we find that ρq(ψq(T )) ≥ 14.9. Applying it again to S = T we obtain
ρq(T ) ≥ 29.3. Using again (3.27), it follows that

ρ(ψ3
q
(T ))

ρ(T )
≤ 1

8
(1 +

16

ρ2
q
(ψ2

q
(T ))

)(1 +
16

ρ2
q
(ψq(T ))

)(1 +
16

ρ2
q
(T )

) ≤ 0.171

Finally, the inequalities (3.21) imply that

2σq(ψ3
q
(T )) ≤ ρq(ψ3

q
(T )) ≤ 0.171ρq(T ) ≤ 0.171(8σq(T ))

which concludes the proof. ⋄

An immediate consequence of Propositions 3.8 and 3.12 is the following.

Corollary 3.13 If (Ti)
8
i=1 are the eight children obtained from three successive refinement procedures

from T for the function q, then

• for all i, σq(Ti) ≤ σq(T ),

• there exists i such that σq(Ti) ≤ 0.69σq(T ) or σq(Ti) ≤ 5.

We are now ready to prove that most triangles tend to adopt an optimal aspect ratio as we iterate the
refinement procedure.

Theorem 3.14 Let T be a triangle, and q a positive definite quadratic function. Let k =
lnσq(T )−ln 5
− ln(0.69)

Then after n applications of the refinement procedure starting from T , at most Cnk7n/3 of the 2n generated
triangles satisfy σq(S) ≥ 5, where C is an absolute constant. Therefore the proportion of such triangles
tends exponentially fast to 0 as n→ +∞.

Proof: If we prove the proposition for n multiple of 3, then it will hold for all n (with a larger constant)
since σq decreases at each refinement step. We now assume that n = 3m, and consider the octree with
root T obtained by only considering the triangles of generation 3k for k = 0, · · · , n.

According to corollary 3.13, for each node of this tree, one of its eight children either checks σq ≤ 5
or has its non-degeneracy measure diminished by a factor θ := 0.69. We remark that if σq is diminished
at least k times on the path going from the root T to a leaf S, then σq(S) ≤ 5. As a consequence,
the number N(m) of triangles S which are such that σq(S) > 5 within the generation level n = 3m is
bounded by the number of words in an eight letters alphabet {a1, · · · , a8} with length m and that use
the letter a8 at most k times, namely

N(m) ≤
k
∑

l=0

(

m

l

)

7m−l ≤ Cmk7m,

which is the announced result. ⋄

13



4 Quadratic functions of mixed sign

In this section, we study the algorithm when applied to a quadratic polynomial q such that det(q) < 0.
We shall follow the same steps, and reach similar conclusions, as in the positive definite case, using
a measure of non-degeneracy which is equivalent to ρq(T ). If a triangle T has edges a, b, c such that
|q(a)| ≥ |q(b)| ≥ |q(c)|, we will still refer to a as the “longest” edge in the sense of q, although q does
not define a proper metric anymore.

The following inequalities that will be repeatedly used in this section can be derived when ρq(T ) is
large enough. We postpone their proof to the appendix.

Proposition 4.1 Let T be a triangle such that |q(a)| ≥ |q(b)| ≥ |q(c)|, and define d = b−c
2 .

If ρq(T ) ≥ 4, then q(a)q(b) ≥ 0, |q(a)| ≥ 4|q(c)| and |q(a)| ≥ 4|q(d)|. (4.28)

If ρq(T ) ≥ 8, then |q(a)| ≤ 3

8
|q(b) + q(c)|. (4.29)

4.1 The L
∞-based split

Theorem 4.2 If |q(a)| > max{|q(b)|, |q(c)|} and ρq(T ) ≥ 4, then dT (a, q) < min{dT (b, q), dT (c, q)}.
Therefore the refinement procedure based on (3.14) selects the longest edge in the sense of q.

This theorem is very similar to the one for positive quadratic functions. In order to prove it, we first
study the interpolation error which has a simple form in this context.

Proposition 4.3 Let T be a triangle with edges a, b, c. Then

αT (q) =
1

4
max{|q(a)|, |q(b)|, |q(c)|}.

Proof: Let x0 be the point of T at which the interpolation error is attained: x0 = argmaxT |q− IT q|. If
x0 is in the interior of T , then it must be a local extremum of q − IT q. However this function has only
one critical point on R

2, which is not an extremum since q has mixed signature. Therefore x0 must lie
an edge. On each edge of T , the function q − IT q is a one dimensional quadratic function vanishing at
the endpoints. It follows that x0 must lie in the middle of one edge and the result follows. ⋄

Proposition 4.4 Let T be a triangle with edges |q(a)| ≥ |q(b)| ≥ |q(c)| and verifying ρq(T ) ≥ 4. Then

dT (b, q) − dT (a, q) ≥ |q(a)| − |q(b)|
8

dT (c, q) − dT (a, q) ≥ |q(a)|
8

Proof: The bisection through the edge a creates two sub-triangles T 1
a , T

2
a of edges respectively a

2 , b, d
and a

2 , c, d. Using the last two inequalities in (4.28) we obtain that 4αT 1
a

= max{|q(a/2)|, |q(b)|} and
4αT 2

a
= |q(a/2)|. Therefore

4dT (a, q) =
|q(a)|

4
+ max{ |q(a)|

4
, |q(b)|}.

On the other hand, the choice of bisecting the edge b creates two subtriangles respectively containing the
edges a and b

2 , and the choice of bisecting the edge c creates two subtriangles respectively containing the
edges a and b. This provides us with the lower bounds

4dT (b, q) ≥ |q(a)| + |q(b)|
4

,

4dT (c, q) ≥ |q(a)| + |q(b)|.

The proposition follows easily, distinguishing between the two cases |q(a)| ≤ 4|q(b)| and |q(a)| ≥ 4|q(b)|.
⋄
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4.2 The L
2-based split

The same conclusions can be reached for the refinement procedure based on (3.17).

Theorem 4.5 If |q(a)| > max{|q(b)|, |q(c)|} and ρq(T ) ≥ 4, then dT (a, q) < min{dT (b, q), dT (c, q)}.
Therefore the refinement procedure based on (3.17) selects the longest edge in the sense of q.

Proof: The expression found in (3.19) remains valid when det(q) < 0. Substituting a by b or c and
subtracting, we obtain

dT (b, q) − dT (a, q) =
5c1
2

|T |(q(a) − q(b))(s +
q(b)

5
),

dT (c, q) − dT (a, q) =
5c1
2

|T |(q(a) − q(c))(s +
q(c)

5
),

where s = q(a) + q(b) + q(c). Using (4.28), we see that s + q(b)
5 , s+ q(c)

5 , q(a) − q(b) and q(a) − q(c)
all have the same sign as q(a) and are non-zero. It follows that dT (a, q) < min{dT (b, q), dT (c, q)}. ⋄

4.3 Convergence toward the optimal aspect ratio.

We have proved that the refinement procedure - either based on the L∞ or L2 decision function -
systematically picks the longest edge in the sense of q. Similarly to the positive definite case, we now
study the iteration of several refinement steps and show that the generated triangles tend to adopt an
optimal “aspect ratio” in the sense of the measure of non-degeneracy ρq(T ) introduced in §2.

As in §3.3, we introduce a close variant to ρq(T ). If T is a triangle with edges a, b, c, we define

σq(T ) :=
min (|q(a) + q(b)|, |q(b) + q(c)|, |q(c) + q(a)|)

4|T |
√

| detq|
. (4.30)

Note that if q was a positive quadratic form, this definition is consistent with (3.20). We define our
measure of non-degeneracy κq by

κq(T ) = max(σq(T ),
5

2
). (4.31)

We first show that the quantities κq and ρq are equivalent.

Proposition 4.6 For any triangle T , one has

2σq(T ) ≤ ρq(T ), (4.32)

and
4

5
κq(T ) ≤ ρq(T ) ≤ 32

3
κq(T ). (4.33)

Proof: The inequality (4.32) follows directly from the triangle inequality:

2|T |
√

| detq|σq(T ) ≤ |q(b) + q(c)|
2

≤ |q(a)| ≤ |T |
√

| detq|ρq(T ).

As mentionned earlier, ρq(T ) is always larger than 2 and therefore (4.32) implies the left inequality in
(4.33).

It remains to prove the right inequality in (4.33). If ρq(T ) ≤ 8, it is immediate since σq(T ) ≥ 5
2 and

32
3

5
2 ≥ 8. If ρq(T ) ≥ 8 we infer from (4.28) that |q(b) + q(c)| ≤ |q(a) + q(c)| ≤ |q(a) + q(b)|, and from

(4.29) that |q(a)| ≤ 8
3 |q(b) + q(c)|. It follows that

ρq(T ) =
|q(a)|

|T |
√

| detq|
≤ 8

3

|q(b) + q(c)|
|T |
√

| detq|
=

32

3
σq(T ) ≤ 32

3
κq(T ),
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which concludes the proof. ⋄

Similar to ρq, the quantity κq is invariant by a linear coordinate changes φ, in the sense that

κq◦φ(T ) = κq(φ(T )).

Our next result shows that κq(T ) is always reduced by the refinement procedure.

Proposition 4.7 If T is a triangle with children T1 and T2 obtained by the refinement procedure for the
quadratic function q, then

max{κq(T1), σq(T2)} ≤ κq(T ).

Proof: Let us assume that a is the longest edge in the sense of q. In the case where ρq(T ) ≥ 4, we
already noticed in the proof of Proposition 4.6 that

σq(T ) =
|q(b) + q(c)|
4|T |

√

| detq|
.

Moreover, according to the results established in §4.1 and 4.2, the edge a is selected by both decision
functions. It follows that children Ti have edges a/2, b, (c−b)/2 and a/2, (b−c)/2, c (recall that a+b+c =
0). We thus have

2|T |
√

| detq| σq(Ti) ≤
∣

∣q(a/2) + q( b−c
2 )
∣

∣

=
∣

∣q( b+c
2 ) + q( b−c

2 )
∣

∣

= |q(b)+q(c)|
2

= 2|T |
√

| detq| σq(T ).

We have proved that σq(Ti) ≤ σq(T ), and it readily follows that κq(Ti) ≤ κq(T ).
In the case where ρq(T ) ≤ 4, we remark that Ti contains at least one edge from T , say s ∈ {a, b, c}

and one half-edge t ∈ {a
2 ,

b
2 ,

c
2}. This provides an upper bound for σq :

σq(Ti) ≤
|q(s) + q(t)|
2|T |

√

| detq|
≤ |q(a)| + |q(a

2 )|
2|T |

√

| detq|
=

5

8
ρq(T ) ≤ 5

2
. (4.34)

Therefore κq(Ti) = 5
2 ≤ κq(T ). ⋄

Our next objective is to show that as we iterate the refinement process, the value of κq(T ) becomes
bounded independently of q for almost all generated triangles. If T is a triangle such that |q(a)| ≥
|q(b)| ≥ |q(c)| and if the edge a is cut (which is the case as soon as ρq(T ) ≥ 4) we define ψq(T ) as the
subtriangle containing the edge c. We first prove a result which is analogous to Proposition 3.12.

Proposition 4.8 If T is a triangle such that κq(ψ3
q
(T )) > 5

2 , then κq(ψ3
q
(T )) ≤ 2

3κq(T ).

Proof: Let S be a triangle such that κq(ψq(S)) > 5
2 . According to (4.34), one must have ρq(S) > 4.

Assuming that the edges of S satisfy |q(a)| ≥ |q(b)| ≥ |q(c)|, since the three edges of ψq(S) are a
2 , c,

b−c
2 ,

we infer from (4.28) that the longest edge of ψq(S) in the sense of q is a
2 .

Since κq(ψq(T )) ≥ κq(ψq(T )) ≥ κq(ψ3
q
(T )) > 5

2 , we can apply this observation to the triangles T ,
ψq(T ) and ψ2

q
(T ). Therefore, denoting by a the longest edge of T in the sense of q, we find that a

8 is the
longest edge of ψ3

q
(T ). Since |ψ3

q
(T )| = |T |/8, we obtain that ρq(ψ3

q
(T )) = ρq(T )/8. Using the results of

Proposition 4.6, we thus have

κq(ψ3
q
(T )) = σq(ψ3

q
(T )) ≤ 1

2
ρq(ψ3

q
(T )) =

1

16
ρq(T ) ≤ 2

3
κq(T ),

which concludes the proof. ⋄

An immediate consequence of Propositions 4.7 and 4.8 is the following.
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Corollary 4.9 If (Ti)
8
i=1 are the 8 children obtained from 3 successive refinement procedures from T for

the function q,

• ∀i, κq(Ti) ≤ κq(T )

• ∃i, κq(Ti) ≤ 2
3κq(T ) or κq(Ti) = 5

2 .

We finally obtain the following result which proof is exactly similar to the one of Theorem 3.14.

Theorem 4.10 Let T be a triangle, and q a quadratic function of mixed type. Let k =
ln(2κq(T )/5)

ln 3−ln 2 Then

after n applications of the refinement procedure starting from T , at most Cnk7n/3 of the 2n generated
triangles are such that κq(S) > 5

2 where C is an absolute constant. Therefore the proportion of such
triangles tends exponentially to 0 as n→ +∞.

5 The case of strictly convex functions

The goal of this section is to prove that the approximation error in the greedy algorithm satisfies the
estimate (1.1) corresponding to an optimal triangulation. Our main result is so far limited to the case
where f is strictly convex.

Theorem 5.1 Let f ∈ C2(Ω) be such that

d2f(x) ≥ αI, x ∈ Ω

for some arbitrary but fixed α > 0 independent of x. Let fN be the approximant obtained by the greedy
algorithm for the Lp metric, using the L∞ decision function (2.13). Then, there exists N0 = N0(f) such
that for N ≥ N0,

‖f − fN‖Lp ≤ CN−1‖
√

det(d2f)‖Lτ , (5.35)

where 1
τ = 1

p + 1 and where C is an absolute constant.

The extension of this result to strictly concave functions is immediate by a change of sign. Its extension
to arbitrary C2 functions is so far uncomplete, although plausible, as we explain in the concluding remarks
of §6. The proof of Theorem 5.1 will use the fact that a strictly convex C2 function is locally close to a
quadratic function with positive definite hessian, which allows us to exploit the results obtained in §4 for
these particular functions.

5.1 A perturbation result

Our first step towards the proof of Theorem 5.1 therefore consists in describing how the results obtained
in §3 extend to arbitrary convex functions which are closeon a given triangle T to a quadratic function
in the C2 norm.

In the following, we fix α > 0 and 0 < ε < α, and consider a pair of functions (q, f) defined on a
triangle T , such that

• q is a quadratic polynomial such that d2q ≥ αI.

• f is a C2 function and ‖d2f − d2q‖L∞(T ) ≤ ε (with ‖ · ‖ the spectral norm).

We also define
µ :=

ε

α
< 1.

Since the greedy algorithm is driven by the quantities eT (f)p, and αT (f) or βT (f), we first need to
show that these quantities do not differ too much from those associated with q.

17



Proposition 5.2 There exists an absolute constant Ce > 1 such that

(1 − Ceµ)eT (q)p ≤ eT (f)p ≤ (1 + Ceµ)eT (q)p. (5.36)

The same holds for αT and βT in place of eT with absolute constants Cα and Cβ in place of Ce. Moreover,

(1 − µ)
√

detq ≤
√

det d2f ≤ (1 + µ)
√

detq. (5.37)

Therefore, using Proposition 3.7, and assuming that µ ≤ ce := 1
2Ce

, we have with 1
τ := 1 + 1

p ,

eT (f)p ∼ eT (q)p ∼ σq(T )‖
√

| detq|‖Lτ (T ) ∼ σq(T )‖
√

det d2f‖Lτ (T ),

with absolute constants in the equivalence.

Proof: Using Taylor formula, we know that there exists an affine function π such that

‖f − q − π‖L∞(T ) ≤
1

2
εh2

T .

We remark that for both AT = IT or PT , the operator I − AT is bounded in the L∞(T ) norm with
spectral norm C = ‖I −AT ‖ independent of T (by affine change of coordinate). Note that C = 1 in the
case AT = IT . Since ATπ = π, we thus have

‖(f −AT f) − (q −AT q)‖L∞(T ) ≤ C‖f − q − π‖L∞(T ) ≤
C

2
εh2

T ,

where C is an absolute constant. Therefore

‖(f −AT f) − (q −AT q)‖Lp(T ) ≤ C‖f − q − π‖Lp(T ) ≤
C

2
|T |1/pεh2

T ,

It follows that

eT (q)p − C

2
|T |1/pεh2

T ≤ eT (f)p ≤ eT (q)p +
C

2
|T |1/pεh2

T .

On the other hand, we know from Proposition 2.1

eT (q)p ∼ |T |1/p max{q(a),q(b),q(c)} ≥ |T |1/pαh2
T ,

we obtain (5.36).
For the proof of (5.37), we remark that if M and N are symmetric matrices such that ‖N‖ ≤ ε and

M ≥ αI, with 0 < ε < α, then

(λ1 − ε)(λ2 − ε) ≤ det(M +N) ≤ (λ1 + ε)(λ2 + ε),

where (λ1, λ2) are the eigenvalues of M which are both larger than α so that

(1 − ε/α)2 ≤ det(M +N)/ detM ≤ (1 + ε/α)2.

Applying this to M = d2q and N = d2f − d2q, this gives the desired result. ⋄

We have proved in the §4 that if q is a positive quadratic function the decision functions dT (e, q),
either defined by (3.14) or (3.17), always prescribes to split towards the longest edge in the sense of the
q-metric. We now want to identify as much as possible the choice prescribed by dT (x, f). This motivates
the following definition:

Definition 5.3 Let T be a triangle with edges a, b, c. A δ-near longest edge bisection with respect to the
q-metric is a bisection of any edge e ∈ {a, b, c} such that

q(e) ≥ (1 − δ)max{q(a),q(b),q(c)}

Using the closeness between f and q, we can prove that the bisection choice prescribed by dT (x, f) is
of the above type, if µ is small enough.
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Lemma 5.4 The bisection of T prescribed by dT (x, f) is a C1µ-near longest edge bisection with respect
to the q-metric, where C1 is an absolute constant.

Proof: Let us assume |a|q ≥ |b|q ≥ |c|q. From Proposition 5.2, we have

|dT (e, q) − dT (e, f)| ≤ C0µdT (e, q),

with dT either defined by (3.14) or (3.17) and C0 an absolute constant.
We shall first assume that µ ≤ 1

2C0

. If dT (e, f) ≤ dT (a, f) for some edge e, we have

dT (e, q) ≤ 1 + C0µ

1 − C0µ
dT (a, q) ≤ (1 + 4C0µ)dT (a, q).

We now want to show that q(e) ≤ (1 − C1µ)max{q(a),q(b),q(c)}. We only need to consider the cases
where e = b or c.

For this purpose, we distinguish between the two types of decision functions. When dT is defined by
(3.14), we know from Proposition 3.3,

4(dT (b, q) − dT (a, q)) ≥ q(a) − q(b)

4(dT (c, q) − dT (a, q)) ≥ q(a) − (
|b|q + |c|q

2
)2 ≥ q(a) − q(c)

2

On the other hand, according to the estimates obtained in the proof of Proposition 3.3, we have

dT (a, q) = αT 1
a
(q) + αT 2

a
(q) ≤ q(b)

2
≤ q(a)

2
.

Therefore, if e = b, since dT (b, q) ≤ (1 + 4C0µ)dT (a, q), it follows that

q(a) − q(b) ≤ 4(dT (b, q) − dT (a, q)) ≤ 16C0µdT (a, q) ≤ 8C0µq(a).

Similarly, if e = c, since dT (c, q) ≤ (1 + 4C0µ)dT (a, q), it follows that

q(a) − q(c) ≤ 8(dT (b, q) − dT (a, q)) ≤ 32C0µdT (a, q) ≤ 16C0µq(a).

We have thus obtained the desired result with C1 = 16C0. When dT is defined by (3.17), we know from
corollary 3.6 that for e = b or c,

dT (e, q) − dT (a, q) ≥ 5

4
c1|T |(q(a)2 − q(e)2) ≥ 5

4
c1|T |q(a)(q(a) − q(e)).

On the other hand, according to (3.19), we also have dT (a, q) ≤ 4|T |c1q(a)2. Combining both, we obtain
that

q(a) − q(e) ≤ 4

5c1|T |q(a)
(dT (e, q) − dT (a, q)) ≤ 16C0µ

5c1|T |q(a)
dT (a, q) ≤ 64C0µ

5
q(a).

We have thus obtained the desired result with C1 = 64
5 C0.

Finally, we notice that in the case where µ > 1
2C0

, we have C1µ > 1 for both values of C1 obtained
above. In that case, the result is trivial since any bisection is a 1-near longest edge bisection. ⋄

We now introduce a perturbed version of the estimates describing the decay of the non-degeneracy
measure which were obtained Corollary 3.13.

Proposition 5.5 If (Ti)
8
i=1 are the eight children obtained from three successive refinement procedures

from T for the function f , then

• for all i, σq(Ti) ≤ σq(T )(1 + C2µ),

• there exists i such that σq(Ti) ≤ 0.69σq(T )(1 + C2µ) or σq(Ti) ≤M ,
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where C2 is an absolute constant and M = 4(1 + C2c0).

Proof: Let (T ′
i )

8
i=1 be the eight children obtained from three successive refinement procedures from T

for the function q. We know from Corollary 3.13 that σq(T ′
i ) ≤ σq(T ) for all i and that there exists i

such that either σq(T ′
i ) ≤ 3

4σq(T ) or σq(T ′
i ) ≤ 4. The triangles Ti might differ from the T ′

i but we shall
prove that for a suitable ordering of the Ti,

|σq(Ti) − σq(T ′
i )| ≤ C2µσq(T ′

i ), (5.38)

which clearly implies our result, with M = 4(1 + C2c0). The idea is to use the fact that the bisection
of T prescribed by dT (x, f) is a near longest edge bisection with respect to the q-metric as shown
by Lemma 5.4 in order to prove that the triangles Ti and T ′

i have similar shape. For this purpose,
we introduce a distance between triangles: if T1 and T2 have edges a1, b1, c1 and a2, b2, c2 such that
q(a1) ≥ q(b1) ≥ q(c1) and q(a2) ≥ q(b2) ≥ q(c2), we define

δq(T1, T2) = max{|q(a1) − q(a2)|, |q(b1) − q(b2)|, |q(c1) − q(c2)|}.

Note that δq is a distance up to rigid transformations. Using this distance, we now compare (R1, U1) and
(R2, U2), the two pairs of childrens obtained from one refinement procedure from T1 for the functions q and
T2 for the function f respectively. Up to a permutation, R1 and U1 have edge vectors b1, a1/2, (c1− b1)/2
and c1, a1/2, (b1 − c1)/2. From Lemma 5.4, we see that two situations might occur for the pair (R2, U2):

• q(e) < (1−C1µ)q(a2) with C1 the constant in 5.4 for e = b2 and c2. In such a case the refinement
procedure for f bisects T2 towards a2, so that up to a permutation, R2 and U2 have edge vectors
b2, a2/2, (c2 − b2)/2 and c2, a2/2, (b2 − c2)/2. Using that q((c − b)/2) = q(c)/2 + q(b)/2 − q(a)/4
when a+ b+ c = 0, it clearly follows that

max{δq(R1, R2), δq(U1, U2)} ≤ 5

4
δq(T1, T2).

• q(e) ≥ (1−C1µ)q(a2) with C1 the constant in 5.4 for some e = b2 or c2. In such a case the refinement
procedure for f may bisect T2 say towards b2, so that up to a permutation, R2 and U2 have edge
vectors a2, b2/2, (c2 − a2)/2 and c2, b2/2, (b2 − c2)/2. But since |q(b2) − q(a2)|q ≤ C1µq(a2), we
obtain that

max{δq(R1, R2), δq(U1, U2)} ≤ 5

4
δq(T1, T2) + C1µq(a2).

Applying the last estimate with T1 = T2 = T and iterating it on the childrens and grand-childrens of T ,
we obtain that up to a suitable ordering the triangles (Ti)

8
i=1 and (T ′

i )
8
i=1 satisfy

max
i=1,··· ,8

δq(Ti, T
′
i ) ≤ (1 +

5

4
+ (

5

4
)2)C1µq(a) =

61

16
C1µq(a),

where a is the longest edge of T in the q-metric. In order to conclude, we remark that according to the
definition of σq, and using the fact that Ti and T ′

i have equal area, we have

|σq(Ti) − σq(T ′
i )| ≤

2δ(Ti, T
′
i )

4|Ti|
√

det(q)
≤ 61

8
C1µ

q(a)

4|Ti|
√

det(q)
≤ 61

4
C1µσq(T ).

We therefore obtain the desired result with C2 := 61
4 C1. ⋄

5.2 Local optimality

Our next step towards the proof of Theorem 5.1 is to show that the triangulation produced by the
greedy algorithm is locally optimal in the following sense: if the refinement procedure for the function f
produces a triangle T ∈ D on which f is close enough to a quadratic function q, then the triangles which
are generated from the refinement of T tend to adopt an optimal aspect ratio in the q-metric, and a local
version of the optimal estimate (1.1) holds on T .
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We first prove that most triangles adopt an optimal aspect ratio as we iterate the refinement procedure.
Our goal is thus to obtain a result similar to Theorem 3.14 which was restricted to quadratic functions.
However, due to the perturbations by C2µ that appear in Proposition 5.5, the formulation will be slightly
different, yet sufficient for our purposes: we shall prove that the measure of non-degeneracy becomes
bounded by an absolute constant in an average sense, as we iterate the refinement procedure.

For r > 0, we define the average r-th power of the measure of non-degeneracy of the 23n triangles
obtained from T after 3n iterations of the refinement procedure:

σr
q
(n) =

1

23n

∑

T ′∈T u
n (T )

σr
q
(T ′),

where T u
n (T ) is the triangulation of T which is built by iteratively applying the refinement procedure for

the function f starting from T up to 3n generation levels. Note that #(T u
n (T )) = 23n and |T ′| = 2−3n|T |

for all T ′ ∈ T u
n (T ). We also define

γ(r, µ) :=
1

8

(

0.69(1 + C2µ)
)r

+
7

8
(1 + C2µ)r,

where C2 is the constant in Proposition 5.5. One easily checks that for any r > 0, there exists µ(r) > 0
and 0 < γ(r) < 1 such that γ(r, µ) ≤ γ(r), if 0 < µ < µ(r).

Proposition 5.6 Assume that 0 < µ ≤ µ(r). We then have

σr
q
(n) ≤ σr

q
(T )γ(r)n +

M r

8(1 − γ(r))
,

where M is the constant in Proposition 5.5. Therefore

σr
q
(n) ≤ C3 := 1 +

M r

8(1 − γ(r))
,

if 23n ≥ 8σq(T0)
λ with λ := 3r ln 2

− lnγ(r) .

Proof: Let us use the notations u = 3
4 (1 + C2µ) and v = (1 + C2µ). According to Proposition 5.5, we

have
σr
q
(n) ≤ E(σr

n),

where E is the expectation operator and σn is the Markov chain with value in [1,+∞[ defined by

• σn+1 = max{σnu,M} with probability α := 1
8 ,

• σn+1 = σnv with probability β := 7
8 ,

• σ0 := σq(T0) with probability 1.

Denoting by µn the probability distribution of σn, we have

E(σr
n+1) =

∫ ∞

1

σrdµn+1(σ)

=

∫ ∞

1

(α(max{uσ,M})r + β(vσ)r) dµn(σ)

= αM r

∫ M/u

1

dµn(σ) + αur

∫ ∞

M/u

σrdµn(σ) + βvr

∫ +∞

1

σrdµn(σ)

≤ αM r + (αur + βvr)E(σr
n)

≤ αM r + γ(r)E(σr
n)

By iteration, it follows that

E(σr
n) ≤ E(σr

0)γ(r)n +
αM r

1 − γ(r)
,
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which gives the result. ⋄

Our next goal is to show that the greedy algorithm initialized from T generates a triangulation which
is a refinement of T u

n (T ) and therefore more accurate, yet with a similar amount of triangles. To this
end, we apply the greedy algorithm with root T and stopping criterion given by the local error

η := min
T ′∈T u

n (T )
eT ′(f)p.

Therefore T ′ is splitted if and only if eT ′(f)p > η. We denote by TN (T ) the resulting triangulation where
N is its cardinality. From the definition of the stopping criterion, it is clear that TN (T ) is a refinement
of T u

n (T ).

Proposition 5.7 Assume that µ ≤ frac12C2, where C2 is the constant in Proposition 5.5, and define
r0 := ln 2

ln 4−ln 3 > 0. We then have

N ≤ C42
3nσr0

q (n),

where C4 is an absolute constant. Assuming in addition that µ ≤ µ(r0) as in Proposition 5.6, we obtain
that

N ≤ C52
3n,

if 23n ≥ 8σq(T )λ with λ := 3r0 ln 2
− ln γ(r0)

, and where C5 = C3C4.

Proof: Let T1 be a triangle in T u
n (T ) and T2 a triangle in TN (T ) such that T2 ⊂ T1. We shall give a

bound on the number of splits k which were applied between T1 and T2, i.e. such that |T2| = 2−k|T1|.
We first remark that according to Proposition 5.2, we have

η ≥ c min
T ′∈T u

n (T )
|T ′|1+ 1

p σq(T ′)
√

detq ≥ c|T1|1+
1

p

√

detq,

where c is an absolute constant. On the other hand, using both Proposition 5.2 and 5.5, we obtain

eT2
(f)q ≤ C|T2|1+

1

p σq(T2)
√

detq

= |T1|1+
1

p 2−k(1+ 1

p )σq(T2)
√

detq

≤ C|T1|1+
1

p σq(T1)
(

2−(1+ 1

p )(1 + C2µ)
)k√

detq.

≤ C
c σq(T1)

(

1+C2µ
2

)k

η

≤ C
c σq(T1)(

3
4 )kη,

where C is an absolute constant. Therefore we see that k is at most the smallest integer such that
C
c σq(T1)(

3
4 )k ≤ 1. It follows that the total number n(T1) of triangles T2 ∈ TN (T ) which are contained in

T1 is bounded by

n(T1) ≤ 2k ≤ 2(
C

c
σq(T1))

r0 ,

and therefore

N ′ =
∑

T1∈T u
n (T )

n(T1) ≤ 2(
C

c
)r0

∑

T1∈T u
n (T )

σq(T1)
r0 = C42

3nσr0

q (n),

with C4 = 2(C
c )r0 . The fact that N ≤ C52

3n when 23n ≥ 8σq(T )λ with λ := 3r0 ln 2
− ln γ(r0)

is an immediate

consequence of Proposition 5.6. ⋄

5.3 Optimal convergence estimates

Our last step towards the proof of Theorem 5.1 consists in deriving local error estimates for the greedy
algorithm. For η > 0, we denote by fη the approximant to f obtained by the greedy algorithm with
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stopping criterion given by the local error η : a triangle T is splitted if and only if eT (f)p > η. The
resulting triangulation is denoted by

Tη = TN , with N = N(η) = #(Tη).

For this N , we thus have fη = fN . For a given T generated by the refinement procedure such that
η ≤ eT (f)p, we also define

Tη(T ) = {T ′ ⊂ T ; T ′ ∈ Tη}
the triangles in Tη which are contained in T and

N(T, η) = #(Tη(T )).

Our next result provides with estimates of the local error ‖f − fη‖Lp(T ) and of N(T, η) in terms of η,
provided that µ is small enough.

Theorem 5.8 Assume that µ ≤ c2 := min{ 1
2C2

, µ(r0)}, and that η ≤ η0, where

η0 = η0(T ) :=
( |T |
σq(T )λ

)
1

τ√

detq,

with λ := 3r0 ln 2
− ln γ(r0)

, and 1
τ = 1

p + 1. Then

‖f − fη‖Lp(T ) ≤ ηN(T, η)
1

p , (5.39)

and
N(T, η) ≤ C6η

−τ‖
√

det d2f‖τ
Lτ (T ), (5.40)

where C6 is an absolute constant.

Proof: The first estimate is trivial since

‖f − fη‖Lp(T ) =
(

∑

T ′∈Tη(T )

eT ′(f)p
p

)
1

p ≤
(

∑

T ′∈Tη(T )

ηp
)

1

p

= ηN(T, η)
1

p .

In the case p = ∞, we trivially have
‖f − fη‖L∞(T ) ≤ η.

For the second estimate, we define n0 = n0(T ) the smallest positive integer such that 23n0(T ) ≥ 8σq(T )λ

with λ := 3r0 ln 2
− ln γ(r0)

. For any fixed n ≥ n0, we define

ηn := min
T ′∈T u

n (T )
eT ′(f)p.

We know from Proposition 5.7 that with the choice η = ηn

N(T, ηn) ≤ C52
3n. (5.41)

On the other hand, we know from Proposition 5.6, that σr0

q (n) ≤ C3, from which it follows that

min
T ′∈T u

n (T )
σq(T ′) ≤ C

1

r0

3 .

According to Proposition 5.2, we also have

ηn ≤ C min
T ′∈T u

n (T )
|T ′|1+ 1

p σq(T ′)
√

detq ≤ C
1

r0

3 C
( |T |

23n

)
1

τ√

detq,

where C is an absolute constant, which also reads

23n ≤ C
τ

r0

3 Cτη−τ
n |T |

√

detq
τ
.
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Combining this with (5.41), we have obtained the estimate

N(T, ηn) ≤ C5C
τ

r0

3 Cτη−τ
n |T |

√

detq
τ
,

which by Proposition 5.2 is equivalent to (5.40) with η = ηn. In order to obtain (5.40) for all arbitrary
values of η, we write that ηn+1 < η ≤ ηn for some n ≥ n0, then

N(T, η) ≤ N(T, ηn+1)
≤ C52

3(n+1)

≤ 8C5C
τ

r0

3 Cτη−τ
n |T |√detq

τ

≤ 8C5C
τ

r0

3 Cτη−τ |T |√detq
τ
,

which by Proposition 5.2 is equivalent to (5.40). In the case where η ≥ ηn0
, we simply write

N(T, η) ≤ N(T, ηn0
)

≤ C52
3n0

≤ 64C5σq(T )λ

= 64C5η
−τ
0 |T |√detq

τ

≤ 64C5η
−τ |T |√detq

τ
,

and we conclude in the same way. ⋄

We remark that combining the estimates (5.39) and (5.40) in the above Theorem yields the optimal
local convergence estimate

‖f − fη‖Lp(T ) ≤ C
1

τ
6 ‖
√

det d2f‖Lτ(T )N(T, η)−1.

In order to obtain the global estimate of Theorem 5.1, we need to be ensured that after sufficiently many
steps of the greedy algorithm, the target f can be well approximated by quadratic function q = q(T ) on
each triangle T , so that our local results will apply on such triangles. This is ensured due to the following
key result.

Proposition 5.9 Let f be a C2 function such that αI ≤ d2f(x) for all x ∈ Ω and α > 0 independent
of x. Let TN be the triangulation generated by the greedy algorithm applied to f using the L∞ decision
function given by (2.13). Then

lim
N→+∞

max
T∈TN

diam(T ) = 0,

i.e. the diameter of all triangles tend to 0.

Proof: See appendix.

Remark 5.10 We conjecture that this result is also true for the L2 decision function given by (2.12),
although we were not able to prove it. This is the only reason why the optimal convergence estimate in
Theorem (5.1) is stated for the L∞ based decision function.

Proof of Theorem 5.1 Since f ∈ C2, an immediate consequence of Proposition 5.9 is that for all µ > 0,
there exists

N1 := N1(f, µ),

such that for all T ∈ TN1
, there exists a quadratic function qT such that

‖d2f − d2qT ‖L∞(T ) ≤ ε = µα.

Therefore our local results apply on all T ∈ TN1
. Specifically, we choose

N1 := N1(f, c2),
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with c2 the constant in Theorem 5.8. We then take

η ≤ η0 := min
T∈TN1

{eT (f)p,
( |T |
σqT (T )λ

)
1

τ√

detqT },

We use the notations
fη = fN , Tη = TN N = N(η) = #(Tη) = #(TN ),

for the approximants and triangulation obtained by the greedy algorithm with stopping criterion given
by the local error η. Note that Tη is a refinement of TN1

, since η ≤ minT∈TN1
eT (f)p, and therefore

N ≥ N1. We obviously have

‖f − fN‖Lp ≤ ηN
1

p .

Using Theorem 5.8, we also have

N =
∑

T∈TN1

N(T, η) ≤ C6η
−τ‖

√

det d2f‖τ
Lτ(Ω)

and therefore
‖f − fN‖ ≤ C

1

τ
6 ‖
√

det d2f‖Lτ(Ω)N
−1,

which is the claimed estimate. Since we have assumed η ≤ η0, this estimate holds for

N > N0,

where N0 is largest value of N such that eT (f)p ≥ η0 for at least one T ∈ TN . ⋄

Remark 5.11 In [9] a modification of the algorithm is proposed so that its convergence in the Lp norm
is ensured for any function f ∈ Lp(Ω) (or f ∈ C(Ω) when p = ∞). However this modification is not
needed in the proof of Theorem 5.1, due to the assumption that f is convex.

6 Concluding remarks

In this work, we have shown that a simple greedy algorithm based on iterative bisection has the ability
to generate adaptive triangulations for which the optimal convergence estimate (5.35) holds when the
number of triangle is large enough. The essential reasons for this are that the algorithm equidistributes
the local error and generates triangles which have an optimal aspect ratio.

So far, our analysis is limited to strictly convex functions, yet numerical results seem to indicate that
(5.35) holds for more general C2 functions. As pointed our in §2.2, we cannot expect that this estimate
holds for all C2 functions, since det(d2f) = 0 when f is a function of the type f(x, y) = g(ax+by) with g a
univariate function, while the interpolation error is generally non-zero. In fact we conjecture the following:

For all f ∈ C2, one has lim supN→+∞N‖f − fN‖Lp ≤ C‖
√

| det(d2f)|‖Lτ with 1
τ := 1

p + 1.

Our results of §4 show that the algorithm produces triangles with an optimal aspect ratio when ap-
plied to a quadratic polynomial q such that det(q) < 0. The main difficulties remaining to be solved in
order to prove the above conjecture are in the subsequent perturbation analysis, as well as in proving an
analog result to Proposition 5.9.

7 Appendix : proofs

7.1 Proof of Proposition 4.1

Let q be a quadratic function of mixed type, and T a triangle with edges a, b, c such that |q(a)| ≥
|q(b)| ≥ |q(c)|. Up to a linear change of variables, we may assume that the quadratic part of q is
q(x, y) = x2−y2. Up to a translation, linear rescaling and permutation between the x and y coordinates,
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we may assume that the edge a is centered at 0 and such that q(a) = 4. We write a
2 = (u, v), and assume

that u > 0 without loss of generality. Then 1 = q(a
2 ) = u2 − v2, and there must be θ ∈ R such that

(u, v) = (cosh(θ), sinh(θ)).

We next observe that the linear transformation φ of matrix

(

cosh(θ) − sinh(θ)
− sinh(θ) cosh(θ)

)

leaves q invari-

ant, in the sense that q◦φ = q, and verifies φ(a
2 ) = (1, 0). Up to such a transformation, we may therefore

assume that a = (2, 0). Therefore the two vertices of T corresponding to a are (−1, 0) and (1, 0). We
denote the third vertex by (s, t). There is no loss of generality, finally, in assuming that s ≥ 0 and t > 0.
Note that |T | = t and ρq(T ) = 4

t .
We now specialise to the case where ρq(T ) ≥ 4, which is equivalent to t ≤ 1. Recall that the edges of

T are such that |q(a)| ≥ |q(b)| ≥ |q(c)|. The following lines show that q(1 + s, t) ≥ |q(s − 1, t)|, which
implies that b = −(1 + s, t) and c = (s− 1, t):

q(1 + s, t) − q(s− 1, t) = 4s ≥ 0

q(1 + s, t) + q(s− 1, t) = 2(1 + s2 − t2) ≥ 0.

In addition we see that q(b) ≥ 0 and we thus have proved that q(a)q(b) ≥ 0. For the second and third
inequality in (4.28) we remark that q(c) = (s− 1)2 − t2 and q(d) = s2 − t2. Clearly

−1 ≤ −t2 ≤ min{q(c),q(d)}.

If 0 ≤ s ≤ 1, we also clearly have
max{q(c),q(d)} ≤ 1.

If s ≥ 1 we have

q(c) ≤ q(d) = s2 − t2 = (s+ 1)2 − t2 − (2s+ 1) = q(b) − (2s+ 1) ≤ q(a) − 3 = 1,

We thus always have

max{|q(c)|, |q(d)|} ≤ |q(a)|
4

= 1, (7.42)

which concludes the proof of the inequalities (4.28).
Last, we specialize to the case where ρq(T ) = 4

t ≥ 8, equivalently t ≤ 1
2 , to prove (4.29):

q(b) + q(c) = (s+ 1)2 − t2 + (s− 1)2 − t2 = 2 + 2s2 − 2t2 ≥ 3

2
=

3

8
q(a).

7.2 Proof of Proposition 5.9

For any triangle T we denote by Tx the interval defined as the projection of T on the x axis, and by
|Tx| its length. We denote by IT and ITx the two dimensional and one dimensional local interpolations
operators on T and Tx respectively. It is clear that if g is a C2 convex function of one variable and if
G(x, y) := g(x), then

‖G− ITG‖L∞(T ) = ‖g − ITxg‖L∞(Tx). (7.43)

The following lemma compares the interpolation error on an interval of R and on a sub-interval.

Lemma 7.1 Let g ∈ C2(R,R) be such that 0 < m ≤ g′′ ≤ M . Let x1, x2, x3 be real numbers satisfying
x1 < x1+x3

2 ≤ x2 < x3, and denote u := x2 − x1 ≤ v := x3 − x1. Then denoting by Iu and Iv the
interpolation operators on the intervals [x1, x2] and [x1, x3] respectively, we have

‖g − Ivg‖L∞([x1,x3]) ≥ mv2/8

and

‖g − Iug‖L∞([x1,x2]) ≤ (1 − α
v − u

v
)‖g − Ivg‖L∞([x1,x3])

with α := 1
4

√

m/M .
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Proof: Let us define hv = Ivg − g. Since h′′v = −g′′ and hv(x1) = hv(x3) = 0, hv can be represented as
the integral

hv(x) =

∫ x3

x1

Kv(x, y)g
′′(y)dy. (7.44)

where the Green kernel Kv is given by

Kv(x, y) =
1

v

{

(x− x1)(x3 − y) if x ≤ y
(x3 − x)(y − x1) if x ≥ y

Of course, we have a similar representation of hu = Iug − g with a kernel Ku.
The first part of the proposition immediately follows from

hv(
x1 + x3

2
) ≥ m

∫ x3

x1

Kv(
x1 + x3

2
, y)dy ≥ mv2/8.

In order to prove the second part, we shall compare the Green Kernels Ku and Kv. For this purpose, we
define

µ(x) =
(x2 − x)/u

(x3 − x)/v
.

For all x, y ∈ [x1, x2], we thus have

Ku(x, y)

Kv(x, y)
= min{µ(x), µ(y)} ≤ µ(x).

Therefore, defining xu := argmaxt∈[x1,x2](Iug − g)(t) and using (7.44), we obtain

‖g − Iug‖L∞([x1,x2]) = hu(xu)
=
∫ x2

x1

Ku(xu, y)g
′′(y)dy

≤ µ(xu)
∫ x2

x1

Kv(xu, y)g
′′(y)dy

≤ µ(xu)
∫ x3

x1

Kv(xu, y)g
′′(y)dy

≤ µ(xu)‖g − Ivg‖L∞([x1,x3]).

In order to conclude, we need to estimate µ(xu). One easily checks by differentiation that µ is decreasing
and concave on the interval [x1, x2], and therefore for all x ∈ [x1, x2]

µ(x) ≤ 1 − (x − x1)
v − u

v2
.

Differentiating the integral representation of hu, we obtain

uh′u(xu) = −
∫ xu

x1

(y − x1)g
′′(y)dy +

∫ x2

xu

(x2 − y)g′′(y)dy.

Since h′(xu) = 0 and 0 < m ≤ g′′ ≤M , we obtain

(x2 − xu)2m ≤ (xu − x1)
2M.

Since x2 ≥ x1+x3

2 , this gives xu − x1 ≥
√

m/M v
4 . Therefore,

µ(xu) ≤ 1 − 1

4

√

m/M
v − u

v
.

⋄

The following corollary uses the above lemma to compare the values of the L∞-based decision func-
tions for a convex function that depends only of one variable. For any vector v ∈ R

2 we denote by vx the
absolute value of its x coordinate.
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Corollary 7.2 Let T be a triangle with edges a, b, c, such that ax ≥ bx ≥ cx. Let G(x, y) = g(x), where
g ∈ C2 and 0 < m ≤ g′′ ≤M . Then, with dT defined by (3.14),

dT (b,G) − dT (a,G) ≥ Cax(ax − bx),

dT (c,G) − dT (a,G) ≥ Ca2
x/2.

with C = m3/2

32
√

M
.

Proof: We recall the notation αT (f) := ‖f − IT f‖L∞. It follows from (7.43) that

αT (G) = ‖g − ITxg‖L∞(Tx).

We label the extremities of a by i ∈ {1, 2}, and denote by T i,s, i ∈ {1, 2}, s ∈ {a, b, c} the child of T
resulting from the bisection through the edge s in such a way that T i,s contains the extremity of a of
label i. Then (up to exchanging the labels of the extremities of a),

|T 1,a
x | = bx |T 2,a

x | = ax/2,
|T 1,b

x | = ax |T 2,b
x | = cx + bx/2,

|T 1,c
x | = bx + cx/2 |T 2,c

x | = ax.

In particular, we have T 2,a
x ⊂ T 2,b

x and T 1,a
x ⊂ T 1,b

x and therefore

αT 2,a(G) = ‖g − IT 2,a
x
g‖L∞(T 2,a

x ) ≤ ‖g − IT 2,a
x
g‖L∞(T 2,b

x ) = αT 2,b(G),

and similarly αT 1,a(G) ≤ αT 1,c(G). Moreover, we can apply the previous lemma with [x1, x2] = T 1,a
x ⊂

T 1,b
x = [x1, x3] or with [x1, x2] = T 2,a

x ⊂ T 2,c
x = [x1, x3] which respectively leads to

αT 1,b (G) − αT 1,a(G) ≥ m3/2

32
√
M
ax(ax − bx),

and

αT 2,c(G) − αT 2,a(G) ≥ m3/2

32
√
M
a2

x/2.

This allows us to conclude since dT (s,G) = αT 1
s

+ αT 2
s
, for s ∈ {a, b, c}. ⋄

Using the above result, we now prove that the decision function dT tends to prescribe longest edge
bisection with respect to the euclidean metric when the triangle T becomes too thin.

Corollary 7.3 Let f be a convex function such that m Id ≤ d2f ≤ M Id, and let T be a triangle with
measure of non-degeneracy σ(T ) for the euclidean metric and edges a, b, c, such that |a| ≥ |b| ≥ |c|. Then,
with K = 128(M

m )3/2, if σ(T ) > 2K, the bisection prescribed by the decision function dT (·, f) is a δ-near

longest edge bisection with respect to the euclidean metric (in the sense of definition 5.3), with δ := K
σ(T ) .

Proof: We denote by p(X) the affine orthogonal projection of a point X ∈ IR2 onto the line which
includes the edge a, and we denote by O the midpoint of a. We then define

f̃(X) = f(p(X)) + dfO(X − p(X)).

Then, using the notation X(z) = p(X) + z(X − p(X)), we have

f(X)− f̃(X) = f(X)− f(p(X)) − dfO(X − p(X)),

=

∫ 1

0

(dfX(z) − dfO)(X − p(X))dz.

But for X ∈ T , we have X(z) ∈ T for all z ∈ [0, 1], so that |X(z)−O| ≤ |a| and therefore

‖dfX(z) − dfO‖ ≤M |a|.
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We also have

|X − p(X)| ≤ 2|T |
|a| ≤ |a|

σ(T )
.

Therefore, ‖f − f̃‖L∞(T ) ≤ M |a|2
σ(T ) . We can apply the previous lemma to the function f̃ , since it is the

sum of a function of one variable and of an affine function which has no effect on the interpolation error.
Assuming without loss of generality (up to a rotation) that a is parallel to the x axis, this gives us

dT (b, f̃) − dT (a, f̃) ≥ C|a|(|a| − bx) ≥ C|a|(|a| − |b|),
dT (c, f̃) − dT (a, f̃) ≥ C|a|2/2.

with C = m3/2

32
√

M
. Since the Lebesgue constant of the interpolation operator on any triangle is 2, we have

|dT (x, f) − dT (x, f̃)| ≤ 4||f − f̃ ||L∞(T )

which implies the following inequalities

dT (b, f) − dT (a, f) ≥ C|a|(|a| − |b|) − 4M |a|2/σ(T ),

dT (c, f) − dT (a, f) ≥ |a|2(C/2 − 4M/σ(T )).

The second inequality shows that the edge c cannot be cut if C/2− 4M/σ(T ) > 0 which is equivalent to
σ(T ) > 2K. The first inequality shows that b may be cut provided that C(|a| − |b|) − 4M |a|/σ(T ) ≤ 0,
i.e. |b| ≥ (1 − 4M

Cσ(T ) )|a| which shows the property of δ-near longest edge bisection with δ := K
σ(T ) . ⋄

The proof of Proposition 5.9 directly follows from this last result. Let us denote by diam(T ) the
diameter of any triangle T . If the size of the triangles generated by the greedy algorithm did not tend
to zero, then there would be a sequence (Ti)i≥0 of triangles such that Ti+1 is one of the children of Ti,
and diam(Ti) → d > 0 as i → ∞. Since |Ti| → 0, this also implies that σ(Ti) → +∞ as i → ∞. We can
therefore choose i large enough such that diam(Ti)

2 < 4
3d

2 and 1 + C2
K

σ(Tj) ≤ 3
2 for all j ≥ i, where C2

is the constant in Proposition 5.5. According to this proposition, we have

σ(Ti+3) ≤
3

2
σ(Ti).

On the other hand, we obviously have for any triangle T ,

diam(T )2

8|T | ≤ σ(T ) ≤ diam(T )2

2|T | ,

from which it follows that

diam(Ti+3)
2 ≤ 4

|Ti+3|σ(Ti+3)

|Ti|σ(Ti)
diam(Ti)

2 ≤ 3

4
diam(Ti)

2

Therefore, diam(Ti+3)
2 < d2 which is a contradiction. This concludes the proof of Proposition 5.9.
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