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THE GEOMETRY OF THE THIRD MOMENT

OF EXPONENTIAL SUMS

F. JOUVE

Abstract. We give a geometric interpretation (and we deduce an explicit formula) for two types of
exponential sums, one of which is the third moment of Kloosterman sums over Fq of type K(ν2; q).
We establish a connection between the sums considered and the number of Fq-rational points on
explicit smooth projective surfaces, one of which is a K3 surface, whereas the other is a smooth
cubic surface. As a consequence, we obtain, applying Grothendieck-Lefschetz theory, a generalized
formula for the third moment of Kloosterman sums �rst investigated by D. H. and E. Lehmer in
the 60's .

1. Introduction

The problem of estimating exponential sums over �nite �elds is a quite standard issue in analytic
number theory. Indeed, it arises in classical questions such as determining the Fourier coe�cients
of cusp forms or resolving the Waring problem via the circle method. As a consequence of the
proof, by Deligne, of the Riemann Hypothesis for varieties over �nite �elds, and, to an even wider
extent, of its vast generalization described in [?], a deep and e�cient understanding of fairly general
types of such sums was derived (see e.g. [?]). That algebro-geometric method has now become the
standard way to estimate exponential sums over �nite �elds.

In our present work, however, instead of investigating the properties of the `-adic sheaves (as the
standard attack would suggest) associated to the exponential sum over Fq (with q not a power of `)
we consider, we exhibit an algebraic surface whose number of Fq-rational points is explicitly related
to the sum.

Let us �rst make precise what are the sums involved. Let p be a prime distinct from 2 and 3, q
a power of p and ϕ a nontrivial additive character of Fq:

ϕ : Fq → C× .

For any couple of integers (α, β) such that α− 1 = 3(β − 1), we consider the sum

S(aα, aβ; q) =
∑
x∈Fq

ϕ(aαx3 + aβx) ,

with parameter a ∈ Fq.

In [?], Birch was the �rst to consider moments of those sums (in the case q = p). In loc. cit. he
conjectured that a modular interpretation should exist for a certain type of such moments. In [?]
that conjecture was precised by Atkin and Livné �nally proved it in [?]. Our �rst object of study
is what we call the third Birch sum

B3(q) =
∑
a∈Fq

S(aα, aβ; q)3 ,

and is nothing but the third moment of S(aα, aβ; q) (we point out the fact that a straightforward
computation yields the precise value of the �rst and second moment of the sums S(aα, aβ; q)).
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2 F. JOUVE

To evaluate B3(q), we establish an explicit relation between the number of Fq-rational points
on a certain smooth cubic surface and the value of B3(q). The arithmetic of such surfaces is well
understood thanks to the work of Swinnerton-Dyer who showed that the number of Fq-rational
points on a smooth projective cubic surface S is entirely determined by the action of the Frobenius
morphism on the set of 27 lines lying on S (see [?]). Via that geometric interpretation, we deduce
an explicit formula for the value of B3(q):

Theorem 1. The quantity B3(q)/q is precisely the number of Fq-rational points on an a�ne surface,
the projective completion of which is a smooth cubic surface. More precisely,
• If p ≡ 1 (mod 3), then there exist integers Ap ≡ 1 (mod 3) and Bp satisfying 4p = A2

p + 27B2
p

and such that, if we let ε = 1 if 4 is a cube modulo p and ε = −1 otherwise, we get

B3(q)q−1 = q2 + (2 + 2χq(−1) + ζδr
6 + ζ̄6

δr)q − λr
1 − λr

2 ,

where q = pr, χq denotes the Legendre character of Fq, ζ6 and ζ̄6 are the primitive 6th roots of 1 in C,
λ1 and λ2 are the complex numbers such that λ1λ2 = p, λ1+λ2 = −Ap et δ = (3−χp(−1)(2ε+1))/2.
• If p ≡ 2 (mod 3), then

B3(q)q−1 = q2 + (3 + (−1)r + 2χq(−1))q − λr
1 − λr

2 ,

where λ1 and λ2 are the complex numbers such that λ1λ2 = p, λ1 + λ2 = 0.

We emphasize the fact that the formula obtained gives the exact value of the sum B3(q). We
notice here that the investigation of k-th moments for k greater or equal to 4 would surely require
other techniques than the study of the variety we would attach to it. Indeed, in the case where
k = 4, the variety arising, when using orthogonality relations to simplify the expression of B4(q),
is 3-dimensional, and there is no a priori analogue of the result of Swinnerton-Dyer (i.e. a totally
explicit way to compute the number of Fq-rational points) in dimension greater than 2.

Nevertheless, the method we describe enables us to evaluate other types of sums as well. Consider,
for instance, the famous Kloosterman sums with parameter λ ∈ Fq:

K(λ; q) =
∑

x∈F×
q

ϕ(x+ λx−1) ,

where ϕ still denotes a non-trivial additive character of Fq. The moments of order 1, 2 and 3 of
those sums were computed by Salié in [?]; however, D. H. and E. Lehmer were the �rst to raise the
question of the value of the n-th moment indexed by the squares of Fq:

σn(q) =
∑
λ∈Fq

K(λ2; q)n .

As in the previous case, the computation of the moments σ1(q) and σ2(q) are straightforward.
In [?], the authors obtain an explicit formula for the third moment in the special case where q =
p. Their method, though elementary, requires lots of tricks in the transformations of the sums
considered.

Noticing that the formula proved in [?] uses the decomposition p = a2 + 3b2 for primes p ≡
1 (mod 3) gives us the intuition that there must exist a geometric interpretation for σ3(q) involving
the elliptic curve E with Weierstrass model y2 = x3 + 1 (or a quadratic twist of that curve). We
show that such a link actually exists:

Theorem 2. Assume that p 6= 2, 3. There exits a K3 surface de�ned over Fq and isomorphic, over
Fq2 , to the Kummer surface Km(E×E), such that the number of Fq-rational points on that surface
is explicitly related to the value of σ3(q). Moreover, we have the exact formula

σ3(q) = εrq2 + q(2qχq(−1) + χq(−1)(λr
1 + λr

2) + 2)

where
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• if p ≡ −1 (mod 6), then ε = −1 and λ1 = p, λ2 = −p,
• if p ≡ 1 (mod 6), then ε = 1 and there exist integers a and b such that p = a2 + 3b2. In that

case λ1 and λ2 are de�ned as the reciprocal roots of the polynomial p2T 2 − (4a2 − 2p)T + 1.

The Kummer surface Km(E × E) is the smooth model of the surface E × E blown up in its 16
points of order 2 (se [?, page 170]). Thus, the number of Fq-rational points on such a surface is
explicitly related to |E(Fq)|. In the Theorem above, the surface attached to σ3(q) is isomorphic
to Km(E × E) only when considered as a surface over a �eld containing a primitive cube root of
1. That explains why we are naturally led to distinguish the case p ≡ 1 (mod 6) from the case
p ≡ −1 (mod 6).

To prove the theorems stated above, we need to compute the number of Fq-rational points on
two smooth projective surfaces (the �rst being a cubic surface and the second being a K3 surface).
To do so we will need standard facts about Zeta functions of varieties over �nite �elds. We brie�y
review the terminology and results that will be helpful in what follows.

Recall that the Zeta function of a smooth projective variety X over Fq is de�ned by the formal
power series

Z(X/Fq;T ) = exp
(∑

n>1

|X(Fqn)|T
n

n

)
.

Thanks to Dwork's theorem, or, more usefully for us, to the Grothendieck-Lefschetz trace formula
(see [?]), we know that this function is rational, and, in the case where X is 2-dimensional:

Z(X/Fq;T ) =
P1P3

P0P2P4
,

where Pi = det(1 − TFr∗|H i(X ⊗ Fq,Q`)), ` 6= p is a prime number and Fr∗ is induced on the

`-adic cohomology groups by the geometric Frobenius on X⊗Fq (base change corresponding to the

extension of scalars to a separable closure Fq of Fq).

For brevity the `-adic cohomology group H i(X ⊗ Fq,Q`) will be denoted H i
X . For each of the

two cases we consider, we need to compute the exact value of the eigenvalues of Fr∗ acting on the
spaces H i

X , for 0 6 i 6 4. Indeed, to obtain an exact formula for B3(q) and σ3(q), it is not enough
to evaluate both the dimension of the H i

X and the modulus of the eigenvalues (which we obtain
directly by invoking Deligne's Riemann Hypothesis for varieties over �nite �elds).

The particular structure of the surfaces appearing in our study will be very helpful in order
to obtain such a precise information. Let us recall brie�y a few facts about surfaces and more
speci�cally about K3 surfaces and smooth cubic surfaces.

The classi�cation of algebraic surfaces is much more complex than for algebraic curves. Lots of
di�erent invariants are involved and we will not give de�nitions (but only references) for all of these
objects as the precise understanding of what they are is not required for the proof of the theorems
above. Let us �rst state a few facts about smooth cubic surfaces: they are Del Pezzo surfaces of
degree 3 (see [?, page 401]) and, in the Enriques-Kodaira classi�cation of surfaces (see [?, page
188]), they appear as surfaces with �type 1�, that is to say rational minimal surfaces. In particular,
the Betti number b1 = dimH1(X,Z) is zero if X is a smooth cubic surface.

Moreover, it is a standard fact that on such a surface lie exactly 27 lines. Computing equations
for those lines will be a crucial step in evaluating B3(q). Indeed, the cycle classes of these lines span
the `-adic cohomology space H2

X , which, concretely, corresponds to the fact that the Galois action
on those lines entirely determines |X(Fq)| (see [?]).

Now we turn to K3 surfaces (surfaces of type 7 in the Enriques-Kodaira classi�cation of [?, Table
10 page 188]), an instance of which will appear explicitly when evaluating σ3(q). Such a surface
is de�ned as a geometrically connected surface with trivial canonical sheaf (see [?, page 180]) and
Betti number b1 equal to zero (notice the helpful common point with smooth cubic surfaces). The
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arithmetic of such varieties is the object of many recent studies, the fact that they can be seen as
2-dimensional analogues of elliptic curves being quite motivating.

The few information we have just given is enough to give an a priori form for the Zeta function of
X/Fq if X is either a smooth cubic surface or a K3 surface. Indeed, in both cases, H1

X = 0, so, by
Poincaré duality (see [?]), we have H3

X = 0 as well. To obtain the expression of the factors P0 and
P4 of the denominator of Z(X/Fq;T ), we exploit the fact that, X being geometrically irreducible,
H0

X has dimension 1 with a trivial Galois action. In other words H0
X ' Q` as a Galois module. By

Poincaré duality again, we deduce that H4
X ' Q`(−4), the one dimensional Galois module on which

the global geometric Frobenius acts by multiplication by q2. From these standard observations we
get, for X a smooth cubic surface or a K3 surface,

(1) Z(X/Fq;T ) =
1

(1− T )(1− q2T )P2(T )
,

where the remaining crucial polynomial P2 satis�es P2(T ) ∈ Z[T ] and P2(0) = 1.

To evaluate B3(q) and σ3(q) we will have to compute the action of Frobenius on H2
X for a suitable

surface X. To do so, we need to exhibit, in each case, the surface involved. To begin with, we discuss
the case of B3(q).

2. Evaluation of a Birch sum

Let us recall �rst the notations de�ned in the introduction above: p is a prime number distinct
from 2 and 3, q = pr for some integer r > 1 and ϕ is an additive character of Fq. For simplicity, we
consider the sum with parameter a ∈ Fq:

S(a4, a2; q) =
∑
x∈Fq

ϕ(a4x3 + a2x) ;

but we keep in mind the fact that the couple of exponents (4, 2) could be replaced by any (α, β)
such that α− 1 = 3(β − 1).

The sum we wish to evaluate is the Birch sum

B3(q) =
∑
a∈Fq

S(a4, a2; q)3 .

To prove Theorem 1, the �rst step consists in making explicit the smooth cubic surface related
to B3(q). A straightforward calculation yields

B3(q) = q3 +
∑

a∈F×
q

∑
x,y,z∈Fq

ϕ(a(x3 + y3 + z3 + x+ y + z)) .

That expression naturally leads us to consider the a�ne cubic surface S de�ned by the equation:

S : f(x, y, z) = x3 + y3 + z3 + x+ y + z = 0 .

Applying orthogonality relations, we deduce

B3(q) = q|S(Fq)| .
We are now reduced to determining the number of Fq-rational points on the a�ne surface S.

In order to feel as comfortable as possible with that problem, we prefer to work with a smooth
projective model of S. Indeed, such a setting is particularly well-suited to use the properties of
the `-adic cohomology groups (where ` is a prime di�erent from p) attached to the variety (see the
introduction). Also, working with a smooth projective surface enables us to use the beautiful result
of [?] in order to count Fq-rational points.
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So let S̃ denote the projective compacti�cation of S. In homogeneous coordinates (x : y : z : w),
an equation for S̃ can be given by:

S̃ : x3 + y3 + z3 + w2(x+ y + z) = 0 .

A direct application of the Jacobi criterion shows that S̃ is smooth. Hence, it su�ces to evaluate

the number of Fq-rational points on the smooth projective cubic surface S̃ to obtain the value of

B3(q). Indeed, the contribution of points at in�nity in S̃(Fq) can be explicitly described as follows:

Proposition 3. The Fq-rational points of the complement of the surface S in its projective com-

pacti�cation S̃ are precisely the Fq-rational points of the projective curve

C : x3 + y3 + z3 = 0 .

The curve C/Fq is an elliptic curve and the number of Fq-rational points of C is given by

|C(Fq)| = q + 1− λr
1 − λr

2 ,

where λ1λ2 = p and

• if p ≡ 1 (mod 3), then Ap = −(λ1 + λ2) satis�es 4p = A2
p + 27B2

p (for a certain integer Bp)
and Ap ≡ 1 (mod 3),
• if p ≡ 2 (mod 3), then Ap = −(λ1 + λ2) = 0.

Proof. The curve C is a nonsingular cubic curve de�ned over Fq; (0 : −1 : 1) being a Fq-rational
point on C, we deduce that C/Fq is an elliptic curve. The number of Fq-rational points on C is
therefore given by (see [?, page 302]):

|C(Fq)| = q + 1− λr
1 − λr

2 ,

where λ1, λ2 are the reciprocal roots of the polynomial P (T ) = 1 + ApT + pT 2, where Ap = 0 if
p ≡ 2 (mod 3) and, if p ≡ 1 (mod 3), there exists an integer Bp such that Ap is the unique integer
being congruent to 1 modulo 3 and satisfying 4p = A2

p + 27B2
p (see [?, Chap. 8.3]). �

2.1. The Zeta function of S̃/Fq. To begin with, let us recall brie�y the link between the set of

lines on S̃ and the cohomology space H2eS . We refer the reader to [?, Chap. 4] for the general theory

of cubic surfaces. As mentioned in the introduction, smooth cubic surfaces are del Pezzo surfaces
of degree 3. In particular (see [?, Th. 24.4]) any such surface can be realized as the blow up of the
projective plane P2 in 6 points, provided they do not all lie on the same conic and that no three of
them lie on the same straight line. The surface we obtain contains 27 so called exceptional curves
(one for each of the 6 points, one for each of the 15 lines joining two of these points and one for each
of the 6 conics passing through 5 of these 6 points). These are precisely the 27 lines on the smooth
cubic surface and the cycle classes of these lines generate the Picard group of the surface (see [?,
Th. 26.2(i)]). Now, another standard fact about smooth cubic surfaces over �nite �elds is that
their geometric Picard group is isomorphic, as a Galois module, to the `-adic cohomology space H2

attached to the surface once the scalars are extended to a separable closure of the base �eld (this
can be seen as a way of stating Weil's Theorem [?, Th. 23.1]). Moreover, from a general formula
(obtained, e.g. by combining Lemma 24.3.1 and Theorem 24.5 of [?]) valid for any del Pezzo surface
we get that the rank of the Picard group for a smooth cubic surface is 7.

In the present context, this implies that

|S̃(Fq)| = q2 +
( 7∑

i=1

ηi

)
q + 1 ,
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where the ηi are roots of unity. The theorem of Swinnerton-Dyer ([?, Table 1]) gives a correspondence

between the value of
∑7

i=1 ηi and the type of decomposition in Galois orbits of the 27 lines lying on

S̃.

2.2. The twenty seven lines on S̃. We now have to �nd equations for these 27 lines, so that we
can compute the action of Frobenius on that set of lines. Some of them are easy to �nd:

Dz : (t : −t : 0 : w), Dz,±i : (t : −t : ±i : w) ,

Dy : (t : 0 : −t : w), Dy,±i : (t : ±i : −t : w) ,

Dx : (0 : t : −t : w), Dx,±i : (±i : t : −t : w) ,

are examples of lines lying on S̃. However 18 of them remain to be found. To do so, we exploit
the method described in [?]. The key observation on which that method is based is that if, by a
change of coordinates, we succesively send Dx, Dy and Dz on the z-axis and if we consider, after
each transformation, the family of planes with parameter λ, Pλ : y = λx, then the intersection of

Pλ with S̃ is the union of the z-axis and a conic. That conic degenerates in two lines when the
parameter λ takes appropriate values. These values correspond to roots of a polynomial Q with
degree less than 5.

Applying that method after sending Dx on the z-axis, the polynomial we get is

Q(λ) = (λ+ 1)(4λ3 + 1) .

The root λ = −1 gives us Dz and Dy; two lines which we have already found. If λ is a root of
Qx(t) = 4t3 + 1, we �nd six new lines:

(λt :
1
2
(t− 2

√
−3λ+ 3

3
w) :

1
2
(t+

2
√
−3λ+ 3

3
w) : w) ,

(λt :
1
2
(t+

2
√
−3λ+ 3

3
w) :

1
2
(t− 2

√
−3λ+ 3

3
w) : w) .

Then sending Dy on the z-axis, the polynomial Q(λ) is given by

Q(λ) = λ(λ+ 1)(λ3 + 4) .

For λ = −1 we recover Dx and Dz, and, for λ = 0, the lines Dy,±i. However, if λ is a root of
Qy(t) = t3 + 4, we �nd six new lines:

(t(λ+
2
λ2

)−
√

3
√
λ+ 1
3

w) : t :
2
λ2

(−t+
√

3
√
λ+ 1
3

w) : w) ,

(t(λ+
2
λ2

) +
√

3
√
λ+ 1
3

w) : t :
2
λ2

(−t−
√

3
√
λ+ 1
3

w) : w) .

Finally, sending Dz on the z-axis, we obtain

Q(λ) = λQz(λ) ,

where Qz(λ) = 3λ3 − 12λ2 + 12λ − 4. For λ = 0, we get the (already found) lines Dz,±i. If λ is a
root of Qz, we obtain the six remaining lines:

(t(1− 1
k(λ)

) +
iw

k(λ)
: (

1
k(λ)

+ λ− 1)t− i

k(λ)
w : (1− λ)t : w) ,

(t(1− 1
k(λ)

)− iw

k(λ)
: (

1
k(λ)

+ λ− 1)t+
i

k(λ)
w : (1− λ)t : w) ,

where k(λ) = 3λ+ (3/2)λ2.
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Remark 1. Seeing S̃ as a surface de�ned over Q, the computations we have just performed show

that the smallest Galois extension of Q over which the 27 lines on S̃ are de�ned is Q(i, ω, 21/3),
where i, ω, are complex numbers, respectively roots of the polynomials X2 + 1 and X2 +X + 1.

We can now compute the Galois action on the set of these 27 lines. Using [?, Table 1], we will

then be able to deduce the value of |S̃(Fq)|, and eventually, thanks to the arguments given above,
to give an exact formula for B3(q). We note that it su�ces, in the computation of the Galois

action, to consider S̃ as a surface over the prime �eld Fp and to determine the eigenvalues of the
Frobenius acting on the `-adic cohomology of degree 2 of that surface. The eigenvalues for the

second cohomology group of S̃/Fpr are then obtained by raising those corresponding to S̃/Fp to
the r-th power.

First, if we denote by σ∗ (following [?]) the restriction of the Frobenius morphism to the set of

27 lines on S̃, then σ∗ �xes the three lines Dx, Dy and Dz. Let us investigate the action of σ∗ on
the other lines.

If p ≡ 2 (mod 3):
• either p ≡ 1 (mod 4) and then the 6 lines Dx,±i, Dy,±i and Dz,±i as well as the 6 lines
corresponding to the roots of Qz, are de�ned over Fp. These 12 lines are exchanged pairwise.
We deduce that σ∗ is an element of the conjugacy class C16 of [?, Table 1].
• or p ≡ 3 (mod 4) and then the 6 lines Dx,±i, Dy,±i and Dz,±i form 3 couples of coplanar lines
exchanged pairwise. Moreover, as in the previous case, the roots of Qz give rise to a couple
of coplanar lines exchanged pairwise. The 12 remaining lines form 6 couples of skew lines
exchanged pairwise. We deduce that σ∗ is an element of the conjugacy class denoted C17.

If p ≡ 1 (mod 3): either 4 is a cube modulo p and

• either p ≡ 1 (mod 4) and then the 27 lines are de�ned over Fp (and so are all �xed by σ∗).
Thus the permutation σ∗ is an element of the classe C1.
• or p ≡ 3 (mod 4) and the lines which are di�erent from Dx, Dy and Dz split in 12 couples
of coplanar lines exchanged pairwise. Thus σ∗ is an element of the class C3.

or 4 is not a cube modulo p and

• either p ≡ 1 (mod 4) and then the 6 lines Dx,±i, Dy,±i and Dz,±i are de�ned over Fp. Each
of the polynomials Qx, Qy and Qz gives rise to 2 triples of cyclicly permuted lines. Thus,
the permutation σ∗ is an element of the class C6.
• or p ≡ 3 (mod 4) and then Dx,±i, Dy,±i and Dz,±i form 3 couples of lines permuted pairwise
and each of the polynomials Qx, Qy and Qz corresponds to an orbit of 6 lines permuted
cyclicly. We deduce that σ∗ is an element of the class C7.

Remark 2. If X is a smooth cubic surface, it is a standard fact that the 27 lines on X can be
described through a unique algebraic equation (see [?, Chap. 4]). Seen over Q, such a polynomial
has a splitting �eld with Galois group isomorphic to W (E6), the Weyl group of the exceptional
algebraic group E6. In that context the results of Swinnerton-Dyer ([?]) give us precise information
about which subgroups of W (E6) can actually appear as permutation groups of the 27 lines, when
working over �nite �elds.

Notice now (see [?, page 119]) that, if p ≡ 1 (mod 3), 4 is a cube modulo p if and only if the
coe�cient Ap de�ned in Proposition ?? is even. The di�erent cases above can then be partly uni�ed.
Indeed the eigenvalues of the morphism induced on H2eS by the global geometric Frobenius morphism

on S̃/Fq are:

• if p ≡ 2 (mod 3): 1 with multiplicity 4, (−1)r with multiplicity 1, χq(−1) (where χq denotes
the Legendre character of Fq) with multiplicity 2,
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• if p ≡ 1 (mod 3): 1 with multiplicity 3, χq(−1) with multiplicity 2, ζδr
6 with multiplicity 1

and ζ̄6
δr

with multiplicity 1 (using the same notations as in Theorem ??).

We deduce the number of Fq-rational points on S̃:

• if p ≡ 2 (mod 3):

|S̃(Fq)| = q2 + (4 + (−1)r + 2χq(−1))q + 1 ,

• if p ≡ 1 (mod 3):

|S̃(Fq)| = q2 + (3 + 2χq(−1) + ζδr
6 + ζ̄6

δr)q + 1 .

Combining that formula with Proposition ?? and the fact that B3(q) = q|S(Fq)|, we �nally
deduce Theorem ??.

3. The third moment of Kloosterman sums

We work with the same notations and assumptions on q, p, and ϕ as in Section ??. In this section,
we are interested in the family of Kloosterman sums with parameter λ de�ned in the introduction:

K(λ; q) =
∑

x∈F×
q

ϕ(x+ λx−1) .

Recall that the group morphism

ψ : Fq → C×

x 7→ e
(TrFq/Fp

(x)
p

)
where e(z) = exp(2iπz), is a non-trivial additive character of Fq. Moreover it is well known that
every additive character of Fq is of the form ψa : x 7→ ψ(ax), for some a ∈ Fq.

For µ ∈ F×q , an easy calculation yields

K(λµ2; q) =
∑

x∈F×
q

ψµ(x+ λx−1) ,

so varying µ (i.e. the character) for �xed λ amounts to varying λ modulo the nonzero squares of
Fq. In the case where q = p we can also remark that K(λ; p) and K(λµ2; p) are Galois conjugate
in the cyclotomic �eld Q(e2iπ/p). Thus two subfamilies of those sums naturally emerge. Denoting
by {1, η} a set of representatives of F×q modulo nonzero squares, these subfamilies give rise to the
moments (using notations following [?]):

σn(q) =
∑
ν∈Fq

(K(ν2; q))n and σ′n(q) =
∑
ν∈Fq

(K(ην2; q))n .

We notice �rst that σn(q) + σ′n(q) = 2
∑

λ∈Fq
K(λ; q)n and, generalizing Salié's formulae (see [?]

and [?, Section 4.4]), we obtain (for p 6= 2)

σ1(q) = −σ′1(q) = χq(−1)q , σ2(q) = q2 − 2q , σ′2(q) = q2 ,

σ3(q) + σ′3(q) = 2(χq(−3)q2 + 2q)

where χq still denotes the Legendre character of Fq.
D. H. and E. Lehmer (see also [?] for a simpli�ed proof involving the same type of arguments)

give, in [?], an explicit formula for σ3(p). Although the elementary (but very clever) arguments they
use would surely yield the exact formula of Theorem ?? for any σ3(q) (q being a prime power), most
interesting in our method is the geometric interpretation we give for the fact that the decomposition
p = a2 + 3b2 (provided p ≡ 1 (mod 3)) appears in the formula of [?]. That decompostion, indeed, is
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strongly related to the so called ap coe�cient of the CM elliptic curve E/Q with Weierstrass model
y2 = x3 + 1 (or a quadratic twist of that curve).

Remark 3. It is natural to ask for what can be done to evaluate the fourth moment of Kloosterman
sums σ4(q). The same easy calculation as the one performed in the next section shows that this
problem is equivalent to determining the number of Fq-rational points on the threefold given by

Z : x+ x−1 + y + y−1 + z + z−1 + t+ t−1 = 0 .

In [?], the author, �rst resolving the singularities of that variety and then using the Faltings-Serre
criterion, shows that the number of Fp-rational points on Z is explicitly related to the coe�cient
of the expansion of the cusp form η4(2z)η4(4z).

In [?], the authors also give an expression relating the number of Fp-rational points of Z to the
sum of the number of Fp-rational points on the Legendre elliptic curves

Eλ2 : y2 = x(x− 1)(x− λ2) ,

where λ ∈ Fp \ {0,±1}.
Another point of view, in order to try and �nd the value of σn(q) for any n greater than 3 would

be to apply the standard techniques from algebraic geometry we referred to in the introduction.
A theorem of Deligne (see [?, Th. 4.1.1]) asserts that there exists a lisse `-adic sheaf (on Gm) of
rank 2 denoted Kl and called Kloosterman sheaf such that the action of the local Frobenius (in any
a ∈ Fq) on the �bre of Kl over a geometric point ā lying over a satis�es

Tr(Fra,q | Klā) = −K(a; q) .

In our case, those sheaves can be seen as Galois representations over the �eld of `-adic numbers Q`.
If we want to use Galois representations to express the moment σn(q) as well, and if we want those
representations to have a dimension that grows as slowly as possible with n, we just need to consider
the elevation to the second power [2] : Gm → Gm and the n-th symmetric power (an operation we
denote τn) of the pullback [2]∗Kl. The sheaf obtained has rank n+ 1 and, from standard properties
of such `-adic sheaves (see e.g. [?, 2.3.3]), the value of σn(q) is explicitly related to the trace of the
global Frobenius acting on the cohomology space with compact support H1

c (Gm × Fq, τn([2]∗Kl)).
Instead of obtaining a precise value for that trace, which seems very di�cult, we only discuss the
dimension of the cohomology space involved. Such an information is enough to gain some intuition
about the level of di�culty of evaluating σn(q) as n grows.

In [?, proof of Th. 3.1], the decomposition of [2]∗τn(Kl) as a direct sum of Lang sheaves is given.
That enables us to see easily that the sheaves τn([2]∗Kl) and [2]∗τn(Kl) are isomorphic (e.g. via a
straightforward computation of the eigenvalues of the local Frobenii acting on those sheaves). The
rami�cation argument given in [?, proof of Th. 3.1] combined with the formula 1.13.1 of [?] yields

dimH1
c (Gm × Fq, τn([2]∗Kl)) =

{
n− 2b n

2pc , if n is even ,

n+ 1− 2b n
2p + 1

2c otherwise .

so the dimension evaluated increases �almost� linearly with n (at least in the range 1 6 n 6 p).
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3.1. A surface related to σ3(q). We start by expanding the formula de�ning σ3(q)

σ3(q) =
∑
ν∈Fq

( ∑
h∈F×

q

ψ(h+ ν2h−1)
)3

=
∑
ν∈Fq

( ∑
x,y,z∈F×

q

ψ(x+ y + z + ν2(x−1 + y−1 + z−1))
)

=
∑

x,y,z∈F×
q

ψ(x+ y + z)

+
∑

ν∈F×
q

( ∑
x,y,z∈F×

q

ψ(x+ y + z + ν2(x−1 + y−1 + z−1))
)
.

Using orthogonality relations and performing the change of variables x′ = ν−1x, y′ = ν−1y,
z′ = ν−1z, we obtain

σ3(q) = −1 +
∑

ν∈F×
q

( ∑
x′,y′,z′∈F×

q

ψ(ν(x′ + y′ + z′ + x′−1 + y′−1 + z′−1))
)
.

This leads us to de�ne a surface S0 in G3
m/Fq in the following way .

S0 : f(x, y, z) = x+ y + z + x−1 + y−1 + z−1 = 0 .

The link between σ3(q) and the number of Fq-rational points of S0 is given by

σ3(q) = −1 +
∑

x,y,z∈F×
q

( ∑
ν∈F×

q

ψ(νf(x, y, z))
)

(2)

= −1 +
∑

x,y,z∈F×
q

f(x,y,z) 6=0

(−1) +
∑

x,y,z∈F×
q

f(x,y,z)=0

(q − 1)

= −1− ((q − 1)3 − |S0(Fq)|) + (q − 1)|S0(Fq)|
= −(q − 1)3 + q|S0(Fq)| − 1 .

We are now going to see how S0 is closely related to the K3 surface called C in the paper [?] 1.

First, the equation de�ning S0 is obviously equivalent to

xyz(x+ y + z) + xy + yz + xz = 0 and xyz 6= 0 .

The surface S0 is a Zariski open dense subset of the projective surface S1 ⊂ P3
Fq

(i.e. S1 is de�ned

over Fq) with homogeneous equation in coordinates (x : y : z : t)

S1 : xyz(x+ y + z) + t2(xy + yz + xz) = 0 .

Precisely, S0 is the open set de�ned by xyzt 6= 0.
Fixing the value z = 1, we see then that S0 is isomorphic to the surface S2/Fq with equation

S2 : xy(x+ y + 1) + t2(xy + y + x) = 0 and xyt 6= 0 .

Finally, we de�ne S3/Fq by

(3) S3 : s2 = −xy(x+ y + 1)(xy + y + x) ,

and the Zariski open dense subset S∗3 ⊂ S3 by xys 6= 0.

1The reference [?] was given by N. Katz via E. Kowalski.
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Then the map

S∗3 → S2

(x, y, s) 7→ (x, y, t = xy(x+ y + 1)s−1)

establishes an isomorphism between S∗3 and S2 \ (Dζ3 ∪ Dζ2
3
), where ζ3 is a primitive cube root of

unity in Fq and D = Dζ3 ∪ Dζ2
3
is a degenerate conic in A3

Fq
with equation

x2 + x+ 1 = 0 , y = −x− 1 , t 6= 0 ,

which happens to be, over Fq, the union of the two lines (minus a point)

Dζ3 = {(ζ3; ζ2
3 ; t)|t ∈ Fq \ {0}}

Dζ2
3

= {(ζ2
3 ; ζ3; t)|t ∈ Fq \ {0}}

We observe that we have Dζ3(Fq) = Dζ2
3
(Fq) = ∅ when Fq contains no primitive cube root of 1

(for instance if q = pr with p ≡ 2 (mod 3) and r odd).
So we have the following lemma relating Fq-rational points on S0 and S∗3 :

Lemma 4. • If ζ3 ∈ Fq then

|S0(Fq)| = |S∗3(Fq)|+ 2q − 2 .

• Otherwise
|S0(Fq)| = |S∗3(Fq)| .

Proof. What we have just observed and the fact that, in any case, Dζ3 ∩ Dζ2
3

= ∅ clearly imply

Lemma ?? �

We are not going to focus on the computation of |S∗3(Fq)| but instead of that we are going to
perform one last transformation on the equation de�ning S∗3 , so that the a�ne equation of the K3
surface C studied by Beukers and Stienstra ([?]) clearly appears. Let us de�ne

(4) S4 : s2 = xy(x+ y + 1)(xy + y + x) .

From a geometric point of view (i.e. looking at the di�erent varieties as de�ned over a separable
closure Fq of Fq) the surfaces S and S3 are isomorphic:

S3 ⊗ Fq ' S4 ⊗ Fq

(x; y; s) 7→ (x; y; is)

where i denotes a square root of −1 in Fq.
So the link between the arithmetic properties of S4 and S3 can easily be made explicit:

Lemma 5. We have, for all q,

|S3(Fq)| − q2 = χq(−1)(|S(Fq)| − q2) .

Proof. We compute

|S3(Fq)| =
∑

x,y∈Fq

(1 + χq(−xy(x+ y + 1)(xy + y + x)))

= q2 +
∑

x,y∈Fq

χq(−xy(x+ y + 1)(xy + y + x))

= q2 + χq(−1)
∑

x,y∈Fq

χq(xy(x+ y + 1)(xy + y + x))

= q2 + χq(−1)(|S4(Fq)| − q2) .
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�

We summarize the connections between the di�erent surfaces involved in the following diagram
where all the arrows are de�ned over Fq

S0 ↪→ S1 ' S2 ←↩ S∗3 ↪→ S3 .

We also have the following isomorphism de�ned over Fq

S3 ⊗ Fq ' S4 ⊗ Fq .

We have just explained why the problem of evaluating σ3(q) can be reduced to determining the
number of Fq-rational points on S4. As in the previous case, we construct the smooth projective
model of S4, the Zeta function of which we will then make explicit.

3.2. Resolving the singularities of S4. In the following geometric study, all the varieties will
implicitly be de�ned over Fp (for instance the n-projective space Pn

Fp
will simply be denoted by

Pn). However, for the arithmetic application we have in mind, we will keep track of the �elds of
de�nition whenever needed.

We are now going to describe brie�y the construction of the minimal smooth projective model of
S following [?].

We consider the sextic curve in P2:

C : XY Z(X + Y + Z)(XY + Y Z +XZ) = 0 .

We want to construct the smooth model of the double covering of P2 rami�ed over C, an open
subset of which will happen to be the surface S4.

The singularities of C are all simple singularities (see [?] page 61), coming from the intersections
between the following rational curves:

Dx : X = 0 , Dy : Y = 0 , Dz : Z = 0 ,
Dx,y,z :X + Y + Z = 0 , C : XY +XZ + Y Z = 0 .

The set of singular points of C consists in:

• 3 triple points:

Dx ∩ Dy ∩ C = (0 : 0 : 1) ,

Dx ∩ Dz ∩ C = (0 : 1 : 0) ,

Dy ∩ Dz ∩ C = (1 : 0 : 0) .

• 5 double points:

Dx ∩ Dx,y,z = (0 : 1 : −1) ,

Dy ∩ Dx,y,z = (1 : 0 : −1) ,

Dz ∩ Dx,y,z = (1 : −1 : 0) ,

Dx,y,z ∩ C = {(ζ3 : ζ2
3 : 1); (ζ2

3 : ζ3 : 1)} .
We notice once more that whenever ζ3 6∈ Fq, we have Dx,y,z(Fq) ∩ C(Fq) = ∅.

One constructs the smooth model of the double cover of P2 rami�ed over C as follows: �rst we
blow up P2 at the triple points of C. This gives rise to three exceptional curves which are irreducible
components of the total transform of the branch locus C in the blown-up P2 (the other irreducible
components being nothing but the strict transform of the irreducible components of C).
The only singularities of the pre-image of the branch locus in the blown-up P2 are now double
points (either coming from the original branch locus C, or from the intersections between the three
exceptional curves and the other irreducible components of the pre-image of C). However these
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double points come from intersections between components of odd multiplicity as summand of the
divisor attached to the pre-image of the branch locus, so, as explained in [?], we now have to blow
up the pre-image of P2 in the double points of the pre-image of C.

This gives rise to 14 exceptional curves having all even multiplicity. The only remaining singular-
ities are double points coming from intersections between components of odd and even multiplicity
of the total transform of the branch locus. Taking the double cover of the pre-image of P2 rami�ed
over the components of odd multiplicity of the image of C, we then obtain a smooth surface.

We denote by K4 (adding Kloosterman's name to those of Kähler, Kodaira and Kummer seems
fair) the smooth surface we have just constructed (it is the surface called C in [?]). The resolution
graphs corresponding to the resolution of singularities we have performed are the following

P1

Dx,y,z

C

P1

C

Dx,y,z

Dy

P1

DxDx

Dy

Dz

P1P1 P1

Dz

Fig. 1 Fig. 2

On the two dual graphs above, the �full points� represent components of odd multiplicity whereas
�empty points� represent components of even multiplicity of the total transform of the branch locus
(these are all exceptional curves coming from blowing up at the double points of the image of C).

Figure 1 describes the relation existing between the irreducible components of the total transform
of the branch locus seen as rational curves over Fp. As we mentioned before, it might happen that
Dx,y,z(Fq)∩C(Fq) = ∅. Figure 2 usefully describes the relations between the irreducible components
of the image of the branch locus seen as curves de�ned over such �elds Fq (that is to say �elds
containing no primitive cubic root of 1).

The surface K4 is smooth and projective. The following criterion tells us that K4 is a K3 surface
(see e.g. [?] page 189 for the proof of a slightly stronger statement):

Proposition 6. A surface constructed as the smooth model of the double cover of P2 rami�ed over
a sextic curve having only double points or triple points as singularities is a K3 surface.

As we have partly seen in the introduction, the remarkable structure of K3 surface that K4
possesses enables us to compute more easily the Galois action on `-adic cohomology groups or,
equivalently, to obtain a totally explicit form of its Zeta function.

The remaining di�culty consists in determining the polynomial P2 of (??). As K4 is a K3
surface, we know that P2 has degree 22 (see [?, (6.7), proof of Th. 6]). The problem of determining
P2 happens to be easier to handle when ζ3 ∈ Fq; as a consequence we are �rst going to evaluate
|K4(Fq)| when ζ3 ∈ Fq.

3.3. Computing the Zeta function of K4 over �nite �elds containing ζ3. We �x a �nite
�eld F of characteristic p such that ζ3 ∈ F. We exploit the proof of Theorem 6 in [?]. The morphism
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of P2 given by

U = ζ3Y Z + ζ3XZ − ζ2
3XZ − ζ2

3XY

V = ζ3Y Z + ζ3Y
2 − ζ2

3Y
2 − ζ2

3XY

W = −Y Z + ζ2
3XY

transforms the curve C : XY Z(X + Y + Z)(XY + Y Z + XZ) = 0 into the curve of equation
(U3 +W 3)(V 3 +W 3) = 0. As ζ3 ∈ F, the above morphism is de�ned over F.

As a consequence, K4 is, over F, the smooth model of the double cover of P2 rami�ed over the
curve (U3 +W 3)(V 3 +W 3) = 0. That is to say, K4 is isomorphic over F to the Kummer surface
Km(E × E) associated to E × E, where we recall that E has Weierstrass model y2 = x3 + 1.

We can now exploit the fact that the `-adic cohomology of K4 is closely related to that of E. The
`-adic cohomology of E is well known and it is proved in [?] that, since Km(E×E) is obtained from
E ×E by �rst blowing up its sixteen points of order at most 2 (then quotienting by the involution
induced), for some extension Fq of F, we have

(5) P2(K4/Fq;T ) = (1− qT )16 det(1− TFr∗|H2
E×E)

The Künneth formula (see [?]) gives

H2
E×E ' H2

E ⊗H0
E ⊕H1

E ⊗H1
E ⊕H0

E ⊗H2
E

First H2
E ⊗H0

E ' H0
E ⊗H2

E ' H2
E = Q`(−2) so

det(1− TFr∗|H2
E ⊗H0

E ⊕H0
E ⊗H2

E) = (1− qT )2 .

What's more, we know (see [?, page 301 and 304]) that the Zeta function of E over Fq is given
by

Z(E/Fq;T ) =
(1− πrT )(1− π̄rT )

(1− T )(1− qT )
,

where r is the integer such that q = pr and π is an algebraic integer satisfying ππ̄ = p and |π| = √p.
An easy calculation then yields

det(1− TFr∗|H1
E ⊗H1

E) = (1− qT )2(1− π2rT )(1− π̄2rT ) .

Gathering these equalities we eventually obtain

det(1− TFr∗|H2
E×E) = (1− qT )4(1− π2rT )(1− π̄2rT ) ,

thus

(6) P2(K4/Fq;T ) = (1− qT )20(1− π2rT )(1− π̄2rT ) .

Let

P21(K4/Fpr ;T ) = (1− π2rT )(1− π̄2rT )

The reciprocal roots λ1 and λ2 of the polynomial P21(K4/Fp;T ) ∈ Z[T ] satisfy

(7) λr
1 = π2r and λr

2 = π̄2r .

Exploiting (??) and (??), we get the following expression for the Zeta function of K4 over
Fq = Fpr

Z(K4/Fq;T ) =
1

(1− T )(1− q2T )(1− qT )20(1− λr
1T )(1− λr

2T )
,

which immediately yields

(8) |K4(Fq)| = 1 + q2 + 20q + λr
1 + λr

2 .
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However, the algebraic integer π is not entirely determined by the conditions ππ̄ = p, |π| = √p.
This means that the expression (??), involving λ1 and λ2, is not completly satisfactory. We are now
going to evaluate precisely λ1 and λ2 by computing both λ1λ2 and λ1 + λ2.

As the elliptic curve E/Q has complex multiplication by the ring of integers OK of the quadratic
�eld K = Q(

√
−3), we know that π ∈ OK . Following [?], we focus our attention on whether the

prime p splits in OK or not. Indeed, writing π = a + b
√
−3, a, b ∈ Z, Beukers and Stienstra show

in [?] that, provided p 6= 2, 3,
• either p splits in OK in which case{

λ1λ2 = p2

λ1 + λ2 ∈ {±2(a2 − 3b2), ±(a2 + 6ab− 3b2), ±(a2 − 6ab− 3b2)}
• or {

λ1λ2 = ±p2

λ1 + λ2 ∈ {0, ±2p}

Remark 4. Recall that a prime number p is rami�ed in Q(
√
−3) if and only if −3 is a square in

Z/pZ. Using quadratic reciprocity, this is equivalent, for a prime p > 5, to p ≡ 1 (mod 3) (1 is the
only nonzero square modulo 3) and thus to p ≡ 1 (mod 6).

Though more precise, the expressions we have obtained for λ1 and λ2 remain ambiguous. We are
�rst going to deal with the case p ≡ 1 (mod 6) (i.e. when p splits in OK). As sketched in [?], we
consider the action of a group of order 6 on K4/Fq, q being a power of a prime p ≡ 1 (mod 6).

Let G be the �nite group generated by the automorphism γ1 exchanging the two sheets of the

double cover involved in the construction of S̃ and by the automorphism γ2 induced on K4 by the
3-cycle

(X : Y : Z) ∈ P2 7→ (Y : Z : X) ∈ P2 .

γ1 and γ2 are of respective order 2 and 3, so |G| = 6.
The �xed points of γ1 are the rami�cation points of K4. Figure 1 describes how many of these

points are Fq-rational. Indeed, as ζ3 ∈ Fq = Fpr , all the rami�cation points of K4 have coordinates
in Fq. Each vertex of that dual graph represents a rational curve and, as the �empty points� have
degree 2 with a distinct couple of �full points� as neighbors, the number of rami�cation points of
K4 over Fq is

8(q + 1) + 14(q − 1) .
Notice that the other Fq-rational points of K4 have a trivial stabilizer under the action of G.
The �xed points of γ2 are the elements of the inverse image of {(ξ : ξ2 : 1)|ξ3 = 1} by the �nal

double cover. If ξ = ζ3 or ξ = ζ2
3 , we obtain the two branch points of C ∩Dx,y,z which are also �xed

points for γ1. If ξ = 1, we obtain the two points (x, y, s) = (1, 1,±3) (provided p 6= 2, 3) on the
a�ne part S4 of K4.

Exploiting (??), we �nally deduce, in the case where q = p ≡ 1 (mod 6),

1 + p2 + 20p+ λ1 + λ2 ≡ 8(p+ 1) + 14(p− 1) + 2 (mod 6)

thus λ1 + λ2 ≡ 2 (mod 6). Looking back at the possible values we obtained for the sum and the
product of λ1 and λ2, this yields

λ1 + λ2 = 2(a2 − 3b2) and λ1λ2 = p2 .

As p = ππ̄ = a2 + 3b2, we can also write λ1 + λ2 = 4a2 − 2p. We can now give the explicit form
of the polynomial P21:

P21(K4/Fp;T ) = p2T 2 − (4a2 − 2p)T + 1 .
What's more, if Fq = Fpr with p ≡ 1 (mod 6), (??) is now an entirely satisfactory expression for

|K4(Fq)|.
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To conclude with the case ζ3 ∈ Fq, we must �nd the value of |K4(Fq)| when Fq is an extension

of even degree of Fp with p ≡ −1 (mod 6), say q = p2f , f > 1. For that purpose we consider the
general situation where X is a smooth projective surface de�ned over Fq and we denote by Div(X)
the abelian group of divisors on X. It is well known that the so called cycle class map once extended
to the Q`-linear injective map

(9) Div(X)⊗Z Q` → H2(X ⊗ Fq,Q`(1))Fr−1 nilpotent

is of great importance. For instance, if we denote by mX(1; q) the multiplicity of 1 as eigenvalue of
Frobenius acting on H2(X⊗Fq,Q`(1)) (which can also be seen as the multiplicity of q as eigenvalue
of Fr∗ acting on H2

X) and by ρ(X|Fq) the Picard number of X (i.e. the rank of the Néron-Severi
group of X (see [?] page 120)), Tate's conjecture, in the case of �nite �elds (see e.g. [?]), predicts
that

(10) ρ(X|Fq) = mX(1; q) .

Notice that this statement is equivalent to the surjectivity of (??) (as it is injective).
However, dealing with the present situation, it is su�cient to exploit the injectivity of (??). As

assumed earlier, Fq is an extension of even degree of Fp with p ≡ −1 (mod 6), so ζ3 ∈ Fq and
the preceding study shows that we have an isomorphism K4 ' Km(E × E) de�ned over Fq. As
mentioned before, p ≡ −1 (mod 6) implies that p does not split in OK and so (see, e.g. [?, exercice
2.30 page 184]) we conclude that the elliptic curve E/Fp is supersingular (see [?, page 137]). Apart
from that, we know, by a result of Shioda (see [?]), that if charFq 6= 2, the Picard number of
Km(C × C) is 22 provided the elliptic curve C/Fq is supersingular. So, in the present case, we get

ρ(K4|Fq) = ρ(Km(E × E)|Fq) = 22 .

Thus, the injectivity of (??) and the fact that dimQ`
H2

K4 = 22 enables us to obtain

mK4(1; q) = 22 ,

hence the following expressions for the polynomial P2(K4/Fp2f ;T ) and for the Zeta function of K4
over Fp2f :

P2(K4/Fp2f ;T ) = (1− p2fT )22 ,

Z(K4|Fp2f ) =
1

(1− T )(1− p4fT )(1− p2fT )22
.

This immediately yields

|K4(Fp2f )| = 1 + p4f + 22p2f .

3.4. An elliptic pencil on K4. We now have to compute |K4(Fq)| when ζ3 6∈ Fq, in which case
K4 is not equipped with the rich structure of Kummer surface. Equivalently, we need to compute
the polynomial P2(K4/Fq;T ) in the general case. Following [?], we notice that an elliptic �bration
on K4 can be made explicit. Indeed, let us consider the family of cubics of P2 parametrized by τ :

Eτ : XY Z − τ(X + Y + Z)(XY + Y Z +XZ) = 0 .

The discriminant of the generic �bre Eτ is

∆(τ) =
1
16
τ9(9τ − 1)(τ − 1)3 .
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We deduce that the singular �bres correspond to τ ∈ {∞, 0, 1
9 , 1}. With the same notations as

in Section ??, the base points of the family {Eτ}τ are

Dx ∩ Dy ∩ C = (0 : 0 : 1) Dx ∩ Dz ∩ C = (0 : 1 : 0)

Dy ∩ Dz ∩ C = (1 : 0 : 0) Dx ∩ Dx,y,z = (0 : −1 : 1)

Dy ∩ Dx,y,z = (−1 : 0 : 1) Dz ∩ Dx,y,z = (−1 : 1 : 0) .

These are all singular points for the sextic curve C. As noticed by the authors in [?], each curve
Eτ intersects the branch locus C of K4 exactly in the points at which a blowing up is performed
for the construction of K4 (apart from the elements of C ∩ Dx,y,z). So, when blowing up P2 at
the base points of {Eτ}τ , the strict transform of the generic cubic intersects no components of odd
multiplicity of the total transform of the branch locus.

After blowing up P2 at the base points, we get an elliptic pencil on a rational surface which
gives rise, after double cover rami�ed over the union of the singular cubics E0 and E∞ (exactly
corresponding to the branch locus C), to the surface K4. We denote by ϕ the corresponding elliptic
�bration.

One notices that, taking the �nal double cover can be interpreted as performing, in the equation
de�ning Eτ the change of variable τ = t2 so that the generic �bre of the elliptic pencil on K4 can
be given by

(11) XY Z − t2(X + Y + Z)(XY + Y Z +XZ) = 0 .

In [?], Beukers and Stienstra, determining the singular �bre combination of the elliptic �bration
on K4 given by (??), prove, using a theorem of Shioda

P2(K4/Fq;T ) = (1− qT )19(1− εrqT )P21(K4/Fq;T ) ,

where q = pr, ε = −1 if p ≡ −1 (mod 3), ε = 1 otherwise and P21(K4/Fq;T ) ∈ Z[T ], P21(K4/Fq; 0) =
1, degP21(K4/Fq) = 2.

>From Section ??, for Fq2 = Fq(ζ3), we know that

(12) P21(K4/Fq2 ;T ) = P21(Km(E × E)/Fq2 ;T ) ,

where we recall that E is the CM elliptic curve given by

y2 = x3 + 1 .

So, there exist conjugate complex numbers λ1 and λ2 such that

Z(K4/Fq;T ) =
1

(1− T )(1− q2T )(1− qT )19(1− εrqT )(1− λr
1T )(1− λr

2T )
.

From that formula we immediately deduce

(13) |K4(Fq)| = 1 + q2 + 19q + εrq + λr
1 + λr

2 ,

where the explicit values of λ1 and λ2 are given by the following proposition

Proposition 7. • If p ≡ 1 (mod 6), there exist a, b ∈ Z such that p = a2 + 3b2 and λ1, λ2 are
the reciprocal roots of

P21(K4/Fp;T ) = p2T 2 − (4a2 − 2p)T + 1 .

• If p ≡ −1 (mod 6) then λ1, λ2 are the reciprocal roots of

P21(K4/Fp;T ) = −p2T 2 + 1 ,

that is to say, λ1 = p and λ2 = −p.
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Proof. The case p ≡ 1 (mod 3) has been treated in Section ??.
If p ≡ −1 (mod 6), we consider, as in Section ??, the action of the group G =< γ1, γ2 > on K4

seen as a surface de�ned over a �eld Fq such that ζ3 6∈ Fq. Exploiting �gure 2, we see that the
number of rami�cation points of K4/Fq is

8(q + 1) + 12(q − 1) .

In the case where q = p ≡ −1 (mod 6), we get from (??) and the counting of the number of
stabilized points on K4 under the action of G performed in Section ??:

1 + p2 + 18p+ λ1 + λ2 ≡ 8(p+ 1) + 12(p− 1) + 2 (mod 6) .

Hence λ1 + λ2 ≡ 0 (mod 6). As p is inert in K = Q(
√
−3), the study of Section ?? yields

λ1 + λ2 = 0 and λ1λ2 = ±p2 .

Now, as ζ3 ∈ Fp2 , the calculation we have just done applied to K4/Fp2 yields

|K4(Fp2)| = 1 + p4 + 20p2 + λ2
1 + λ2

2 ≡ 8(p2 + 1) + 14(p2 − 1) + 2 (mod 6) .

Hence λ2
1 + λ2

2 ≡ 2 (mod 6) so λ1λ2 ≡ −p2 (mod 6). We conclude that λ1λ2 = −p2 and the proof
is complete. �

Remark 5. In the context of the Inose-Shioda correspondence (see [?]), (??) means that the matrix
corresponding to the 2-dimensional lattice of transcendental cycles on K4 is(

4
2

2
4

)
.

By [?], 1.3, this implies that the group of sections of the elliptic �bration on K4 is of order 6.
Indeed (??) can be written in Weierstrass form as follows (see [?]):

V 2W + (1− 3t)UVW − t4(t2 − 1)VW 2 = U3 .

We see immediately that (0 : 0 : 1) is a point of order 3 on the generic �bre. Moreover, the a�ne
part Z = 1 of the generic cubic Et can be written, after a suitable change of variables (using, for
instance, a computer algebra system) V 2 = f(U) where

f(U) = U3 +A(T )U +B(T ) ,

A(T ) =
1
4
(−3

4
T 8 + T 6 − 5

2
T 4 + T 2 − 1

12
) ,

B(T ) =
1
8
(−1

4
T 12 +

1
2
T 10 +

5
4
T 8 − 5

3
T 6 +

11
12
T 4 − 1

6
T 2 +

1
108

) .

In order to �nd an element of order 2 on each �bre, it is su�cient to �nd a root of f in the
function �eld Fq(t). The polynomial

r(T ) =
1
2
(−1

2
T 4 − T 2 +

1
6
)

ful�lls this condition.

We are now ready to prove Theorem ??; it su�ces to recover the number of Fq-rational points
on the surface S0 attached to σ3(q) from the knowledge of the quantity |K4(Fq)|.
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3.5. End of the proof of Theorem ??. We now want to obtain an explicit value for σ3(q); we
�rst determine the number of Fq-rational points on the a�ne surface S4 de�ned by (??).

Lemma 8. We have
|S4(Fq)| = q2 + 2q + λr

1 + λr
2 ,

where q = pr and λ1, λ2 are de�ned by Proposition ??.

Proof. From the construction of the surface K4 detailed in Section ??, we have:

|K4(Fq)| = |S4(Fq) \ {(x, y, s)|s = 0}|+ |{rami�cation points ofK4/Fq}|
Moreover, we claim that

|{(x, y, s) ∈ S4(Fq)|s = 0}| =
{

4q − 7 if ζ3 ∈ Fq ,
4q − 5 otherwise .

Indeed, the cardinality of the left hand side set in the above equality is the number of Fq-rational
points on the union of rational a�ne curves: Dx ∪ Dy ∪ Dx,y ∪ Cx,y, where

Dx : x = 0 Dy : y = 0
Dx,y : x+ y + 1 = 0 Cx,y : xy + y + x = 0

The number of Fq-rational points of each of the 3 lines Dx,y, Dx and Dy is q . What's more, we can

give the following parametrization: Cx,y(Fq) = {(λ; −λ
λ+1)|λ ∈ Fq \ {−1}}. Hence |Cx,y(Fq)| = q− 1.

We also have

Cx,y(Fq) ∩ Dx(Fq)∩Dy(Fq) = (0; 0)

Dx(Fq) ∩ Dx,y(Fq) = (0;−1) Dy(Fq) ∩ Dx,y(Fq) = (−1; 0)

Dx,y(Fq) ∩ Cx,y(Fq) =
{
{(ζ3; ζ2

3 ), (ζ2
3 ; ζ3)} , if ζ3 ∈ Fq

∅ otherwise
Gathering these informations, we obtain the wanted formula for |{(x, y, s) ∈ S4(Fq)|s = 0}|.
Thanks to the calculation of the number of rami�cation points on K4/Fq performed in the proof

of Proposition ?? (when ζ3 6∈ Fq) and in Section ?? (when ζ3 ∈ Fq), we deduce

|K4(Fq)| =
{
|S4(Fq)| − (4q − 7) + 8(q + 1) + 14(q − 1) if ζ3 ∈ Fq ,
|S4(Fq)| − (4q − 5) + 8(q + 1) + 12(q − 1) otherwise .

=
{
|S4(Fq)|+ 18q + 1 if ζ3 ∈ Fq

|S4(Fq)|+ 16q + 1 otherwise

Exploiting (??) and noticing that εr = 1 if and only if ζ3 ∈ Fq = Fpr , we see that the proof is
complete �

Combining Lemmas ?? and ??, we get

|S3(Fq)| = q2 + χq(−1)(|S4(Fq)| − q2)
= q2 + χq(−1)(2q + λr

1 + λr
2) .

To apply Lemma ?? and deduce |S0(Fq)|, we must make the relation between |S3(Fq)| and
|S∗3(Fq)| clear. Reasoning as in the proof of Lemma ?? to calculate |S4(Fq)| from the knowledge of
|{(x, y, s) ∈ S4(Fq)|s 6= 0}|, we obtain

|S∗3(Fq)| =
{
|S3(Fq)| − (4q − 7) if ζ3 ∈ Fq ,
|S3(Fq)| − (4q − 5) otherwise .

Hence

|S∗3(Fq)| =
{
q2 + χq(−1)(2q + λr

1 + λr
2)− 4q + 7 if ζ3 ∈ Fq ,

q2 + χq(−1)(2q + λr
1 + λr

2)− 4q + 5 otherwise .
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We can now apply Lemma ??; this yields

|S0(Fq)| =
{
q2 + χq(−1)(2q + λr

1 + λr
2)− 2q + 5 if ζ3 ∈ Fq ,

q2 + χq(−1)(2q + λr
1 + λr

2)− 4q + 5 otherwise .

=
{
q2 + 2q(χq(−1)− 1) + χq(−1)(λr

1 + λr
2) + 5 if ζ3 ∈ Fq ,

q2 + 2q(χq(−1)− 2) + χq(−1)(λr
1 + λr

2) + 5 otherwise .

Moreover, we get from (??)

σ3(q) = −q3 + 3q2 − 3q + q|S0(Fq)| .
We �nally obtain the following value for σ3(q), so that the proof of Theorem ?? is complete:

σ3(q) =
{
q2 + q(2qχq(−1) + χq(−1)(λr

1 + λr
2) + 2) if ζ3 ∈ Fq ,

−q2 + q(2qχq(−1) + χq(−1)(λr
1 + λr

2) + 2) otherwise .
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