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IUFM et Université de Nice. Parc Valrose, 06108 Nice

christian.bourdarias@univ-savoie.fr Marguerite.Gisclon@univ-savoie.fr

junca@math.unice.fr

Abstract

We present different models arising in chemical engineering and
essentially related to isothermal gas chromatography. These models
describe a fixed bed adsorption process of separation of a gaseous mixture:
each compound can exist either in a mobile phase or a solid and static
one, with a finite or infinite mass-exchange kinetics. Many authors, in the
fields of chemical engineering and mathematics, have investigated these
models under various assumptions, from a theoretical or numerical point
of view. We explain first the relations between some of these approaches.
Next, we present some results related to these models, some of them
being new, particularly in the case of a monovariant system with one or
two active compounds for the Cauchy problem. Lastly, we mention some
open problems.

Key words: gas chromatography, nonlinear chromatography, mass transfer
kinetics, adsorption, systems of conservation laws

1 Introduction

Chromatography is the collective term for a family of laboratory techniques
for the separation of mixtures. It involves passing a mixture dissolved in a
“mobile phase” (liquid or gaseous) through a stationary phase, which separates
the analyte to be measured from other molecules in the mixture and allows it
to be isolated (source: Wikipedia).
The principal methods are

Frontal Chromatography: a procedure in which the sample (liquid or gas) is fed
continuously into the chromatographic bed. In frontal chromatography no
additional mobile phase is used.
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Displacement Chromatography: a procedure in which the mobile phase
contains a compound (the Displacer) more strongly retained than the
compounds of the sample under examination. The sample is fed into the
system as a finite slug.

Elution Chromatography: a procedure in which the mobile phase is
continuously passed through or along the chromatographic bed and the
sample is fed into the system as a finite slug.

Chromatography may be preparative or analytical. Preparative chromatogra-
phy seeks to separate the compounds of a mixture for further use (and is thus
a form of purification). It is a process that has lately become of considerable
interest in the pharmaceutical industry: only chromatography is sufficiently
flexible and powerfull to satisfy the practical requirements encountered in most
difficult separations of pharmaceutical intermediates. Analytical chromatogra-
phy normally operates with smaller amounts of material and seeks to measure
the relative proportions of analytes in a mixture. The two are not mutually
exclusive.

Another method of separating chemical substances is distillation, based on
differences in their volatilities in a boiling liquid mixture. It is a process used
for instance in petroleum industry. A common feature both to chromatography
and distillation is that the separation follows from the interaction between two
phases in motion one with respect to the other. A distillation column is heated
at the bottom, thus separating the mixture in a gaseous phase moving upwards,
and a liquid one moving downwards by gravity. In standard chromatography
the mixture, in gaseous or liquid form, is injected in a column filled with some
porous medium. The chemical compounds are partially retained by the pores,
thus generating stationary phase in the column (fixed bed adsorption). In the
modelling of such process, two types of phenomena are to be considered. On
the one hand, the propagation of the mobile phase is ruled by the laws of fluid
dynamics, gas dynamics, porous media,... On the other hand, the repartition
of matter between the two phases relies on thermodynamics and the notion of
diphasic equilibrium is involved.

There are many reference works in the field of Chromatography. G.
Guiochon and B. Lin [17], for instance, describe the different mathematical
models of chromatography, examine the assumptions on which they are based,
consider their properties and discuss their solutions. In [18], one can find
the fundamentals of thermodynamics, mass-transfer kinetics and flow through
porous media that are relevant to chromatography. The authors present
the models used in chromatography, the applications, describe the different
processes used and the methods of optimization of the experimental conditions.

In this article we mainly consider the case of isothermal gas-solid
chromatography, a procedure in which the temperature of the column is kept
constant during the process. The mixture analyzed is vaporized at the entrance
of a column that contains a solid substance (the adsorber) called the stationary
phase and then is transported across it by a carrier gas. The carrier gas, or
vector gas (usually nitrogen, sometimes hydrogen or helium), is the mobile
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phase (see Fig. 1). In most cases it has to be inerted vis a vis the solutes and
the stationary phase.

The paper is organized as follows. First, we examine and discuss some
models arising in gas-solid chromatography (or closely related processes). Next
we give some mathematical results which seem to us significant in that field.
We emphasize in particular the case of the so-called Pressure Swing Adsorpion
process (PSA) in the case of two compounds, for which we give some new results
by the authors. Lastly we mention some open problems.
We specify that we do not seek to be exhaustive, neither from the point of
view of modelling, nor of that of the mathematical analysis. Our goal is to
concentrate on some problems which appear more particularly interesting to us
in terms of potential developments, pointing out various open problems.

Figure 1: Construction scheme of a gas chromatograph. Source: home
page of Zentrales Analytisches Labor, Brandenburgische Technische Universität
Cottbus.

2 Some models in nonlinear chromatography

General references in this field are, for instance, [29, 17, 18]. One may consult
[27] for a complete nomenclature for Chromatography.
In this section we choose to start with the model described by P. Rouchon and
al. ([30]). The assumptions of the model are completely stated and some of
them are used as a basis for a later discussion: finite exchange kinetics or not
(Subsections 2.2 and 2.4), pressure law and sorption effect (Subsections 2.3 and
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2.4). The mathematical results given in Section 3 are related to the models
presented here. Some of them are new.

2.1 The model of Rouchon-Schonauer-Valentin-Guiochon

We recall the model described by P. Rouchon and al. ([30]) which accounts
for the migration and transformation of the large concentration band of a
single pure gaseous compound along a chromatography column. The main
assumptions of this model are the following:

1. The column is supposed to be radially homogeneous and so is the input
profile. Therefore the problem is monodimensional. The only variables
are the abscissa x along the column and the time t.

2. Gases follow ideal gas laws for compressibility and mixing.

3. Darcy’s law is valid in the range of flow velocity u investigated. The
column permeability is constant independent of the abscissa.

4. The local pressure p is constant during an experiment, depends on the
abscissa not on the time even during the passage of a large concentration
band.

5. The carrier gas is not sorbed by the stationary phase.

6. Temperature T is constant during an experiment, independent of the
position or the time.

7. Mass and heat energy exchanges between the mobile and the stationary
phases are infinitely fast. The two phases are constantly at thermal and
composition equilibrium.

8. Axial diffusion proceeds at negligible speed.

Notice that the assumption of isothermality 6 is easily justified provided
that adequate time is allowed for exchange of energy with the surroundings and
also for systems with little adsorption. Assumption 7 may be relaxed: it will
be investigated in the next subsection. As pointed out in [30], combination
of Assumptions 7 and 8 results in an infinite efficiency of the column. For a
thorough discussion of the hypothesis, we refer to the book by Guiochon et al.
[18] where a large amount of bibliography can also be found.

Let N i
M and N i

S , 1 ≤ i ≤ d, be the number of moles of compound i per
unit length of column at equilibrium, where the subscripts S and M stand for
stationary and mobile phase respectively. We assume that the index d stands
for the carrier gas, if present, thus Nd

S = 0. The equations for the conservation
of mass are:

∂t(N
i
M +N i

S) + ∂x(uN i
M ) = 0, 1 ≤ i ≤ d. (1)

The quantities N i
M and N i

S are not independent, they are related by the so-
called equilibrium isotherm ki: RT N i

S = ki(N1
M , · · · , Nd

M ) where T is the
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temperature, R a positive constant. In particular we have kd = 0 because the
carrier gas is not sorbed.

Notice that the precise form of the isotherms is usually unknown but
can be experimentally obtained. Simple examples of such a function are
the linear isotherm ki = KiN

i
M , with Ki ≥ 0, the Langmuir isotherm

ki =
QiKiN

i
M

1 +

d∑

j=1

KjN
j
M

, with Ki ≥ 0, Qi > 0 (see for instance [31]) and the

BET isotherm defined by

k1 =
QKN1

M

(1 +KN1
M − (N1

M/Ns
M ))(1 − (N1

M/Ns
M ))

, Q > 0,K > 0, Ns
M > 0, k2 = 0

for one adsorbable compound in an inert gas.
The unknowns are therefore the local mobile phase velocity u and the values

of N i
M for each compound i.

Introducing the local pressure p and the mole fraction Xi =
N i

M

d∑

k=1

Nk
M

of each

compound i, Rouchon and al. [30] write the equations (1) under the form:

∂x(upXi) + ∂t(pXi + ki(pX1, ..., pXd)) = 0, 1 ≤ i ≤ d. (2)

Because
d∑

i=1

Xi = 1 and kd = 0, the equation for the carrier gas may be

replaced by the sum of all equations (1). This gives the total mass balance
equation of the column:

∂x(u p) + ∂t(p+
d−1∑

i=1

ki(pX1, ..., pXd)) = 0. (3)

The law of ideal gas writes:

pXiε
1 = N i

MRT

where ε1, the porosity, and the temperature T are assumed here to be constant.
Setting

Fi =
up

RT
Xi =

uN i
M

ε1
, 1 ≤ i ≤ d, F0 =

up

RT
, ε2 =

d∑

i=1

N i
S ,

James ([19]) write these equations under the form:

∂xFi + ∂t(
p

RT

Fi

F0
+
ε2

ε1
hi(F1, · · · , Fd, F0)) = 0, 1 ≤ i ≤ d,
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∂xF0 + ∂t(
p

RT
+
ε2

ε1

d−1∑

i=1

hi(F1, · · · , Fd, F0)) = 0,

thus keeping track of the temperature: this may be useful in case of experiments
with prescribed temperature as a function of the time.

The functions hi(F1, · · · , Fd, , F0) =
ε1ki

ε2RT
=

ε1

ε2
N i

S are the isotherms,

written in the F -variables.
In the sequel we will make use of the concentrations ci (moles/m3) of the

ith compound in the mobile phase as main unknowns (joined to u). The
corresponding concentrations in the stationnary phase are denoted qi. At
equilibrium they are given by qi = q∗i (c1, ..., cd)) where q∗i , 1 ≤ i ≤ d are
the equilibrium isotherms corresponding to this new set of variables. Setting

ρ =
d∑

i=1

ci, equations (2) and (3) read

∂x(u ci) + ∂t(ci + q∗i (c1, ..., cd)) = 0, 1 ≤ i ≤ d, (4)

∂x(u ρ) + ∂t(ρ+

d∑

i=1

q∗i (c1, ..., cd)) = 0. (5)

This is our reference model in the sequel.

2.2 A model with finite exchange kinetics

A question is that, given a certain amount of mixture, there exists a
privileged repartition of the matter between the two phases (the so called
stable equilibrium state): the equilibrium state can be reached in a short
time with respect to the relative velocities of the phases (infinite mass-transfer
kinetics: Assumption 7 above) or not. When the time needed to reach the
equilibrium is not negligible with respect to the characteristic times induced
by the velocity, we must give up Assumption 7 and take the deviation from
equilibrium into account: the actual concentration qi in the solid phase differs
from q∗i (c1, · · · , cd). This phenomenon is known as a finite exchange kinetics.
Finite exchange kinetics can be modelled by the following system of equations
(with a suitable pressure law) for a column of length L:

∂tci + ∂x(u ci) = Ai (qi − q∗i (c1, · · · , cd)), (6)

∂tqi = −Ai (qi − q∗i (c1, · · · , cd)), t ≥ 0, x ∈ (0, 1). (7)

The right hand sides of the equations quantify the attraction of the system
to the equilibrium state: it is a pulling back force proportional to the deviation
from equilibrium. A compound with concentration ci is said to be inert if Ai = 0
and q∗i = 0.
When the coefficients Ai in (6)-(7) tend to infinity (instantaneous equilibrium),
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say Ai = 1/ε with ε → 0 for instance, we get formally qi − q∗i = − 1

Ai
∂tqi → 0

and Eqs. (6)-(7) reduce to (4).
In Section 2.4 we present some theoretical results for a particular pressure law
arising in the so-called “Pressure Swing Adsorption” process, dealing with a
non constant velocity u.

In [21], James studied a system of semi linear transport equations, closely related
to (6)-(7), modelling diphasic propagation arising in chemical engineering in
which two phases are in motion with distinct constant speeds u > 0 and v ≤ 0,
covering the cases of liquid-solid chromatography and distillation. The model
is the following:

∂tcε + ∂x(ucε) =
1

ε
(qε − h(cε)), (8)

∂tqε + ∂x(vqε) = −1

ε
(qε − h(cε)), (9)

where ε > 0. The unknowns are the concentrations vectors cε, qε ∈ R
d.

The right hand side, which has the same interpretation as in Eqs. (6)-(7), is
written in an academic form, of course not standard in the chemical engineering
literature. Note that this set of equations can be used at two levels: on the one
hand, specific phenomena due to slow exchange kinetics are related to large
values of ε, on the other hand, we can let ε go to zero as above.

2.3 Velocity and pressure law

In gas chromatography, velocity variations accompany changes in gas
composition, especially in the case of high concentration solute: it is known
as the sorption effect. To neglect this effect or not leads of course to models
with very different mathematical properties. The sorption effect is of major
importance in gas chromatography but often close to being insignificant in
liquid-solid chromatography or distillation, which is the context of the model
(8)-(9), for instance, where the velocities are kept constant.

2.3.1 Neglecting the sorption effect

According to Assumption 3 we write u = −C ∂xp where C is a constant
depending on the porosity. Next, Assumption 4 gives ∂tp = 0. Neglecting
the sorption effect in first approximation, we assume that the total flow rate is
constant i.e. u p = cste. Thus p ∂xp is a constant and we obtain immediately

p(x) =

√
P 2

in − x

L
(P 2

in − P 2
out).

In this expression Pin is the inlet pressure ratio, Pout is the outlet pressure ratio
and L is the column length. For very small variations of pressure between inlet
and outlet, we can therefore assume a constant velocity.
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As pointed out by James ([21]), the assumption of constant total flow rate
is not really physically relevant but the derivation of the pressure law may be
viewed as an independent reasoning and others models are of course admissible.

2.3.2 Taking the sorption effect into account

Assume that the pressure is given by p = kργ , k > 0, γ > 0 (pressure law for
a polytropic ideal gas) and that the speed follows Darcy’s law: we have then

u = −K ∂xρ
γ , with K > 0. (10)

To our knowledge the problem (6)-(7)-(10) has never been investigated from
a mathematical point of view. As a first approach we propose an existence
result for two simplified models: see Theorem 5 and Remark 2 in Subsection
3.2.

Notice that setting K =
1

ε
in (10) we get formally, when ε tends to zero,

∂xρ
γ = 0, that is ρ = ρ(t). This means, in the isothermal case, that the total

pressure is only time dependant (which dramatically differs from Assumption
4): the velocity u(t, x) of the mixture has to be found in order to achieve a
given pressure. This is exactly the context of the model developed in the next
section.

2.4 Pressure Swing Adsorption (PSA)

2.4.1 Introduction

“Pressure Swing Adsorption (PSA) is a technology that is used to separate
some species from a gas under pressure according to these species’ molecular
characteristics and affinity for an adsorbent material. It operates at near-
ambient temperatures and so differs from cryogenic distillation techniques of gas
separation. Special adsorptive materials (e.g., zeolites) are used as a molecular
sieve, preferentially adsorbing the undesired gases at high pressure. The process
then swings to low pressure to desorb the adsorbent material. Using two
adsorbent vessels allows near-continuous production of the target gas. It also
permits so-called pressure equalization, where the gas leaving the vessel being
depressurized is used to partially pressurize the second vessel. This results in
significant energy savings, and is common industrial practice.” (Wikipedia)
PSA is used extensively in the production and purification of oxygen, nitrogen
and hydrogen for industrial uses. PSA can be used to separate a single gas
from a mixture of gases. A typical PSA system involves a cyclic process where
a number of connected vessels containing adsorbent material undergo successive
pressurization and depressurization steps in order to produce a continuous
stream of purified product gas (see Fig. 2).
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Figure 2: PSA process: production and regeneration steps. Source:
questairinc.com

2.4.2 Modelling

Our purpose is to model a step of the cyclic process, restricted to isothermal
behavior. As in general fixed bed chromatography, each of the d species
(d ≥ 2) simultaneously exists under two phases, a gaseous and movable one with
concentration ci(t, x) or a solid (adsorbed) other with concentration qi(t, x),
1 ≤ i ≤ d. The sorption effect is taken into account through a constraint on the
pressure (see the end of 2.3.2). Following Ruthwen (see [31]) we can describe
the evolution of u, ci, qi according to the system (6)-(7) with suitable initial
and boundary data:

ci(0, x) = c0i (x), qi(0, x) = q0i (x) in ]0, 1[, (11)

ci(t, 0) = cini (t), u(t, 0) = u0(t) > 0, (12)

ci(t, 1) = cout
i (t) if u(t, 1) < 0. (13)

In (6)-(7) the velocity u(t, x) of the mixture has to be found in order to
achieve a given pressure (or density in this isothermal model):

d∑

i=1

ci = ρ(t), (14)

where ρ represents the given total density of the mixture. The experimental
device is realized so that it is a given function depending only upon time, which
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C    (t)
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x
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C (t,x)

u (t) > 0
0 u (t,1) < 0

u(x,t)inlet concentrations
i

bed

Figure 3: Unknown and boundary data in a step of the PSA process.

differs drastically from Assumption 4 (see Subsection 2.1). Adding (6) for i = 1
to d, we get, thanks to (14):

∂xu = −∂tρ

ρ
+

1

ρ

d∑

i=1

Ai (qi − q∗i )(c1, · · · , cd), (15)

which gives an integral dependency of u upon the concentrations.

3 Some mathematical results

In this section we investigate some of the preceding models from a theoretical
or numerical point of view. We will focus in particular on the PSA system with
finite or infinite exchange kinetics and give some recent results by the authors.

3.1 On a model with constant velocity

We present here some results due to James [21] for System (8)-(9). Some other
results in a closely related case are given in Subsection 3.5.1 via the kinetic
approach. In so far as the set of problems are connected (the case v = 0
corresponds to chromatography), it may be interesting to give an account of
the main results in this direction.
First, as pointed out by James, the system admits a natural set of “diphasic
entropies” under the form η(c) = η1(c) + η2(h(c)) where η1, η2 : R

d → R are
two convex functions satisfying ∇cη1(c) = ∇cη2(h(c)) for all c ∈ R

d.
Next, a quite natural set of boundary conditions is the following, as far as
chromatography and distillation are concerned:

cε(0, t) = a(t) ∈ L∞(]0,+∞[) (injection), (16)

ucε(1, t) + vqε(1, t) = b(t) ∈ L∞(]0,+∞[) (reflux) if v < 0. (17)

If v = 0 (case of chromatography), the reflux boundary condition simply
disappears.

From the point of view of distillation, the boundary conditions are natural:
the first one is a Dirichlet-like ”injection” at one end of a column and only
acts on the incoming variable (u > 0); the second one looks like a Neumann
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condition on the other hand and imposes v < 0 (it is a simplified model of
”reflux” in a distillation column).

It turns out that System (8)-(9) with (16)-(17) is well posed. Applying the
fixed point theorem, there is an existence and uniqueness result for (8)-(9) in
L∞(]0, T [;L1(]0, 1[)2d):

Theorem 1
For a given T > 0, assume that a and b are in L∞(]0, T [), c0 ∈ L∞ ∩ L1(]0, 1[)
and that the function h is of class C1. Then there exists an unique solution to
(8)-(9) which lies in L∞(]0, T [;L1(]0, 1[)).

When ε tends to zero we get formally a set of equations which express the
conservation of matter:

∂t(c+ h(c)) + ∂x(u c+ v h(c)) = 0. (18)

However a difficulty arises if one lets ε go to 0 because the boundary
conditions are not at equilibrium for ε > 0 so that boundary layers may appear.

James imposes the condition

f(c) = u c+ v h(c) ≤ min
t>0

b(t).

This condition implies some restrictions on the initial and boundary data, which
lead to uniform L∞ estimates for the solution to (8)-(9) for a broader class of
fluxes.

In the scalar case and using compensated compactness, James proves that
the solution of this system converges, as ε → 0, to a solution of the preceding
equation satisfying a set of entropy inequalities:

Theorem 2
Let be T > 0, a, b ∈ L∞(]0, T [), a ≥ 0, b ≤ 0, c0 ∈ L1(]0, 1[)∩L∞(]0, 1[), c0 ≥ 0
and

c∗ = sup{c ≥ 0,∃c′ ≤ c, f(c′) ≤ min b(t)} ≥ max[|| a ||∞, || c0 ||∞].

Let cε, qε be a solution of (8)-(9) with initial data at equilibrium:

cε(x, 0) = c0(x) ∈ L1(]0, 1[) ∩ L∞(]0, 1[), qε(x, 0) = h(c0(x)).

Then there exists a subsequence of solutions which converges a.e. and strongly
in ]0, 1[×]0,+∞[ to c ∈ L∞(]0, T [;L1(]0, 1[) satisfying for any φ ∈ D′

+([0, 1] ×
R+), k ∈ R:

∫ ∞

0

∫ 1

0

[(|c− k| + |h(c) − h(k)|) ∂tφ+ (u|c− k| + v|h(c) − h(k)|) ∂xφ] dx dt

≤
∫ ∞

0

(u | a(t) − k | φ(0, t)+ | b(t) − f(k) | φ(1, t)) dt−
∫ 1

0

(
| c0(x) − k | + | h(c0(x)) − h(k) |

)
φ(x, 0) dx.
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This result is meaningful for c∗ > 0, which occurs only if f(c) becomes non
positive for some c: notice that this excludes the case of the chromatography
(v = 0).

In [23], James and al. study numerically the same model to take in account
the finite exchange kinetics. The resulting hyperbolic system with a non
linear relaxation term is then formally treated with a Chapman-Enskog type
expansion. A first order correction to the classical quasilinear hyperbolic model
is derived which consists in a nonlinear diffusion term. Numerical schemes for
both models, relaxed and parabolic, are then tested and compared for different
initial and boundary values.
Lastly, in [22], the authors describe and validate a numerical solution of the
inverse problem of nonlinear chromatography using the model given by Eq.
(18). The method allows the determination of best numerical estimates of
the coefficients of an isotherm model from the individual elution profiles of
the two compounds of a binary mixture. In two cases, when the isotherm
model is satisfactory, the authors observed a very good agreement between
the equilibrium isotherm equations obtained by this new method and those
determined by the classical combination of elution by characteristic points and
binary frontal analysis. Practically, this method would significantly reduce
the amounts of products required to determine a set of competitive binary
isotherms.

3.2 On a model with Darcy’s velocity

As a first approach to a study of the complete model (6)-(7)-(10) we propose
an existence result for the following simplified one:

∂tci + ∂x(u ci) = 0, in (0, T ) × R, (19)

u = −∂xρ
γ , γ > 0, ρ =

d∑

i=1

ci, (20)

ci(0, x) = c0i (x), x ∈ R. (21)

Notice that we work on R in order to focus on the main difficulties, but
we assume that the initial data c0i are compactly supported. Furthermore we
assume Ai = 0 to avoid some problems related to the nonlinearities q∗i . Adding
(19) for i = 1 to d we get, thanks to (10), ∂tρ − ∂x(ρ ∂xρ

γ) = 0, that we write
under the form:

∂tρ−
γ

γ + 1
∆ργ+1 = 0

which is a porum medium equation. There exists a large amount of works on
this subject. The first results are due to Oleinik, Kalashnikov and Chzhou
[28]. For regularity results on ρ consult for instance Aronson [1, 2, 3], Aronson-
Benilan [4], Caffarelli-Friedmann [5], Dibenedetto [14]. Concerning the domain
of dependency P[ρ] = {ρ > 0} in one dimension we know, under suitable
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assumptions, that if the initial data ρ0 is supported in a bounded interval,
then ρ is compactly supported for all time and P[ρ] is enclosed between two
monotonic and lipschitz continuous curves x = ξi(t) (see [24, 34] for instance).
More precisely we will use explicitly the following results:

consider the problem

∂tρ = ∆ρm in S = (0, T ] × R, ρ(0, x) = ρ0(x), x ∈ R (22)

where m > 1. Following [1] we say that a function ρ(t, x) is a weak solution of
(22) if

• ρ0 is non negative, continuous, bounded in S,

• ∂xρ
m ∈ L∞,

• ρ satisfies:

∀φ ∈ D([0, T ) × R)

∫

S

(∂xρ
m ∂xφ− ρ ∂tφ) dx dt =

∫

R

ρ0(x)φ(0, x) dx.

Proposition 3 If (ρ0)m is lipschitz continuous, the problem (22) has a unique
weak solution ρ. Moreover ρ is a classical solution on P[ρ] = {ρ > 0}.

Remark 1 The L∞ bound for ∂xρ
m depends only upon the lipschitz constant

of (ρ0)m.

Proposition 4 Assume that (ρ0)m is lipschitz continuous and let ρ be the
weak solution of (22). For all τ > 0 there exists a positive constant C =
C(m, τ, ‖ρ0‖∞) such that

∀(t, x), (t, x′) ∈ [τ, T ] × R,
∣∣ρm−1(t, x) − ρm−1(t, x′)

∣∣ ≤ C |x− x′| .

If (ρ0)m−1 is lipschitz continuous the same conclusion holds for all
(t, x), (t, x′) ∈ [0, T ] × R and C depends on the lipschitz constant of (ρ0)m−1

instead of τ .

We are looking a priori for a weak solution with ci ∈ L∞ and we will
get, depending on the assumption on ρ0, u ∈ L∞((τ, T ) × R) for all τ > 0 or
u ∈ L∞((0, T ) × R) which does not allow to pass to the limit in a sequence
of smooth approximate solutions in the weak formulation of (19). However, if

ρ is smooth, we have u ci = − γ

γ + 1

ci
ρ
∂xρ

γ+1 with
ci
ρ

∈ L∞ and we will get

∂xρ
γ+1 ∈ L∞ and a BV estimate for

ci
ρ

. Thus we choose to formulate the

problem as follows:

∂tci −
γ

γ + 1
∂x(

ci
ρ
∂xρ

γ+1) = 0 in (0, T ) × R, 1 ≤ i ≤ d, (23)

with γ > 0, ρ =

d∑

i=1

ci. (24)
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For mere technical reasons, the initial data c0i (x) are written under the form
c0i (x) = ρ0(x) ai(x) where the functions ai are defined on R, non negative, and

satisfy

d∑

i=1

ai = 1. We make the following assumptions:

∀i ∈ {1, · · · , d} ai has bounded variation on R, (25)

ρ0 is lipschitz continuous, non negative and compactly supported, (26)

∃C > 0, ∀η > 0

∫

R

∣∣∣∂x

(
1

ρ0 + η

) ∣∣∣ ≤ C/η. (27)

The technical assumption (27) is related to the the behavior of ρ0 near the
point where this function vanishes. It is satisfied for instance if ρ0 is lipschitz
continuous, supported in some interval [a, b], positive in ]a, b[, monotone in the
neighborhood of a and b.
We state now our main result:

Theorem 5 Under the assumptions (25)-(26)-(27), Problem (23)-(24) has at

least a solution (c1, ..., cd) with ci ∈ L∞, ci ≥ 0, ρ =

d∑

i=1

ci continuous on

R
+ × R and such that:

∀T > 0, ∂xρ
γ+1 ∈ L∞((0, T ) × R),

ci
ρ

∈ L∞((0, T );BV (R)),

∀T > 0,∀τ > 0, u = −∂xρ
γ ∈ L∞((τ, T ) × R).

Moreover, if (ρ0)γ is lipschitz continuous then u ∈ L∞((0, T ) × R).

Outlines of the proof- The estimates on u are straightforward
consequences of the general properties of the solution of the porous medium
equation: consult for instance Aronson [1].
Assume the initial data in C2(R) (thanks to a regularization step that we skip),

let be η > 0, c0i,η = c0i + η/d, 1 ≤ i ≤ d and ρ0
η = ρ0 + η =

∑

1≤i≤d

c0i,η. Let ρη be

the unique solution of the following problem (Pη):

∂tρη − γ

γ + 1
∆ργ+1

η = 0, (28)

ρη(0, x) = ρ0
η. (29)

Notice that ρη satisfies:

∂tρη + ∂x(uη ρη) = 0, (30)

with uη = −∂x(ργ
η) which is Lipschitz continuous on R, uniformly with

respect to t ∈ [0, T ]. Let ci,η, 1 ≤ i ≤ d, be the solution of the advection
equation

14



∂tci,η + ∂x(uη ci,η) = 0 (31)

ci,η(0, x) = c0i,η, (32)

then we have clearly ρη =
∑

1≤i≤d

ci,η.

Notice that by comparison principle we have

η ≤ ρη ≤‖ ρ0 ‖∞ +η in [0, T ] × R

and also
0 < η1 ≤ η2 =⇒ ρη1

≤ ρη2
in [0, T ] × R.

Thanks to standard arguments we can then assume that (up to a
subsequence):

ρη → ρ in Lp
loc ∀p ≥ 1, uη ⇀ u = −∂xρ

γ in D
′, ci,η ⇀ ci in L∞ weak∗

(33)
but it is not enough to pass to the limit in the weak formulation of (Pη).

More precisely, according to (23), we have to show that for all φ ∈ D′([0, T ]×R):

∫ T

0

∫

R

uη ci,η ∂xφ −−−→
η→0

∫ T

0

∫

R

− γ

γ + 1

ci
ρ
∂xρ

γ+1 ∂xφ. (34)

Let be α > 0 fixed. The left hand side of (34) is written as:

∫ T

0

∫

R

uη ci,η ∂xφ = Iη + Jη

with Iη =

∫ T

0

∫

{ρ<α}

uη ci,η ∂xφ and Jη =

∫ T

0

∫

{ρ≥α}

uη ci,η ∂xφ.

The integral Iη: we have uη ci,η = −(∂xρ
γ+1
η ) ci,η = − γ

γ + 1
2

ρ
1
2
η ∂x (ρη)

γ+ 1
2
ci,η
ρη

and thus ∣∣∣uη ci,η

∣∣∣ ≤ ρ
1
2
η

∣∣∣∂x (ρη)
γ+ 1

2

∣∣∣. (35)

Using Assumption (26) and Eq. (28) multiplied by ργ
η , we get the following

lemma:

Lemma 6

∃C > 0, ∀η > 0, ∀(a, b) ∈ R
2, a ≥ b, ∀T > 0

∫ T

0

∫ b

a

∣∣∣∂x (ρη)
γ+ 1

2

∣∣∣
2

dx dt ≤ C.

Notice that we use here that there exists a uniform L∞ bound for ∂x (ρη)
γ+1

as a solution of (28): see the remark following Prop. 3. Using (35), this last
lemma and the Hölder inequality, we finally get

∃C > 0, lim sup Iη ≤ C
√
α (36)
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The integral Jη: we write uη ci,η = − γ

γ + 1
∂x (ρη)

γ+1 ci,η
ρη

. Thanks to the

uniform L∞ bound for ∂x (ρη)
γ+1

and (33) we can assume that

∂x (ρη)
γ+1

⇀ ∂xρ
γ+1 weak∗

and it remains to study the sequence

(
ci,η
ρη

)

η>0

. From (30)-(31) we deduce

that

∂t

(
ci,η
ρη

)
+ uη ∂x

(
ci,η
ρη

)
= 0 (37)

and we get classically (recall that ci,η/ρη is compactly supported):

∂t

∫

R

∣∣∣∂x

(
ci,η
ρη

) ∣∣∣ dx = 0.

Next, we have:

∂x

(
c0i + η/d

ρ0 + η

)
= (∂xai)

(
ρ0

ρ0 + η

)2

+
ηρ0

(ρ0 + η)2
∂xai + (ai −

1

d
)

η

(ρ0 + η)2
∂xρ

0

and thus, thanks to Assumptions (25)-(26)-(27), we get the uniform bound:
∫ T

0

∫

R

∣∣∣∂x

(
ci,η
ρη

) ∣∣∣ dx ≤ C (38)

for some positive constant C. Recall that uη is uniformly bounded in
L∞((τ, T ) × R) for all τ > 0. Thus, from (37) and (38) we deduce

∫

{ρ≥α}∩{τ≤t≤T}

∣∣∣∂t

(
ci,η
ρη

) ∣∣∣ ≤ C(τ, α). (39)

From (38) and (39) we deduce that the sequence

(
ci,η
ρη

)

η>0

is uniformly

bounded with respect to η in BV ({ρ ≥ α} ∩ {τ ≤ t ≤ T}), and the following
lemma holds:

Lemma 7 The sequence

(
ci,η
ρη

)

η>0

is relatively compact in Lp
loc({ρ ≥ α} ×

{t ≥ β}) for all p ≥ 1, α > 0 and β ∈]0, T [.

Then, using lemma 7 and a diagonal extraction process we deduce that there
exists a sequence (αn, τn) ∈ R+ × R+ such that αn, τn → 0 and

lim supJη = − γ

γ + 1

∫

{ρ≥αn}∩{t>τn}

ci
ρ
∂xρ

γ+1 ∂xφ+Rn (40)

with |Rn| ≤ C τn.
Thanks to (36) and (40) we get easily (34), and thus Theorem 5 holds. �

Notice that the method used for the proof of Lemma 7 is no longer valid in
more than one dimension.
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Remark 2 Dealing with a single compound and working in R
n, the problem

(6)-(7) with u given by (10) writes :

∂tρ−
γ

γ + 1
∆ργ+1 = A (q − q∗(ρ)),

∂tq = −A (q − q∗(ρ)),

with initial data ρ0, q0. For this problem, Bourdarias ([7]) obtained an existence
result with continuous bounded solutions. The solution is easily obtained via a
monotonicity argument. The method cannot be extended to the case of many
compounds, which is an open problem.

3.3 PSA with finite exchange kinetics

In [6], both BV and L∞ theory are developed for the isothermal model (6)-
(7)-(14) and the main results are summarized below. Let us point out that
one of the mathematical interests of the model is its analogies and differences
compared to various other classical equations of physics or chemistry. First,
this model shares a similar structure with conservation laws under the form

∂tρ+ ∂x(ρ u(ρ)) = 0, ∂xu(ρ) = F (ρ)

where u(ρ) has an integral dependency upon ρ , while in scalar conservation laws
u depends upon ρ. It is underlined that, due to this particular dependency,
oscillations can propagate thus differing from Burger’s example (see Lions-
Perthame-Tadmor[25]), but we will not insist on this aspect.

3.3.1 Theoretical results in BV or L∞ framework

As a first result, we give an existence result for a solution with concentrations
having bounded variation and a lipschitz continuous velocity.

Theorem 8 Assume that the initial and boundary data are at equilibrium, that
the initial data have bounded variation in (0, 1) and that the boundary data,
the isotherms and the total density are lipschitz continuous. Then the problem
(6)-(7)-(14) has an unique solution ((ci), (qi), u) such that ci ≥ 0, qi ≥ 0 and

∀T > 0, ci, qi ∈ L∞((0, T ) × (0, 1)) ∩ L∞(0, T ;BV (0, 1)),

∂xu ∈ L∞((0, T ) × (0, 1)) ∩ L1(0, T ;BV (0, 1)).

Outlines of the proof- the proof is performed in two steps. First, for
a fixed velocity u uniformly Lipschitz continuous in (0, 1) we get a solution
((ci), (qi)) of (6)-(7) via a fixed point procedure in L1((0, T ) × (0, 1))2d. This
solution satisfies some L∞ estimates. Moreover, the fundamental BV estimate
holds:

∀T > 0, ∃C > 0, ∀t ≤ T, ∀i, TV (ci(t, ·))+TV (qi(t, ·)) ≤ C (1+

∫ t

0

∫ 1

0

∣∣∂2
xxu
∣∣),

(41)
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where the constant C depends on T , the L∞ norms of ci, qi, u, ∂xu and the
boundary data, and on the total variation of the initial data. Next, thanks to
(41) and the L∞ estimates we can built a fixed point procedure to define the
velocity u. �

In the L∞ framework, which is the more natural for this problem, there is
an existence result but uniqueness is still an open problem:

Theorem 9
Assume that the initial and boundary data are at equilibrium, that initial
data are in L∞, that the boundary data have lipschitz regularity and
∂2

ttρ ∈ L∞(0, T ). Then the problem (6)-(7)-(14) has at least a solution
ci, qi ∈ L∞

t,x, u ∈ L∞
t (W 1,∞

x ) for all T > 0.

Outlines of the proof- the initial data are approximated in L1 by a
sequence of data in BV (0, 1), bounded in L∞. Thanks to a compactness
property in L1 and some regularization lemma due to DiPerna-Lions ([15]) it
can be shown that the corresponding solutions (given by Theorem 8) converge
in L1 towards a solution of the problem (see [6] for details). �

Remark 3 It is possible to deal without the assumption of equilibrium for the
initial and boundary data. This is illustrated in Fig. 4 where the initial data
are zero for the solid phases, and in Fig. 5 where the boundary data cini are
not at equilibrium: in this last case, a boundary layer occurs. It may be shown,
using a classical analysis, that the limits of the solutions ci(t, x) when x goes to

zero are c̃ini (t) =
ρ cini (t)∑

i c
in
i (t)

and this is observed at the numerical level, via the

numerical scheme presented below.

3.3.2 Numerical approximation

A numerical analysis of this problem was performed in [8]. For the time
discretization, using an operator splitting, an intermediate spatial regularization
step is introduced in order to obtain some BV estimates for the approximate
solutions (with BV initial data). With respect to the fully discrete finite
volume scheme, it appears that it is possible to get such estimates without
any regularization step because of the dissipative effect of the upwind scheme
used to treat the transport part of the equations. The scheme is built as follows:
we use a uniform spatial mesh mj =]xj−1/2, xj+1/2[, j = 1, · · · , N , with center
xj and size ∆x and a time step ∆t. The initial data are assumed to be piecewise
constant over cells mj . Assume that the discrete unknown (ci)

n
j and (qi)

n
j

corresponding to the meshesmj at a given time tn = n∆t are already computed,
then:

First step: adsorption. We solve on a time step [tn = n, tn+1] the
system of ODEs

18



∂tci = Ai (qi − q∗i (c1, · · · , cd)), (42)

∂tqi = −Ai (qi − q∗i (c1, · · · , cd)), tn ≤ t ≤ tn+1, (43)

for x = xj , j = 1, · · · , N , with (ci)
n
j and (qi)

n
j as initial data. We get

the updated values (qi)
n+1
j , intermediate values (ci)

n+1/2
j and we set ρn+1

j =∑

j

(ci)
n+1/2
j . We assume that we proceed with an arbitrary accuracy, in such

a way that (ci)
n+1/2
j , (qi)

n+1/2
j ≥ 0 and 0 < α ≤ ρn+1

j ≤ β where α and
β depend only upon the data of the problem (following the properties of the
exact solution).

Second step: transport. The transport part is discretized with a classical
upwind finite volume scheme as

(ci)
n+1
j = (ci)

n+1/2
j − λ

(
un

j+1/2(ci)
n+1/2
j+1/2 − un

j−1/2(ci)
n+1/2
j−1/2

)
(44)

with λ = ∆t/∆x and

(ci)
n+1/2
j+1/2 =

{
(ci)

n+1/2
j if un

j+1/2 ≥ 0,

un
j+1/2 if un

j+1/2 < 0,

where un
j+1/2 has to be defined in such a way that the constraint (14) holds. It

is easy to show that this is realized through the formula

un
j+1/2 =

ρn+1
j − ρ(tn) + λun

j−1/2

∑
j(ci)

n+1/2
j−1/2

λ
∑

j(ci)
n+1/2
j+1/2

which allows to compute all the discrete velocities used in (44), starting from
the given velocity un

−1/2 = u0(tn). The positivity of the updated concentrations

(ci)
n+1
j is ensured thanks to the CFL condition ∆t ≤ ∆x/ ‖ u ‖∞.

This scheme is convergent and an O(∆t)1/2 convergent rate is obtained.
Notice that it may be extended to second order, adapting Van-Leer’s method.
As a conclusion we present two numerical experiments illustrating Remark 3.
The results have been obtained with Langmuir isotherms. We do not precise the
values of all the parameters involved, because we just emphasize the qualitative
aspect.
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Figure 4: A case of outlet reflux due to a rapid adsorption of one compound.
The initial values are not at equilibrium because c01 = 0.01, c02 = 0.005 whereas
q01 = q02 = 0 (the bed is supposed to be purged) and the mass-transfer kinetics
is greater for the second compound (A2 >> A1). This case show the relevance
of the outlet boundary condition (13): it may actually occur that the velocity
changes its sign.
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Figure 5: Boundary layer phenomenon: the boundary data are not at
equilibrium (here cin1 = 0.001, cin2 = 0.004, ρ = 0.015) and the computed
solutions take near x = 0 the theoretical values given in Rem. 3, that is here

c̃in1 = 0.003 and c̃in2 = 0.012.

3.4 Some results on the PSA system with infinite exchange kinetics

When the coefficients Ai in (6)-(7) tend to infinity (instantaneous equilibrium),
say Ai = 1/ε with ε→ 0 for instance, we get formally, as in the model studied
by James (see Subsection 3.1)

qi − q∗i = − 1

Ai
∂tqi → 0

and Equations (6)-(7) reduce to

∂t(ci + q∗i (c1, · · · , cd)) + ∂x(u ci) = 0, 1 ≤ i ≤ d, (45)
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with the constraint (14), thus dealing with a non constant speed. This
equation is similar to (18) but here v = 0 and u is not constant.

Recently ([9]) the authors focused on the problem (45)-(14) with two
compounds and a constant total density ρ ≡ 1, assuming an isobaric behavior
(which is not really restrictive from a theoretical point of view). The system is:

∂t(c1 + q∗1(c1, c2)) + ∂x(u c1) = 0, (46)

∂t(c2 + q∗2(c1, c2)) + ∂x(u c2) = 0, (47)

c1 + c2 = ρ = 1. (48)

Douglas and al. ([16]) developed a general criterion for determining the
transitions type for this monovariant system and gave several examples (see
also [33]). A first attempt, in the simpler case where one of the compounds is
inert, led the authors to an existence and uniqueness result (see [9]) summarized
in the next subsection. Rouchon and al. ([30]) discussed this model and
performed a numerical simulation in the case of one inert compound. The
general case, presented in Subsection 3.4.2, is now better understood ([10])
from a mathematical point of view.

3.4.1 Case of an inert carrier gas

In this subsection, we assume that one of the compounds is inert with
concentration c2 and that the spatial domain is R+ for the sake of simplicity.
We set c = c2 and h(c) = −q∗1(c1, c2) = −q∗1(1 − c, c), thus, using (15), the
system (46)-(47)-(48) may be written under the form:

{
∂tc+ ∂x(uc) = 0,
∂th(c) − ∂xu = 0,

(49)

supplemented by initial and boundary data:




c(0, x) = c0(x) ∈ [0, 1], x > 0,
c(t, 0) = cb(t) ∈ [0, 1], t > 0,
u(t, 0) = ub(t), t > 0.

(50)

We assume in (50) an influx boundary condition, i.e. ∀t > 0, ub(t) > 0 and, in
this first simplified approach

H ′(c) ≥ 0, h′(c) > 0, (51)

where H(c) = 1 + ch′(c). The reference for the results described in this
subsection is [9].

First we obtain an existence result for smooth solutions using a classical
characteristic method. The interest of this result is mainly to suggest us an
entropy condition for shockwaves:

(EC) “c increases through a shock”.
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For smooth solutions, the active gas desorbs and u increases to evacuate
gases. Next, we obtain a global existence theorem for a weak solution of System
(49)-(50):

Theorem 10 (Global large weak solution)
Let be X > 0, T > 0. Assume (51) and that c0 ∈ BV (0,X), cb ∈ BV (0, T ),
ub ∈ L∞(0, T ), satisfying 0 ≤ c0, cb ≤ 1 and inf

0<t<T
ub(t) > 0. Then the

system (49)-(50) admits a weak solution given by an adapted Godunov scheme.
Furthermore, c and u satisfy:

c ∈ L∞((0, T ) × (0,X)) ∩ L∞((0, T );BV (0,X)),

c ∈ Lip(0, T ; L1(0,X)), c ∈ BV ((0, T ) × (0,X)),

u ∈ L∞((0, T ) × (0,X)) ∩ L∞((0, T );BV (0,X)),

with bounds on c and u and these functions satisfy initial boundary conditions
(50) strongly.

The proof relies on a precise study of the solutions to the Riemann problem
satisfying the entropy condition (EC). We use a Godunov scheme to construct
an approximate weak solution of Problem (49)-(50) and we give some L∞ and
BV bounds. Lastly, we show that a sequence of approximate solutions converges
in some sense towards a global weak entropy solution.

The uniqueness problem for weak entropy solutions was solved in some
class of piecewise smooth functions. Nevertheless, this case is relevant in
most practical cases and involve global solutions with shock waves and contact
discontinuities. Notice that the assumptions in (51) are not really physically
relevant because they hold for particular isotherm only. This restriction is
avoided in the general approach below (but we no longer have an uniqueness
result).

As an illustration for this particular problem we consider the case of an
increasing smooth initial concentration of inert gas: a shock develops and then
propagates (Fig. 6). Dealing with a finite exchange kinetics, the same case is
investigated using the numerical method described in Section 3.3.2 with some
increasing values of the coefficient A governing the kinetics for the active gas.
The numerical experiments suggest that the model (6)-(7)-(14) could converge
in some sense towards the model (45)-(14), but this is still an open problem.

3.4.2 General case

In [10], the authors deal with the case of two compounds which may be active or
not, with physically relevant assumptions. Following Rouchon and al. ([30]) the
problem is analyzed as an hyperbolic system with respect to the (x, t) variables,
that is with x as the evolution variable. It appears to be really the key for the
mathematical analysis of the problem.
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Figure 6: Development of a shock (right side). The initial concentration (left
side) is continuous and nondecreasing.
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Figure 7: Evolution of an increasing smooth initial concentration of inert gas
with a finite exchange kinetics and two different ”drawback“ coefficients A for
the active gas: A = 0.1 (left) and A = 5 (right). The initial and boundary data
are the same as in Fig. 6

.

We set c = c1 (as in [16], instead of c2 in [9]), m = u c (flow rate of the first
species) and

qi(c) = q∗i (c, 1 − c), i = 1, 2,

h(c) = q1(c) + q2(c),

I(c) = c+ q1(c),

(notice the change of sign in h with respect to [9]). The problem (46)-(47)-(48)
is then written under the form

{
∂tI(c) + ∂x(u c) = 0.

∂th(c) + ∂xu = 0,
(52)

or equivalently

∂xU + ∂tΦ(U) = 0 with U =

(
u
m

)
and Φ(U) =




h(m/u)

I(m/u)


 (53)
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supplemented by initial and boundary data.
We assume that q′1 ≥ 0 and q′2 ≤ 0 (general property of all isotherms, see [16]).

This system (53) is hyperbolic, with eigenvalues 0 and λ =
H(c)

u
.

Introducing the function f = q1 c2 − q2 c1 defined by Douglas and al. in [16],
written here under the form f(c) = q1(c)− c h(c), it appears that λ is genuinely
nonlinear in each domain where f” 6= 0.
Next, the system admits the two Riemann invariants: c and w = lnu + g(c),

where g satisfies g′(c) =
−h′(c)
H(c)

and the smooth entropy families

S(c, u) = φ(w) + uψ(c) (54)

where φ and ψ are any smooth real functions.
Let be G = eg: if the sign of G′′ changes then the system does not admit
any convex smooth entropy but for each convex or degenerate convex smooth
function ψ (i.e. ψ′′ ≥ 0) the corresponding entropy S = uψ(c) is degenerate
convex. Introducing a suitable notion of entropy solution, the authors in [10]
show the existence of at least such a solution.

The mathematical definition of weak entropy solution is the following: let
be T > 0, X > 0, u ∈ L∞((0, T ) × (0,X),R+), 0 ≤ c(t, x) ≤ 1 for almost
(t, x) ∈ (0, T ) × (0,X). Then (c, u) is a weak entropy solution if for all convex
(or degenerate convex) ψ

∂

∂x
(uψ(c)) +

∂

∂t
Q(c) ≤ 0,

in the distribution sense, where Q′ = Hψ′ + h′ψ.

In addition, if G′′ ≥ 0 on [0, 1], (c, u) has to satisfy
∂

∂x
(uG(c)) ≤ 0.

The main result, relying on the resolution of the Riemann problem and on
the Godunov scheme, is the following:

Theorem 11
Let be T > 0, X > 0, c0 ∈ BV (0,X), cb ∈ BV (0, T ), satisfying 0 ≤ c0, cb ≤ 1
and inf0<t<T ub(t) > 0. Then the system admits a weak entropy solution.

A natural framework for this problem, as in the case of the PSA system
with finite exchange kinetics, would be the L∞ one. Some tracks are presently
explored but it is still an open problem.

3.5 Kinetic approaches

The theory of kinetic formulation of hyperbolic systems, introduced by P.-L.
Lions, B. Perthame and E. Tadmor [25], consists in representing a whole family
of entropy inequalities by a single equation, using a supplementary variable, for
the fundamental solution of the wave equation for entropies. It often leads to
numerical schemes enjoying interesting properties and easy to implement.
We give first a result due to James, Peng and Perthame ([20]) concerning the
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system of electrophoresis. Next, using the results stated in 3.4.2, we present a
similar approach for the PSA system, currently developed by the authors.

3.5.1 Kinetic formulation for Electrophoresis

Electrophoresis is a process of separation for compounds in a aqueous solution
with an electric field. The corresponding model is close to the chromatography
system with Langmuir isotherm ([13, 32]). F. James, Y.-J. Peng and B.
Perthame ([20]) have complemented on the system of electrophoresis the theory
of kinetic formulation of hyperbolic systems. They gave several applications
of this kinetic formulation: a maximum principle and a stability result in L∞

using compensated compactness. Even though this system is rather related to
liquid-solid chromatography (the sorption effect is neglected) we mention these
results because the method is powerful and may be extended in other contexts.

The system of electrophoresis is

∂tci + ∂x
αici
D

= 0, t ≥ 0, 1 ≤ i ≤ d, (55)

where c1, · · · , cd are the positive unknowns, D = 1+ c1 + ...+ cd and the αi are
given numbers satisfying 0 < α1 < ... < αd.
This system admits d eigenvalues 0 < λ1(c) ≤ ... ≤ λd(c) and wi = λiD is a
i−Riemann invariant.

The first step consists in building d+ 1 families of nonlinear entropies: it is
summarized in the following proposition.

Proposition 12
For 0 ≤ i ≤ d, the function

χi(ξ;w1, · · · , wd) =

d∏

j=1

∣∣∣1 − ξ

wj

∣∣∣ 1I]wi,wi+1[(ξ)

is an entropy of System (55), convex in c, with the entropy flux

φi(ξ;w1, · · · , wd) =
ξ

D
χi(ξ;w1, · · · , wd).

An entropy solution of (55) is a solution satisfying in the distribution sense
the inequality

∂tE + ∂xF ≤ 0

for any convex entropy of the form

E(c) =

∫

R+

g(ξ)χi(ξ;w1, · · · , wd) dξ

for some i, 1 ≤ i ≤ d, g ∈ L1(R+). Then the authors in [20] derive the following
kinetic formulation of (55): there are d + 1 non-positive measures mi(x, ξ, t)
such that

∂tχi(ξ, c(x, t)) + ∂x

(
ξ

D
χi(ξ, c(x, t))

)
= mi in D

′(Rx × R+ξ × R+t).
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Two applications are given in [20]: the maximum and minimum principle
on the Riemann invariants and a compactness result. They are recalled in the
following two theorems.

Theorem 13
Let c be an entropy solution satisfying c ∈ L∞(0, T ;L1

loc(R)), ci ≥ 0, 1 ≤ i ≤ d.
Then

αi−1 ≤ inf
y∈R

wi(y, 0) ≤ wi(x, t) ≤ sup
y∈R

wi(y, 0) ≤ αi

and for some constant L > 0

L inf
y∈R

c0i (y) ≤ ci(x, t) ≤
1

L
sup
y∈R

c0i (y), 1 ≤ i ≤ d.

Theorem 14
Consider an uniformly bounded family (ci,n(x, t))n≥0 of entropy solutions to the
electrophoresis who satisfy that the initial data are uniformly bounded and

ci,n(x, t) ⇀ ci(x, t) ∈ L∞((0, T ) × R), 1 ≤ i ≤ d

weak* for all T ∈ (0,∞) as n tends to +∞. Then (ci,n)n converges pointwise
to ci an entropy solution.

3.5.2 A kinetic approach for the PSA system

A kinetic formulation built on the entropies (54) given in Section 3.4.2 as well
as several applications were investigated and will be presented in a forthcoming
paper ([11]). More precisely, using the entropy family uψ(c) where ψ′′ ≥ 0 we
first state:

Theorem 15
If (u, c) is a weak entropy solution of System (52), then there exists a nonnega-
tive measure m(t, x, ξ) such that:

∂x(uχ(c, .)) + (H(ξ) − a(ξ)) ∂tχ(c, .) + ∂t (h(c)χ(c, .)) = ∂ξm.

where

χ(c, ξ) =

{
1 if 0 < ξ < c
0 else

and a(ξ) = 1 + f ′(ξ) = H(ξ) − h(ξ).

Conversely, if there exists a positive function u such that lnu ∈ L∞, a
function f ∈ L1

ξ such that 0 ≤ f ≤ 1 and a nonnegative measure m such that

∂x(u f(t, x, ξ)) + a(ξ) ∂tf(t, x, ξ) + ∂t (h(c) f(t, x, ξ)) = ∂ξm

then (u, c) is an entropy solution of (52) with c(t, x) =

∫ 1

0

f(t, x, ξ) dξ.
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Notice that this formulation is not purely kinetic, as in the case of the isentropic
gas dynamics system (see [26]).

With this kinetic formulation, the authors in [11] derive a kinetic numerical
scheme. This first order explicit scheme satisfies in-cell entropy inequalities, the
maximum principle on the concentrations, some BV bounds and is much more
simple to implement than Godunov’s scheme.

4 Open problems

There are a lot of open problems related to the system (46)-(47)-(48). First, the
rigorous derivation of this system from (6)-(7)-(14) considered as a relaxation
problem, as in James ([21]), with a small parameter ε = 1/Ai is a priori quite
more difficult than for the system (8)-(9). In particular, all the BV estimates
stated in [7] blow up. Notice however that numerical experiments, as in Section
3.4.1, show a good behavior in physically relevant context.
The study of oscillating solutions is currently performed by the authors ([12]).
A rigorous and general link between the problem with the velocity given by
Darcy’s law and the constraint (14) has still to be carried out.
There exists some variants of the model taking the axial diffusion or the
temperature into account. In particular, the temperature plays a role which
may be non negligible. Up to our knowledge, the corresponding problems have
never been mathematically studied.
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