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This paper deals with a system of two equations which describes heatless adsoption of a gaseous mixture with two species. When one of the components is inert, we obtain an existence result of a weak solution satisfying some entropy condition under some simplifying assumptions. The proposed method makes use of a Godunov-type scheme. Uniqueness is proved in the class of piecewise C 1 functions.

Introduction

Heatless adsorption is a cyclic process for the separation of a gaseous mixture, called "Pressure Swing Adsorption" cycle. During this process, each of the d Preprint submitted to Elsevier Science species (d ≥ 2) simultaneously exists under two phases, a gaseous and movable one with concentration c i (t, x) (0 ≤ c i ≤ 1), or a solid (adsorbed) other with concentration q i (t, x), 1 ≤ i ≤ d. Following Ruthwen (see [START_REF] Ruthwen | Principles of adsorption and adsorption processes[END_REF] for a precise description of the process) we can describe the evolution of u, c i , q i according to the following system, where C = (c 1 , • • • , c d ):

∂ t c i + ∂ x (u c i ) = A i (q i -q * i )(C), (1) 
∂ t q i + A i q i = A i q * i (C) t ≥ 0, x ∈ (0, 1), (2) 
with suitable initial and boundary data. In ( 1)-( 2) the velocity u(t, x) of the mixture has to be found in order to achieve a given pressure (or density in this isothermal model)

d i=1 c i = ρ(t), (3) 
where ρ represents the given total density of the mixture. The experimental device is realized so that it is a given function depending only upon time.

The function q * i is defined on (R + ) d , depends upon the assumed model and represents the equilibrium concentrations. Its precise form is usually unknown but is experimentally obtained. Simple examples of such a function are for instance the linear isotherm q * i = K i c i , with K i ≥ 0 and the Langmuir isotherm

q * i = Q i K i c i 1 + d j=1 K j c j
, with K i ≥ 0, Q i > 0 (see for instance [START_REF] Bourdarias | Approximation of the solution to a system modeling heatless adsorption of gases[END_REF], [START_REF] James | Convergence results for some conservation laws with a reflux boundary condition and a relaxation term arising in chemical engineering[END_REF], [START_REF] Ruthwen | Principles of adsorption and adsorption processes[END_REF])

The right hand side of ( 1)- [START_REF] Bourdarias | Approximation of the solution to a system modeling heatless adsorption of gases[END_REF] rules the matter exchange between the two phases and quantifies the attraction of the system to the equilibrium state: it is a pulling back force and A i is the "velocity" of exchange for the species i.

A component with concentration c k is said to be inert if A k = 0 and q k = 0.

A theoretical study of the system (1)-( 2)-(3) was presented in [START_REF] Bourdarias | Sur un système d'edp modélisant un processus d'adsorption isotherme d'un mélange gazeux. (french) [on a system of p.d.e. modelling heatless adsorption of a gaseous mixture[END_REF] and a numerical approach was developed in [START_REF] Bourdarias | Approximation of the solution to a system modeling heatless adsorption of gases[END_REF]. Let us point out that one of the mathematical interests of the above model is its analogies and differences compared 2 to variousother classical equations of physics or chemistry. First, when d = 1 (and eventually with A i = 0) this model shares a similar structure withconservation laws under the form

∂ t ρ + ∂ x (ρ u(ρ)) = 0, ∂ x u(ρ) = F (ρ)
where u(ρ) has an integral dependance upon ρ , while in scalar conservation laws u depends upon ρ. In [START_REF] Bourdarias | Sur un système d'edp modélisant un processus d'adsorption isotherme d'un mélange gazeux. (french) [on a system of p.d.e. modelling heatless adsorption of a gaseous mixture[END_REF] both BV and L ∞ theory are developed for this model, but oscillations can propagate thus differing from Burger's example (see Tartar [START_REF] Tartar | Compensated compactness and applications to partial differential equations[END_REF],Lions, Perthame, Tadmor [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related questions[END_REF]).

Secondly, when the coefficients A i tend to infinity (instantaneous equilibrium)

we get formally

q i -q * i = - 1 A i ∂ t q i → 0
and the equations ( 1)-( 2) reduce to

∂ t (c i + q * i (C)) + ∂ x (u c i ) = 0, i = 1, • • • , d. (4) 
Joined to (3), the system of conservation laws (4) generalizes the system of chromatography which has been intensively studied (see [START_REF] James | Sur la modélisation mathématique des équilibres diphasiques et des colonnes de chromatographie[END_REF][START_REF] Rhee | On the theory of multicomponent chromatography[END_REF] for the Langmuir isotherm) whereas the system (1)-(2) enters more in the field of relaxation systems (see for instance Jin and Xin [START_REF] Jin | The relaxing schemes for systems of conservation laws in arbitrary space dimensions[END_REF], Katsoulakis and Tzavaras [START_REF] Katsoulakis | Contractive relaxation systems and the scalar multidimensional conservation law[END_REF]). Actually the system of chromatography corresponds, like in (4), to instantaneous adsorption, but the fluid speed is a constant u(t, x) = u. One may consult James [START_REF] James | Sur la modélisation mathématique des équilibres diphasiques et des colonnes de chromatographie[END_REF] for anumerical analysis and the relationships with thermodynamics, Canon and James [START_REF] Canon | Resolution of the Cauchy problem for several hyperbolic systems arising in chemical engineering[END_REF] in the case of the Langmuir isotherm. In [START_REF] James | Convergence results for some conservation laws with a reflux boundary condition and a relaxation term arising in chemical engineering[END_REF], James studied a system closely related to (1)- [START_REF] Bourdarias | Approximation of the solution to a system modeling heatless adsorption of gases[END_REF] in which the speed is constant and the coefficients A i are equal to 1/ε, where ε is a small parameter. Using compensated compactness, he proved, under some assumptions on the flux, that the solution of this system converges, as ε → 0, to a solution to a system of quasilinear equations similar to (4) satisfying a set of entropy inequalities. The extension of his method to (4) with constraint (3) seems not straightforward and is still an open problem.

In this paper, we deal with the system of equations ( 4)-( 3) with two components (d = 2), one adsorbable with concentration c 1 and one inert with concentration c 2 . Moreover in(3) we assume that ρ ≡ 1, which is not really restrictive from a theoretical point of view. Then, the corresponding system of transport equations writes:

∂ t (c 1 + q * 1 (c 1 , c 2 )) + ∂ x (u c 1 ) = 0, ( 5 
) ∂ t c 2 + ∂ x (u c 2 ) = 0, (6) 
with the algebraic constraint

c 1 + c 2 = 1. (7) 
Notice that we seek positive solutions (c 1 , c 2 ), thus, in view of (7), c 1 , c 2 must satisfy 0 ≤ c 1 , c 2 ≤ 1. Adding ( 5) and ( 6), we get, thanks to (7) :

∂ t q * 1 (c 1 , c 2 ) + ∂ x u = 0.
In the sequel we set c := c 2 and h(c

) = -q * 1 (c 1 , c 2 ) = -q * 1 (1 -c, c), thus our
purpose is to study the system ( 5)-( 6)-( 7) under the form:

               ∂ t c + ∂ x (uc) = 0, ∂ t h(c) -∂ x u = 0, (8) 
supplemented by initial and boundary values:

                           c(0, x) = c 0 (x) ∈ [0, 1], x > 0, c(t, 0) = c b (t) ∈ [0, 1], t > 0, u(t, 0) = u b (t), t > 0. (9) 
We assume in (9) an influx boundary condition, i.e. ∀t > 0, u b (t) > 0. We choose ]0, +∞[ instead of ]0, 1[ as spatial domain for the sake of simplicity.

In order to investigate some properties of the function h we look at some commonly used isotherm ( [START_REF] Douglas Le | Fixed-bed adsorption of gases: Effect of velocity variations on transition types[END_REF]). For linear isotherm, we have:

q * 1 := K 1 c 1 with K 1 > 0, then h ′ (c) := dh dc > 0 ( 10 
)
and h ′′ = 0. For the binary Langmuir isotherm wich is:

q * 1 = Q 1 K 1 c 1 1 + K 1 c 1 + K 2 c 2 , with K 1 > 0, Q 1 > 0, K 2 ≥ 0, we have also h ′ > 0, and h ′′ (c) := d 2 h dc 2 ≥ 0 if K 2 < K 1 (actually K 2 = 0 if
the second species is inert). For the so called BET isotherm defined by

q * 1 = QKc 1 (1 + Kc 1 -(c 1 /c s ))(1 -(c 1 /c s )) , Q > 0, K > 0, c s > 0,
we have still h ′ > 0 but no longer h" ≥ 0. Nevertheless the function h ′ + ch", first derivative of H(c) := 1 + ch ′ (c) remains nonnegative for a convenient choice of the parameters (but unfortunately not in all the physically relevant situations). In this first simplified approach we will assume [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related questions[END_REF] and

H ′ (c) ≥ 0. ( 11 
)
Single-component adsorption is of course of a poor physical meaning, but must be understood as a preliminary theoretical study.

The paper is organized as follows. In section 2, we give some results for smooth solutions. These results suggest us an entropy condition. In section 3, we give solutions for the Riemann Problem satisfying such an entropy condition. In section 4, we use a Godunov scheme to construct an approximate weak solution of problem ( 8)-( 9) and we give some useful bounds. Next, in section 5, we obtain an existence theorem for a weak solution of problem ( 8)-( 9). Lastly, in section 6, the uniqueness is obtained in the class on piecewise C 1 functions.

Smooth solutions

Proposition 2.1 For smooth solutions, the system [START_REF] Jin | The relaxing schemes for systems of conservation laws in arbitrary space dimensions[END_REF] with the initial boundary conditions [START_REF] Katsoulakis | Contractive relaxation systems and the scalar multidimensional conservation law[END_REF] becomes:

∂ t c + ∂ x [α(t)F (c)] = 0, t, x > 0, ( 12 
) c(0, x) = c 0 (x), x > 0, ( 13 
) c(t, 0) = c b (t), t > 0, (14) 
with α(t) = u b (t) exp(g(c b (t))) > 0, F (c) = c exp(-g(c)) > 0, where

g ′ (c) = h ′ (c) H(c) , H(c) = 1 + ch ′ (c) ( 15 
)
and necessarily

u(t, x) = α(t) exp(-g(c(t, x))) > 0, t, x > 0. ( 16 
)
Moreover, under asumption ( 10)- [START_REF] Rhee | On the theory of multicomponent chromatography[END_REF] we have

F ′ > 0 > F ′′ .
Notice that g and F depend only on h ′ , but α depends also on boundaries values u b , c b . The maximum principle is valid for c but not for u: see for instance Figure 6 .

Proof : since c and u are smooth, we can apply the chain rule formula. So, the second equation of ( 8) can be rewritten

∂ x u = h ′ (c)∂ t c, then, with the first equation, ∂ x u = -h ′ (c)∂ x (uc) and we get (∂ x u)(1 + ch ′ (c)) = -uh ′ (c)∂ x c.
Finally, with the notations introduced in (15) we have:

∂ x u = -u h ′ (c) (∂ x c)/H(c) = -u ∂ x (g(c)). ( 17 
)
For a fixed t > 0, the function x → u(t, x) is the unique solution of the ordinary linear differential equation (17) with the "initial" condition u(t, 0) = u b (t) > 0.

Explicitely, we have:

u(t, x) = u b (t) exp(g(c b (t)) -g(c(t, x)), then u(t, x) is
positive for all x. Replacing u in the first equation of (8) we get [START_REF] Ruthwen | Principles of adsorption and adsorption processes[END_REF]. Now, a direct computation gives us:

F ′ (c) = exp(-g(c))/H(c), F ′′ (c) = - exp(-g(c)) H 2 (c) (H ′ (c) + h ′ (c)). ( 18 
)
and thanks to the hypothesis [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related questions[END_REF] and [START_REF] Rhee | On the theory of multicomponent chromatography[END_REF] we have F ′ > 0 and F " < 0: the flux in the scalar conservation law ( 12) is strictly concave.

Theorem 2.1 (Global smooth solution) Assume ( 10)- [START_REF] Rhee | On the theory of multicomponent chromatography[END_REF].

If u b ∈ C 1 ([0, +∞[, ]0, +∞[), if c b , c 0 ∈ C 1 ([0, +∞[, [0, 1]
) satisfy the following compatibility conditions at the corner:

c b (0) = c 0 (0), c ′ b (0) + u b (0)c ′ 0 (0) + h ′ (c b (0))c ′ b (0)c 0 (0) = 0
and if c ′ 0 ≤ 0 ≤ c ′ b , then the system ( 8)-( 9) admits one and only one smooth solution:

(c, u) ∈ C 1 ([0, +∞[ t ×[0, +∞[ x , [0, 1]) × C 1 ([0, +∞[ t ×[0, +∞[ x , ]0, +∞[). Moreover: ∀t > 0, ∂ x c(t, x) ≤ 0, u(t, x) > 0, ∂ x u(t, x) ≥ 0.
We deduce from this result an entropy condition for shockwaves:

(EC) "c increases through a shock".

For smooth solutions, the active gas desorbs and u increases to evacuate gases.

Notice that the same theorem is true for continuous solutions with only one compatibility condition at thecorner: c b (0) = c 0 (0) and replacing the sign of the derivative of the concentrations on the boundary by monotonicity conditions. Figure 5 shows a (non global) smooth solution which produces a shock wave in finite time.

Proof : for a smooth solution we can use the last proposition, so

∂ t c + α(t) F ′ (c) ∂ x c = 0.
Using the characteristic curve defined by:

∂X ∂s (s, t, x) = α(s) F ′ (c(s, X(s, t, x))), X(t, t, x) = x, (19) 
we get

∂ ∂s c(s, X(s, t, x)) = 0. ( 20 
)
Thus, c is constant along the characteristic curve (19), i.e. c(s, X(s, t, x)) = c(t, x), and X writes:

X(s, t, x) = x + F ′ (c(t, x)) s t α(z) dz. (21) 
To construct a solution, we need only to construct all characteristic curves issuing from the boundary and verify that no characteristic curves cross each other, see [START_REF] Smoller | Shock Waves and Reaction-Diffusion Equations[END_REF] p. 241-244, or [START_REF] Fritz | Nonlinear wave equations, Formation of singularities[END_REF], i.e. we need to satisfy: β := ∂ x X(s, t, x)) > 0.

Differentiating (19) with respect to x, we get:

∂β ∂s (s, t, x) = α(s)F ′′ (c(s, X(s, t, x)))∂ x c(s, X(s, t, x)β, β(t, t, x) = 1.
On the other hand we have ∂ x c(s, X(s, t, x)) = ∂ x c(t, x), then for s > t:

∂β ∂s (s, t, x) = [α(s) × F "(c(t, x)) × ∂ x c(t, x)] β(s, t, x), β(t, t, x) = 1.
Since F ′′ (c) < 0 and α(s) > 0, the sufficient way to keep β positive is:

∀(t, x) ∂ x c(t, x) ≤ 0. Since ∂ x c is constant along any characteristic curve,
it suffices to satisfy this condition on the boundary. For characteristic curves issuing from {t = 0}, this last condition becomes ∂ x c(0, x) = c ′ 0 (x) ≤ 0. For characteristic curves issuing from {x = 0}, remark that on x = 0, thanks to the equation ( 12), we have

∂ t c(t, 0) = -α(t) F ′ (c(t, 0)) ∂ x c(t, 0). Since F ′ (c) > 0 and α(t) > 0 we need to have ∂ t c(t, 0) = c ′ b (t) > 0.

Riemann Problem

It is well known (see for instance Dafermos [4], Serre [START_REF] Serre | Systèmes de lois de conservation I[END_REF], Smoller [START_REF] Smoller | Shock Waves and Reaction-Diffusion Equations[END_REF]) that in the context of hyperbolic systems of conservation laws, the life span of smooth solutions is finite even when the initial/boundary data are smooth. For the system studied in this paper, it will be the case if for instance the monotonicity conditions c ′ 0 ≤ 0 ≤ c ′ b are not satisfied, thus we have to deal with weak solutions. In order to get a general existence result via the construction of a sequence of approximate solutions, we are going to adapt the Godunov scheme to the system (8): the first step is the resolution of the Riemann problem.

We are thus looking for a weak solution of the following Riemann problem:

∂ t c + ∂ x (uc) = 0, ∂ t h(c) -∂ x u = 0, ∀x > 0 c(0, x) = c + , ∀t > 0 c(t, 0) = c -and u(t, 0) = u -, (22) 
with c -, c + ∈ [0, 1] and u -> 0. By symmetry, we search a selfsimilar so-

lution, i.e. : c(t, x) = C(z), u(t, x) = U(z) with z = x t > 0.
Recall that from Theorem2.1 we proposed the following (EC) entropy condition for shock waves: c increases through a shock. Then, if c -> c + , we find a continuous solution. To have a global smooth solution, we find necessarily a decreasing solution thanks to Theorem 2.1 and if c -< c + , we find a shockwave.

Proposition 3.1 (Rarefaction wave)

Assume ( 10)- [START_REF] Rhee | On the theory of multicomponent chromatography[END_REF]. If c -> c + , the only smooth selfsimilar solution of( 22) is such that

                           C(z) = c -, 0 < z < z -, dC dz = - G(C) z , z -< z < z + C(z) = c + , z + < z, , (23) 
where

G(c) = H(c) h ′ (c) + H ′ (c) > 0, z -= u - H(c -) > 0, ( 24 
)
z + is defined by the equation C(z + ) = c + , u + = z + H(c + )
, and U is given by:

                           U(z) = u -, 0 < z < z -, U(z) = z H(C(z)), z -< z < z + , U(z) = u + z + < z. (25) 
So, along a rarefaction wave, c decreases, u increases, z -< u -, and z + < u + .

Notice that the computations of z + and u + need the resolution of an O.D.E.

Figure 2 shows a desorption step corresponding to a rarefaction wave arising from a discontinuity at (t = 0, x = 0).

Proof : setting C ′ (z) = dC dz and U ′ (z) = dU dz
, we get from( 8)

-z C ′ + (U C) ′ = 0, (26) 
U ′ = -z h ′ (C) C ′ . ( 27 
) U(z) = z H(C(z)). (28) 
We are looking for a simple wave, so C ′ = 0 on (z -, z + ). From (28), z -is defined by z -= u -/H(c -) and we have to find z + and u + .

From ( 28) and ( 26) we get

C ′ (z) G(C) = - 1 z . Let φ(C) = C c - 1 G(s)
ds. Thanks to the hypothesis ( 10)-( 11) we have G > 0 and, for C < c -, we have φ(C) < 0. But

d dz φ(C(z)) = φ ′ (C) C ′ (z) = C ′ (z) G(C) = - 1 z . Then φ(C(z)) = ln( z - z ) because φ(c -) = 0. Finally, φ(C(z + )) = ln( z - z + ) and z + = z -exp(-φ(c + )
). Now, using again (28) we get u + .

Proposition 3.2 (Shockwave)

Assume ( 10)- [START_REF] Rhee | On the theory of multicomponent chromatography[END_REF]. If c -< c + , the only weak selfsimilar solution of ( 22) is

C(z) =                c -if 0 < z < s, c + if s < z , U(z) =                u -if 0 < z < s, u + if s < z , (29) 
where u + is defined by

u + = u - [c] + c -[h] [c] + c + [h] , (30) 
and where the speed s of the shock satisfies

0 < s = - [u] [h] = [uc] [c] = u - [c] [c] + c + [h] = u + [c] [c] + c -[h] < u + < u - ( 31 
)
with the classical notations for the jumps.

Thanks to the Rankine-Hugoniot condition, this is the only weak monotonic solution with only one jump, i.e. c and u are monotonic functions. So, through a shock wave, c increases, u decreases but remains positive. The speed of the shock is proportional to u -and lower than the fluid velocity u. Notice the difference with a strictly hyperbolic 2 × 2 system. Here we have three data: c -, c + , u -and two unknowns: u + , s. In the hyperbolic case for two shocks, we have four data: c -, c + , u -, u + and four unknowns: c 0 , u 0 , s 1 , s 2 . Figure 3 shows an adsorption step corresponding to a shock wave arising from a discontinuity at (t = 0, x = 0). See also Fig. 4 for the junction of two shocks.

Proof : we cannot find a smooth solution since G > 0 and c should decrease, by (23). Let be ν = (ν t , ν x ) a normal vector to the shock line. The Rankine-

Hugoniot conditions write ν t [c] + ν x [u c] = 0, ν x [u] = ν t [h(c)].
We have

[c] = 0 thus [h(c)] = 0 and ν x = 0. Then the slope s of the shock line satisfies

s = [u c] [c] = - [u] [h] . Then from [u] [c] + [uc] [h] = 0 we get u + u - = [c] + c -[h] [c] + c + [h] ( 32 
)
and all results follow. Lemma 3.1 Assume ( 10)- [START_REF] Rhee | On the theory of multicomponent chromatography[END_REF]. For the solution of the Riemann Problem (22) given in propositions 3.1 and 3.2 we have the following estimate:

| ln(u + ) -ln(u -)| ≤ γ |c + -c -|,
where γ is a true constant depending only on the h function.

Proof : if the solution of the Riemann Problem ( 22) is a rarefaction wave then, by proposition (3.1), we have: 

0 < u + u - = z + H(c + ) z -H(c -) < z + z - , since c -> c
dD dz = - β z , z -≤ z < z + , D(z -) = c -, C(z) ≤ D(z) on (z -, z + ).
explicitely D and z 0 :

D(z) = c --β ln(z/z -), z 0 = z -exp(|c + -c -|/β). Then, it suffices to take γ 1 = 1 β = 1 min c∈[0,1]

G(c)

. If the solution of the Riemann Problem ( 22) is a shock wave then, by proposition(3.2) and equality (32), we have:

0 < u + u - = [c] + c -[h] [c] + c + [h] = S(c -, c + ), c -< c + .
The function S is smooth and positive on Ω = {(c -, c + ), 0 ≤ c -< c + ≤ 1}.

On the diagonal we have c -= c + and S ≡ 1, therefore we verify that ln(S) is a smooth function on Ω, vanishing on the diagonal. Then, there exists γ 2

such that | ln(u + ) -ln(u -)| ≤ γ 2 |c + -c -|. Finally lemma (3.1) holds with γ = max(γ 1 , γ 2 ).

Godunov Scheme

We adapt the classical Godunov scheme for hyperbolic systems to the system of adsorption [START_REF] Jin | The relaxing schemes for systems of conservation laws in arbitrary space dimensions[END_REF]. Let be T > 0, X > 0 fixed. For a fixed integer N we set ∆x = X N + 1 and ∆t = T M + 1

, where M is an integer depending upon N and will be choosen later to satisfy a CFL-type condition. We are going to build an approximate solution (c N , u N ) of ( 8) on (0, T ) × (0, X).

For i = 0, • • • , N and j = 0, • • • , M we denote by B i,j the box B i,j = [t j , t j+1 [×[x i , x i+1 [, where
x i = i∆x, t j = j∆t. We use also midle mesh (x i+1/2 = x i + ∆x/2, t j+1/2 = t j + ∆t/2). We discretize the initial boundary values as follows:

c N (0, x) = c N (0, x i+1/2 ) := 1 ∆x x i+1 x i c 0 (x) dx, x i < x < x i+1 , c N (t, 0) = c N (t j+1/2 , 0) := 1 ∆t t j+1 t j c b (t) dt, t j < t < t j+1 , u N (t, 0) = u N (t j+1/2 , 0) := 1 ∆t t j+1 t j u b (t) dt, t j < t < t j+1 .
where 0 ≤ i ≤ N and 0 ≤ j ≤ M. Assume that, for a given i, we have given c

N (t j , x) = c + on [x i , x i+1 [, c N (t, x i ) = c -and u N (t, x i ) = u -on [t j , t j+1 [, then:
(1) if c -< c + (shock) we compute s and u + according to (31) and (30).

Thanks to the CFL condition and (29) we get c N (t, x i+1 ) = c + , u N (t, x i+1 ) = u + on [t j , t j+1 [ and we define c N (t j+1 , x) on [x i , x i+1 [ as the mean value of the solution of the Riemann problem, that is:

c N (t j+1 , x) = c N (t j+1 , x i+1/2 ) := λ s c -+ (1 -λ s) c + with λ = ∆t ∆x
(2) if c -> c + (rarefaction wave) we compute z -by (24). Then, z + is computed as the unique solution of C(z + ) = c + with C defined through(23).

U is defined by (25) with u + = z + H(z + ). As in the preceding case we have

c N (t, x i+1 ) = c + , u N (t, x i+1 ) = u + on [t j , t j+1 [ and we define c N (t j+1 , x)
on [x i , x i+1 [ as the mean value of the solution of the Riemann problem.

Using for instance the trapezoid rule we get :

c N (t j+1 , x) = c N (t j+1 , x i+1/2 ) := λ z -+ z + 2 c -+ (1 -λ z -+ z + 2 ) c + .
Notice that we could proceed as well by columns before rows, (i beforej). To ensure the CFL condition (33), we need to control sup u. Therefore, by lemma 3.1, we have to control the total variation in space of c for all time. Recall that, for any function v defined on (a, b):

T V (v, (a, b)) = sup n k=0 |v(z k+1 ) -v(z k )| ; n ∈ N, a < z 0 < • • • < z n+1 < b = sup b a v(z)φ ′ (z)dz ; φ ∈ C ∞ c (a, b), |φ| ≤ 1 and v ∈ BV (a, b) if and only if T V (v, (a, b)) < +∞.
In the following lemmas, we prove that this scheme is well defined and we give some useful bounds.

Lemma 4.1 Let be γ the constant defined in lemma 3.1. If the CFL condition is fulfilled, then, for all t ∈ (0, T ):

T V [ln(u(t, .)), (0, X)] ≤ γ T V [c(t, .), (0, X)].
scheme and the monotonicity of c and u on each box (see remark 3.1).

Let us define the total variation of initial-boundary concentration by:

T V (c b , c 0 ) := T V (c b , (0, T ))+T V (c 0 , (0, X))+ sup 0<t<T,0<x<X |c b (t)-c 0 (x)|. ( 34 
)
Lemma 4.2 If the CFL condition is fulfilled, then, for all N ≥ 0:

sup 0<t<T T V [c N (t, .), (0, X)] ≤ T V (c b , c 0 ).
Proof : by monotonicity of the solution of the Riemann problem under the CFL condition (see remark 3.1) we have, for all t ∈ (t j , t j+1 ) and all t ∈

(t j , t j+1 ): T V [c N (t, .), (x i , x i+1 )] = |c N (t j+1/2 , x i ) -c N (t j+1/2 , x i+1 )|. Therefore, we have: T V [c N (t j+1/2 , .), (0, X)] = N i=0 |c N (t j+1/2 , x i+1 ) -c N (t j+1/2 , x i )|.
In particular, in the lower row, we obtain:

T V [c N (t 1/2 , .), (0, X)] = |c N (t 1/2 , 0) -c N (0, x 1/2 )| + N i=1 |c N (0, x i-1/2 ) -c N (0, x i+1/2 )| ≤ |c N (t 1/2 , 0) -c N (0, x 1/2 )| + T V (c 0 (.), (0, X)).
By induction, we get easily

T V [c N (t j+1/2 , .), (0, X)] ≤ |c N (t j+1/2 , 0) -c N (t j , x 1/2 )| +T V [c N (t j-1/2 , .), (0, X)].
Since c N (t j , x 1/2 ) is between c N (t j-1/2 , 0) and c N (t j-1 , x 1/2 ) we have

|c N (t j+1/2 , 0) -c N (t j , x 1/2 )| ≤ |c N (t j+1/2 , 0) -c N (t j-1/2 , 0)| +|c N (t j-1/2 , 0) -c N (t j-1 , x 1/2 )|.
Then, we get:

T V [c N (t j+1/2 , .), (0, X)] ≤ j k=1 |c N (t k+1/2 , 0) -c N (t k-1/2 , 0)| + T V [c N (∆t/2, .), (0, X)] ≤ j k=1 |c N (t k+1/2 , 0) -c N (t k-1/2 , 0)| + |c N (t 1/2 , 0) -c N (0, x 1/2 )| +T V (c 0 (.), (0, X)) ≤ T V (c b (.), (0, t j+1 )) + |c N (t 1/2 , 0) -c N (0, x 1/2 )| + T V (c 0 (.), (0, X)) ≤ T V (c b , c 0 ). Lemma 4.3 Let be λ = u b ∞ × exp(γ T V (c b , c 0 )) > 0. If λ∆t < ∆x, then
the CFL condition is fulfilled.

Proof : we proceed by induction. Let (H i,j ) the following hypothesis: on R i,j = (0, t j+1 ) × (0, x i+1 ) we have

0 < u ≤ sup 0<t<t j+1 (u b (t) exp(γ T V [c(t, .), (0, x i+1 )])) . (35) 
Since λ ≥ u b ∞ , (H 0,j ) is satisfied for all j. We have to show that for j from 0 to M, if (H i,j ) is true and i < N then (H i+1,j ) is also true. To this purpose we need only to prove that u satisfies inequality (35) on B i+1,j .

If (H i,j ) is true, the CFL condition is fulfilled on rectangle R i,j , then

u -:= u(t j+1/2 , x i+1 ) ≤ sup 0<t<t j+1 (u b (t) exp(γ T V [c(t, .), (0, x i+1 )])) .
Solving the Riemann problem on B i+1,j , we get u

+ ≤ u -exp(γ |c + -c -|) thanks to lemma 3.1. Then, sup B i+1,j u ≤ sup 0<t<t j+1 (u b (t) exp(γ T V [c(t, .), (0, x i+1 )])) × exp(γ |c + -c -|) ≤ sup 0<t<t j+1 (u b (t) exp(γ T V [c(t, .), (0, x i+2 )])) .
Therefore, H i+1,j is true. Finally, we have

u ≤ λ = u b ∞ exp(γ T V (c b , c 0 ))
and the CFL condition holds.

Denote by ceil(x) the lowest integer bigger than x. We can fix M as follows:

M = 1 + ceil λT ∆x = 1 + ceil λ T X (N + 1) . ( 36 
)
and the CFL condition is then satisfied. Notice that M∆x ∼ λT and ∆x ∆t → λ

as N → ∞.

Lemma 4.4 Let be L > 0, f ∈ BV (0, L), f = 1 L L 0 f (x)dx, or f = f (0 + ) + f (L -) 2 , then L 0 |f (x) -f |dx ≤ L × T V (f, (0, L)).
We skip the proof of this rather classical lemma.

Lemma 4.5 Let be λ 1 = sup N ∈N ∆x ∆t < ∞, then for any 0 ≤ s < t < T the sequence (c N ) satisfies:

X 0 |c N (t, x) -c N (s, x)| dx ≤ 2λ 1 T V (c b , c 0 ) (|t -s| + 2∆t). ( 37 
)
Proof : we recall that CFL condition is fulfilled. First, we work on B i,j ,

t j ≤ s 1 < s 2 < t j+1
. By monotonicity with respect to time of c N on each box, we have:

x i+1 x i |c N (s 2 , x) -c N (s 1 , x)| dx ≤ x i+1 x i |c N (t j+1 , x -0) -c N (t j , x)| dx ≤ ∆x |c N (t j+1 , x i ) -c N (t j , x i+1/2 )| = ∆x T V (c N (t j+1/2 , .), (x i , x i+1 )).
Since ∆x ≤ λ 1 ∆t, after summation with respect to i, we get:

X 0 |c N (s 2 , x) -c N (s 1 , x)|dx ≤ ∆x T V (c N (t j+1/2 , .), (0, X)) ≤ λ 1 ∆t T V (c b , c 0 ).
Otherwise, on t = t j , there is a jump, but by Lemma 4.4:

x i+1 x i |c N (t j , x) -c N (t j -0, x)| dx = x i+1 x i |c N (t j , x 1/2 ) -c N (t j -0, x)| dx ≤ ∆x T V (c N (t j+1/2 , .), (x i , x i+1 )).
Summing over i, we get

X 0 |c N (t j , x) -c N (t j -0, x)| dx ≤ ∆x T V (c N (t j+1/2 , .), (0, X)) ≤ λ 1 ∆t T V (c b , c 0 ).
For any 0 ≤ s < t < T , let be j := min{i, s ≤ t i }, k := max{l, t j+l ≤ t}, and s ≤ t j < t j+1 < • • • < t j+k ≤ t. By convention t -1 = 0, so we have 

|t j+k+1 -t j-1 | ≤ |t -s| + 2∆t and X 0 |c N (t, x) -c N (s, x)| dx ≤ k l=-1 X 0 |c N (t j+l+1 , x) -c N (t j+l , x)| dx ≤ 2λ 1 T V (c b , c 0 )(|t -s| + 2∆t). Lemma 4.6 Assume that the CFL condition is fulfilled, that u b ∈ L ∞ (0, T ),
(u N ) is bounded inL ∞ ((0, T ) × (0, X)) and in L ∞ (0, T ; BV (0, X)). Further- more: inf N inf (0,T )×(0,X) u N > 0 and sup N u N ∞ ≤ u b ∞ exp(γ T V (c b , c 0 )).
Proof : solving the Riemann problem, u + > 0 follows from u -> 0 and we Let be X > 0, T > 0. Assume ( 10)- [START_REF] Rhee | On the theory of multicomponent chromatography[END_REF] and that c 0 ∈ BV (0, X), c b ∈

have u N > 0 on (0, T ) × (0, X) . If u b ∈ L ∞ (0,
BV (0, T ), u b ∈ L ∞ (0, T ), satisfying 0 ≤ c 0 , c b ≤ 1 and inf 0<t<T u b (t) > 0.
Then the system ( 8)-( 9) admits a weak solution given by Godunov scheme.

Furthermore, c and u satisfy:

c ∈ L ∞ ((0, T ) × (0, X)) ∩ L ∞ ((0, T ); BV (0, X)), ( 38 
) c ∈ Lip(0, T ; L 1 (0, X)), ( 39 
) c ∈ BV ((0, T ) × (0, X)), (40) u ∈ L ∞ ((0, T ) × (0, X)) ∩ L ∞ ((0, T ); BV (0, X)), (41) 
with the following bounds:

X 0 c(t, x)dx ≤ X 0 c 0 (x)dx + u b ∞ t 0 c b (s) ds, ( 42 
) 0 ≤ min(inf c b , inf c 0 ) ≤ c ≤ max(sup c b , sup c 0 ) ≤ 1, (43) c L ∞ ((0,T ),BV (0,X)) ≤ T V (c b , c 0 ), (44) u L ∞ ((0,T )×(0,X)) ≤ u b ∞ exp(γ T V (c b , c 0 )), (45) inf [0,T ]×[0,X] u > 0. ( 46 
)
(γ is the constant defined in lemma 4. [START_REF] Canon | Resolution of the Cauchy problem for several hyperbolic systems arising in chemical engineering[END_REF] 

and depending only on the hfunction)

Proof : let be (c N , u N ) N the sequence constructed in section 4. We are going to prove that a subsequence of (c N , u N ) N converges towards a weak solution (c, u) of ( 8)-( 9), satisfying the estimates (38) to (46).

First step : convergence of c N , u N , u N c N up to a subsequence.

By lemma 4.2, the sequence (c N ) is bounded in L ∞ ((0, T ); BV (0, X)). Furthermore, by lemma 4.5, we obtain a classical compactness argument on (c N ) (see [START_REF] Smoller | Shock Waves and Reaction-Diffusion Equations[END_REF]). Then, up to a subsequence, (c N ) converges to c in L 1 ((0, T )×(0, X))

and a.e. Then c satisfies the same bounds i.e. ( 38), ( 39), ( 43) and (44) hold, in particular c verifies the maximum principle.

By lemma 4.6, the sequence (u N ) is bounded in L ∞ , then, up to a subsequence, (u N ) converges weakly to u in L ∞ weak -⋆. By the same lemma, the sequence

(∂ x u N ) is bounded L ∞ t M 1 x , dual from L 1 t C 0 x , then there exists v ∈ L ∞ t M 1 x such that (∂ x u N ) converges weakly to v in L ∞ t M 1
x weak -⋆. But the weak limit is unique then 45), (46) hold. Now, we can pass to the limit in the nonlinear term u N c N because the sequence (u N ) converges weakly to u in L ∞ weak -⋆ and the sequence (c N ) converges strongly to c in L 1 .

∂ x u = v and u ∈ L ∞ t BV x . Furthermore we have u L ∞ ≤ lim inf N u N L ∞ < +∞, u L ∞ t BVx ≤ lim inf N u N L ∞ t BVx < +∞, inf u ≥ inf N u N > 0 and (41), (
Second step : we show that (c, u), obtained in the previous step is a weak solution of ( 8)- [START_REF] Katsoulakis | Contractive relaxation systems and the scalar multidimensional conservation law[END_REF]. Recall that (c, u) is a weak solution of ( 8)-( 9) on (0, T )×(0, X)

if and only if, for any smooth functions φ, ψ ∈ C ∞ c ((-∞, T ) × (-∞, X)): T 0 X 0 (c ∂ t φ + (cu) ∂ x φ)(t, x) dx dt + X 0 c 0 (x) φ(0, x) dx (47) 
+ T 0 u b (t)c b (t) φ(t, 0) dt = 0, (48) 
T 0 X 0 (h(c) ∂ t ψ -u ∂ x ψ)(t, x) dx dt + X 0 h(c 0 (x)) ψ(0, x) dx (49) 
- T 0 u b (t) ψ(t, 0) dt = 0. (50) 
We are going to prove that (c, u) satisfies (47). A similar proof works to obtain(49). By construction, (c N , u N ) is a weak solution of (8) on each box B i,j and, thanks to the fulfilledCFL condition, is also a weak solution on each row (t j , t j+1 ) × (0, X). Theproblem is only on line t = t j , 0 < j ≤ M and t = 0, x = 0 for the discretisation of the initial boundaryvalue [START_REF] Katsoulakis | Contractive relaxation systems and the scalar multidimensional conservation law[END_REF]. So, for any φ, we have:

X 0 (c N ∂ t φ + c N u N ∂ x φ)(t, x)dxdt + X 0 c N (0, x)φ(0, x)dx + T 0 u N (t, 0)c N (t, 0)φ(t, 0)dt = -J N , where J N = M j=1 X 0 (c N (t j , x + 0) -c N (t j , x -0)) φ(t j , x) dx.
In order to prove that (c, u) satisfies (47), thanks to the results of the first step, we have just to show that J N → 0. We can rewrite J N under the form

J N = M j=1 N i=0
J i,j where

J i,j = ∆x 0 c N (t j , x i+1/2 ) -c N (t j , x i + y) φ(t j , x i + y) dy, and 
c N (t j , x i+1/2 ) = 1 ∆x ∆x 0 c N (t j , x i + y) dy. Since ∆x 0 c N (t j , x i+1/2 ) -c N (t j , x i + y) φ(t j , x i ) dy = 0, we write φ(t j , x i + y) = φ(t j , x i ) + (φ(t j , x i + y) -φ(t j , x i )).
We have

|φ(t j , x i + y) -φ(t j , x i )| ≤ ∂ x φ ∞ ∆x because 0 ≤ y ≤ ∆x.
Thanks to lemma4.4, we have also

|J i,j | = ∆x 0 c N (t j , x i+1/2 ) -c N (t j , x i + y) (φ(t j , x i + y) -φ(t j , x i )) dy ≤ ∂ x φ ∞ ∆x ∆x 0 c N (t j , x i+1/2 ) -c N (t j , x i + y) dy ≤ ∂ x φ ∞ (∆x) 2 T V (c(t j , .), (x i , x i + ∆x))
Therefore,

|J N | ≤ M j=1 ∂ x φ ∞ (∆x) 2 T V (c N (t j , .), (0, X)) ≤ ∂ x φ ∞ T V (c b , c 0 ) M ∆x × ∆x thus, if M ≤ T ∆t , we have |J N | ≤ T ∂ x φ ∞ T V (c b , c 0 ) ∆x ∆t × ∆x.
Since ∆x ∆t → λ when N → ∞, J N converges towards 0. Lastly we get easily (42) by integrating ( 8) over [0, t] × [0, X] and using the positivity of u and c.

Since (c, u) is a weak solution of (8) we have ∂ x u = ∂ t h(c) and, thanks to the estimate on ∂ x u, we get ∂ t h(c) ∈ L ∞ ((0, T ); M 1 (0, X)). We have h ′ > 0, then c = h -1 (h(c)) and the chain rule formula in BV gives

∂ t c = (h -1 ) ′ ∂ t h(c) ∈ L ∞ M 1
x . Then ∂ t c and ∂ x c lie in M 1 ((0, T )×(0, X)) and finally c ∈ BV ((0, T )× (0, X)), which is (40).

We have now strong trace results.

Proposition 5.1 The functions c and u satisfy initial boundary conditions ( 9) strongly.

Proof : the function c belongs to BV ((0, T ) × (0, X)), then admits a strong trace on {t = 0} and {x = 0}. But c is a weak solution of ( 8), ( 9), then admits also a weak trace on the boundary. By uniqueness of traces, c satisfies the initial boundary conditions ( 9) strongly. On the other hand, u belongs to L ∞ ((0, T ) × (0, X)) ∩ L ∞ ((0, T ); BV (0, X)), then admits a strong trace v(t) in {x = 0} defined for a.e. t ∈ (0, T ). We have u(t, x) → v(t) for a.e.

t when x → 0 + and v ∈ L ∞ (0, T ) with v L ∞ t ≤ u L ∞ t,
x , thus, thanks to the Lebesgue's theorem, u admits v as strong trace on {x = 0} in L 1 (0, T ):

lim x→0 + T 0 | ũ(t, x) -v(t) | dt = 0,
where ũ is defined for a.e. t ∈ [0, T ] and all

x ∈ [0, X] as the mean value ũ(t, x) = u(t, x -0) + u(t, x + 0) 2 .

Uniqueness

We study the uniqueness problem for weak entropic solutions in some class of piecewise smooth functions. More precisely we denote by

C 1 p ([0, T ]×[0, X], R 2 ) (C 1 p in brief) the set of functions (c, u) : [0, T ] × [0, X] → R 2 such
that there exists a finite number of continuous and piecewise C 1 curves outside of which (c, u) is C 1 and across which (c, u) has a jump discontinuity. In the sequel, we consider weak solutions (c, u) ∈ C 1 p of ( 8)-( 9) in (0, T ) × (0, X), with piecewise smooth initial and boundary data, satisfying the entropy condition (EC) and our usual assumptions ( 10)-( 11) on h.

We restrict ourselves to the piecewise smooth case since we do not have a weak formulation for the entropy condition (EC). Formally we can expect to obtain such a condition as for hyperbolic PDEs, but it is still an open problem.

Nevertheless, this case is relevant in most practical cases and involve global solutions with shock waves and contact discontinuities.

Theorem 6.1 Let be T, X > 0. Let be u b : [0, T ] → R + , c b : [0, T ] → [0, 1], c 0 : [0, X] → [0, 1] some piecewise C 1 functions. Assume inf [0,T ]
u b (t) > 0 and ( 10), [START_REF] Rhee | On the theory of multicomponent chromatography[END_REF]. Then there exists at most one weak C 1 p solution (c, u) of the system ( 8)-( 9) satisfying the entropy condition (EC), the maximum principle ( 43) and (46). Lemma 6.1 Any shock curve across which c has a non zero jump admits a parametrization t → x(t).

Proof : let be ν = (ν t , ν x ) a normal of the shock line. Since (c, u) is a weak solution, it satisfies the Rankine Hugoniot condition and we get ν x = 0 and lemma 6.1 holds .

Remark: in the case where [c] = 0 and [u] = 0, the solution admits a contact discontinuity. We can easily obtain such a solution by considering for instance the following set of initial boundary data: c 0 ≡ a, c b ≡ a, u b = u 1 for 0 < t < t * and u b = u 2 for t * < t < T . We have an obvious weak solution defined by c(t, x) ≡ a, u(t, x) ≡ u 1 on (0, t * ) × (0, X) and u(t, x) ≡ u 2 on (t * , T ) × (0, X): the boundary discontinuity of u is linearly propagated. Figure 6 shows an example of such a situation. We define now a "determination zone" Ω = {(t, x), t 0 < t < t 1 , x 1 (t) < x < x 2 (t)} where 0 ≤ t 0 < t 1 < T , x 1 (t) and

x 2 (t) are shock curves. We assume that (c, u) ∈ C 1 (Ω).

Lemma 6.2 The characteristics curves lying in Ω satisfy

0 < dX ds (s, t, x) = u H(c) ≤ u (51) 
Proof : since (c, u) ∈ C 1 (Ω), we have Proof : this proof relies on the entropy condition (EC). Let be s ∈]t 0 , t 1 [ and s → x(s) a shock curve. As usually we definec + = c(s, x(s) + 0), c -= c(s, x(s) -0), u + = u(s, x(s) + 0) and u -= u(s, x(s) -0). It follows from ( 19) that lemma 6.3 reduces to the inequalities α(s)

∂ t c + α(t) F ′ (c)∂ x c = 0
F ′ (c + ) < x ′ (s) < α(s) F ′ (c -).
Consider for instance the fist one: thanks to (31) and (51) it is equivalent to

x ′ (s) = u + [c] [c] + c -[h] > u + H(c + ) . Now we have u + > 0, c + > c -> 0, H(c + ) = 1 + c + h ′ (c + )
> 0 and the assumption [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related questions[END_REF], thus an easy computation leads to

α(s) F ′ (c + ) < x ′ (s) ⇐⇒ c + h ′ (c + ) [c] -c -[h] > 0 ⇐⇒ φ(c -) > 0 where φ is defined by φ(y) = c + h ′ (c + ) (c + -y) -y (h(c + ) -h(y)). We have φ ′ (y) = -(c + h ′ (c + ) -y h ′ (y)) -(h(c + ) -h(y)) = -(H(c + ) -H(y)) -(h(c + ) -h(y)) .
Thanks to [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related questions[END_REF] and [START_REF] Rhee | On the theory of multicomponent chromatography[END_REF] we have φ ′ (y) < 0 for y < c + , moreover φ(c + ) = 0.

Thus we get φ(c -) > 0 and lemma 6. Proof : let be (t 0 , x 0 ) ∈ [0, T [×[0, X[ and assume that there exists two shock cuves x 1 (s) and x 2 (s) issuing from (t 0 , x 0 ) such that we have for instance x 1 (s) < x 2 (s) locally in time (t 0 < s < t 1 ) and (c, u) smooth in

Z := {(s, ξ) ; t 0 < s < t 1 , x 1 (s) < ξ < x 2 (s)}.
Then we show easily that a backward characteristic line drawn from any point (t, x) ∈ Z enter one of the two shock curves which contradicts lemma 6.3

We prove now the local uniqueness for rarefaction waves.

Lemma 6.5 Let be (t 0 , x 0 ) a point of discontinuity for c(t, x),c + = c(t 0 , x 0 +0) and c -= c(t 0 , x 0 -0). If c -> c + , then there exists an openset U containing (t 0 , x 0 ), there exists t 1 > t 0 such that ( 8)-( 9)admits an unique smooth solution in (]t 0 , t 1 [×]0, X[) ∩ U.

Proof : we assume that x 0 > 0 (the case x 0 = 0 is similar). According to (EC) there is no shock curve passing through (t 0 , x 0 ), thus the solution is smooth in an open setV =]t 0 , t are piecewise C 1 and we get the local uniqueness of the solution for t > t 0 .

-= {(s, ξ) ; t 0 < s < t 1 , x 0 -δ + M (s -t 0 ) < x < X -(s)} and D + = {(s, ξ) ; t 0 < s < t 1 , X + < x < x 0 + δ -M (s -t 0 )}
F (C -, C + ) = U + -U - h(C + ) -h(C -) is C 1 ,
Corollary 6.1 There exists τ > 0 such that the solution is unique on (0, τ ) × (0, X).

Proof : it follows from lemmas 6.5 and 6.6) that for all x 0 ∈ (0, X) there exists δ > 0, there exists τ > 0 such that the solution isunique on (0, τ ) × (x 0 -δ, x 0 + δ). Then we conclude using a mere compacity argument Proof of theorem 6.1: let T * = sup{τ ∈ [0, T ] ; the solution is unique on (0, τ ) × (0, X)} and assume that T * < T . The solution is unique on (0, T * ) × (0, X). By corollary6.1 there exists τ > 0 such that we have uniqueness on (T * , T * + τ ) × (0, X). Then we have uniqueness on (0, T * + τ ) × (0, X), contradicting the assumption. Finally T * = T and theorem 6.1 holds.

Remark 6.2 In the paragraph (2) we showed that, in the case of smooth solutions, c is the solution of the scalar conservation law [START_REF] Ruthwen | Principles of adsorption and adsorption processes[END_REF]. Thus, it is a natural question to wonder if the weak entropic solutions of (12) (in the usual sense) are the same as those of the system ( 8)-( 9) with the entropy condition (EC) (at least in the case of uniqueness). Actually the answer is positive if and only if the function h is linear and increasing, i.e. if and only if the isotherm function is linear (q * (c 1 , c 2 ) = a c 1 with a > 0 or equivalently "propagates at infinite speed". We show the evolution of c and u at the position x = 0.5. Notice that the maximum principle is not valid for u.

Remark 3 . 1

 31 For the Riemann Problem notice that c satisfies the maximum principle. It is very important since c must be in [0, 1]. Notice also that for all t > 0 the functions c(t, •) and u(t, •) are monotonic thanks to (10)-[START_REF] Rhee | On the theory of multicomponent chromatography[END_REF].

  + and c → H(c) is an increasing function. Let be β = min 0≤c≤1 G(c) > 0 and D the upper solution:
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 1 Fig. 1. Riemann problem in a box B ij

  inf 0<t<T u b (t) > 0 and that c 0 and c b have bounded variations. Then the sequence

  T ) and if inf 0<t<T u b (t) > 0 then ln(u b ) ∈ L ∞ . Thanks to lemma 4.1 and lemma 4.2, if c 0 and c b have bounded variations, we have sup N sup 0<t<T T V x (ln(u N (t, .))) < +∞ and lemma 4.6 holds. 5 Convergence towards a weak solution Theorem 5.1 (Global large weak solution)

3 holds. Lemma 6 . 4

 64 From each point (t 0 , x 0 ) ∈ [0, T [×[0, X[ emerges at most one shock curve.

h

  (c) = ac -a). Let us briefly justify this claim . For a shock wave connecting (c -, u -) and (c + , u + ), let be σ the speed of the shock given by the Rankine-Hugoniot condition for[START_REF] Ruthwen | Principles of adsorption and adsorption processes[END_REF]: σ = α(t)[F (c)][c] and let be s the corresponding speed for (8)-(9), given by (31). Writting α(t) = u -e g(c -) we get:s = σ ⇐⇒ c + -c - c + -c -+ c + (h(c + ) -h(c -)) = c + e -(g(c + -g(c -)) -c - c + -c - .Setting c -= 0, c + = x and using[START_REF] Tartar | Compensated compactness and applications to partial differential equations[END_REF] we get, after differentiation with respect to x: g(x) = ln(1 + x h ′ (x)). Differentiating again we get finally h ′′ = 0 as a necessary condition. It is very easily shown that this condition is also sufficient. Finally if h(c) = a c + b we have g ′ (c) = a a c + 1 and, up to an additive constant, F (c) = c a c + 1 : the (EC) condition (c increases through a shock) coincides with the Oleinik condition if and only if F is concave, i.e. a > 0.

Fig. 5 .Fig. 6 .

 56 Fig. 5. Development of a shock. The initial concentration is continuous andincreasing, there is no discontinuity at (t = 0, x = 0). Boundary data arec b = 0.2 and u b = 0.5.

  [START_REF] Bourdarias | Sur un système d'edp modélisant un processus d'adsorption isotherme d'un mélange gazeux. (french) [on a system of p.d.e. modelling heatless adsorption of a gaseous mixture[END_REF] [×]x 0 -2 δ, x 0 + δ[ and has no discontinuity point in {t 0 }×]x 0 -2 δ, x 0 [ and in {t 0 }×]x 0 +δ[. Let be X ± the"limiting characteristics" defined for s ≥ t 0 , following (21), by X ± (s) = x 0 + F ′ (c±) Let time t 1 . This last point is easily justified using (21), (53), inf [0,T ] u b (t) > 0 and that F ′ is continuous and strictly decreasing. It follows that the solution cannot be smooth in Z = {(s, ξ) ; t 0 < s < t 1 , X + (s) < ξ < X -(s)}. Using the characteristic lines given by (52), we define the C 1 functions C -and C + respectively on the open sets D

	s	α(τ ) dτ . We de-
	t 0	

fine as above the open set Z = {(s, ξ) ; t 0 < s < t 1 , X -(s) < ξ < X + (s)}.

  which both contains Z. Thanks to (16), we associate them two C 1 functions U - and U + . Then the o.d.e.

	dξ ds	= F (C -(s, ξ(s)), C + (s, ξ(s))), ξ(t 0 ) = x 0 , where

  admits locally (on ]t 0 , t 1 [, restricting t 1 if

	[u]	dX ds	=
	[H(c)]		

necessary) an unique solution which determines the shock curve. The entropic solution is uniquely defined for (s, ξ) ∈ D, x < ξ(s) or x > ξ(s) by C -or C + respectively. Remark 6.1 If (t 0 , x 0 ) is a point of discontinuity for u but not for c, the entropy condition (EC) implies that there is no shock curve passing through this point. The characteristic lines, locally defined around (t 0 , x 0 ) by

be (t, x) ∈ Z ∩ V and X(s, t, x), t 0 < s ≤ t the associated backward characteristic line. We have lim s→t 0 +0 X(s, t, x) = x 0 because the characteristic lines cannot cross each other, thus x 0 = x -F ′ (c(t, x)) A(t) with A(t) = t t 0 α(s) ds. Since F ′ is strictly decreasing (prop. 2.1) we getc(t, x) = (F ′ ) -1 x -x 0 A(t) and conversely this last formula defines a smooth solution in Z. Along (s, X ± (s)) we have c = c ± and u = u ± . Lastly the solution is defined in an unique way, using the characteristics lines, in V ∩ {X(s, t 0 , x 0 -δ) < x < X -(s) or x > X + (s)} and lemma 6.5 follows.

We prove now the local uniqueness for the shock waves.

. Under the assumption c -< c + , there exists t 1 > t 0 , there exists δ > 0 such that the solution is unique on

} and presents an unique admissible shock curve issuing from (t 0 , x 0 ).

Proof : let be δ > 0 such that x 0 is the only discontinuity point for c(t, x)

in {0}×]x 0 -δ, x 0 + δ[, and X ± defined as in the proof of lemma 6.5 (notice that X + < X -). Let t 1 > t 0 such that the solution of the o.d.e.

and that t 1 -t 0 is small enough to ensure that the characteristic lines issuing respectively from {0}×]x 0 -δ, x 0 [ and {0}×]x 0 , x 0 + δ[ meet each other before

The following results have been obtained with a Langmuir isotherm, using the Godunov scheme presented in section 4. The values of the various parameters, adapted from those in [START_REF] Douglas Le | Fixed-bed adsorption of gases: Effect of velocity variations on transition types[END_REF] are not important: our purpose is to illustrate the phenomena pointed out along the previous study. The bed profiles in the cases of adsorption or desorption steps (Fig. 2 and3) for the Langmuir or the linear isotherm are the same as in [START_REF] Douglas Le | Fixed-bed adsorption of gases: Effect of velocity variations on transition types[END_REF], but, as pointed out in the introduction, the case of the so called BET isotherm is out of our reach under the assumptions ( 10)-( 11). The "small shock" catches the other and merge into a single one. The concentration c of the inert gas evolves towards the steady state c ≡ 0.1.