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Reversed Dirichlet environment and

Directional transience of random walks in Dirichlet random environment

Christophe Sabot and Laurent Tournier

Abstract We consider random walks in a random environment that is given by i.i.d. Dirichlet distributions

at each vertex of Z
d or, equivalently, oriented edge reinforced random walks on Z

d. The parameters of the

distribution are a 2d-uplet of positive real numbers indexed by the unit vectors of Z
d. We prove that, as soon as

these weights are nonsymmetric, the random walk (Xn)n in this random environment is transient in a direction

(i.e. it satisfies Xn ·ℓ →n +∞ for some ℓ) with positive probability. In dimension 2, this result can be strenghened

to an almost sure directional transience thanks to the 0-1 law from [ZM01]. Our proof relies on the property of

stability of Dirichlet environment by time reversal proved in [Sa09]. In a first part of this paper, we also give a

probabilistic proof of this property as an alternative to the change of variable computation used in [Sa09].

Introduction

Random walks in a multidimensional random environment have attracted considerable interest in the
last few years. Unlike the one-dimensional setting, this model remains however rather little under-
stood. Recent advances focused especially in two directions: small perturbations of a deterministic
environment (cf. for instance [BoZe07]) and ballisticity (cf. [Sz04] for a survey), but few conditions are
completely explicit or known to be sharp.

The interest for random Dirichlet environment stems from the desire to take advantage of the fea-
tures of a specific multidimensional environment distribution that make a few computations explicitly
possible, and hopefully provide through them a better intuition for the general situation. The choice of
Dirichlet distribution appears as a natural one considering its close relationship with linearly reinforced
random walk on oriented edges (cf. [Pe88] and [EnSa02]). The opportunity of this choice was further
confirmed by the derivation of a ballisticity criterion by N.Enriquez and C.Sabot [EnSa06] (later im-
proved by L.Tournier [To09]), and more especially by the recent proof by C.Sabot [Sa09] that random
walks in Dirichlet environment on Z

d are transient when d ≥ 3.

The proof of the ballisticity criterion in [EnSa02] relies on an integration by part formula for Dirichlet
distribution. It gives algebraic relations involving the Green function that allow to show that Kalikow’s
criterion applies. As for the proof of [Sa09], one of its key tools is the striking property (Lemma 1
of [Sa09]) that, provided the edge weights have null divergence, a reversed Dirichlet environment (on a
finite graph) still is a Dirichlet environment, with weights simply given by those of the corresponding
reversed edges.

In this paper we prove with this same latter property that random walks in Dirichlet environment on
Z

d (d ≥ 1) are directionally transient as soon as the weights are nonsymmetric. More precisely, under
this condition, our result (Theorem 1) proves that directional transience happens with positive prob-
ability: for some direction ℓ, Po(Xn · ℓ → +∞) > 0. Combined with S.Kalikow’s 0-1 law from [Ka81],
this proves that, almost surely, |Xn · ℓ| → +∞. Furthermore, in dimension 2, the 0-1 law proved by
M.Zerner and F.Merkl (cf. [ZM01]) allows to conclude that, almost surely, Xn · ℓ → +∞.

The above mentioned property of the reversed Dirichlet environment was derived in [Sa09] by means
of a complicated change of variable. In Section 2 of the present paper, we provide an alternative
probabilistic proof of this property.
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1 Definitions and statement of the results

Let us precise the setting in this paper. Let G = (V,E) be a directed graph, i.e. V is the set of vertices,
and E ⊂ V × V is the set of edges. If e = (x, y) is an edge, we respectively denote by e = x and e = y

its tail and head. We suppose that each vertex has finite degree, i.e. that finitely many edges exit any
vertex. G is said to be strongly connected if for any pair of vertices (x, y) there is a directed path from
x to y in G. The set of environments on G is the set

∆ = {(pe)e∈E ∈]0, 1[E | for all x ∈ V,
∑

e∈E,e=x

pe = 1}.

Let (pe)e∈E be an environment. If e = (x, y) is an edge, we shall write pe = p(x, y). Note that p

extends naturally to a measure on the set of paths: if γ = (x1, x2, . . . , xn) ∈ V n is a path in G, i.e. if
(xi, xi+1) ∈ E for i = 1, . . . , n − 1, then we let

p({γ}) = p(γ) = p(x1, x2)p(x2, x3) · · · p(xn−1, xn).

To any environment p = (pe)e∈E and any vertex x0 we associate the distribution P
(p)
x0

of the Markov
chain (Xn)n≥0 on V starting at x0 with transition probabilities given by p: for every path γ =
(x0, x1, . . . , xn) in G starting at x0, we have

P (p)
x0

(X0 = x0, . . . ,Xn = xn) = p(γ).

When necessary, we shall specify by a superscript P
(p),G
x0

which graph we consider.

Let (αe)e∈E be positive weights on the edges. For any vertex x, we let

αx =
∑

e∈E,e=x

αe

be the sum of the weights of the edges exiting from x. The Dirichlet distribution with parameter
(αe)e∈E is the law P

(α) of the random variable p = (pe)e∈E on ∆ obtained by taking at each site x

the transition probabilities (pe)e∈E,e=x independently according to the Dirichlet law with parameter
(αe)e∈E,e=x, i.e. according to the distribution

(
Γ(αx)∏

e,e=x Γ(αe)

)
∏

e,e=x

pαe−1
e

∏

e∈ eE,e=x

dpe,

where Ẽ is obtained from E by removing arbitrarily, for each vertex x, one edge with origin x (the
distribution does not depend on this choice). The associated expectation will be denoted by E

(α). We

may thus consider the probability measure E
(α)[P

(p)
x0

(·)] on random walks on G.

Time reversal Let us suppose that G is finite and strongly connected. Let Ǧ = (V, Ě) be the graph
obtained from G by reversing all the edges, i.e. by swapping the head and tail of the edges. To any
path γ = (x1, x2, . . . , xn) in G we can associate the reversed path γ̌ = (xn, . . . , x2, x1) in Ǧ.

For any environment p = (pe)e∈E, the Markov chain with transition probabilities given by p is
irreducible, and G is finite, hence we may define its unique invariant probability (πx)x∈V on V and the
environment p̌ = (p̌e)e∈Ě obtained by time reversal: for every e ∈ E,

p̌ě =
πe

πe
pe.
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For any family of weights α = (αe)e∈E , we define the reversed weights α̌ = (α̌e)e∈Ě simply by α̌ě = αe

for any edge e ∈ E, and the divergence of α is given, for x ∈ V , by div(α)(x) = αx − α̌x.

The following proposition is Lemma 1 from [Sa09].

Proposition 1. – Suppose that the weights α = (αe)e∈E have null divergence, i.e.

∀x ∈ V,div(α)(x) = 0 (or equivalently α̌x = αx).

Then, under P
(α), p̌ is a Dirichlet environment on Ǧ with parameters α̌ = (α̌e)e∈Ě .

In section 2, we give a neat probabilistic proof of this proposition. It is also the core of the proof of
the directional transience.

Directional transience on Z
d We consider the case V = Z

d (d ≥ 1) with edges to the nearest
neighbours. An i.i.d. Dirichlet distribution on G is determined by a 2d-vector ~α = (α1, β1, . . . , αd, βd)
of positive weights. We define indeed the parameters α on E by α(x,x+ei) = αi and α(x,x−ei) = βi

for any vertex x and index i ∈ {1, . . . , d}. In this context, we let Po = E
(α)[P

(p)
o (·)] be the so-called

annealed law.

Theorem 1. – Assume α1 > β1. Then

Po(Xn · e1 →n +∞) > 0.

The 0-1 law proved by S.Kalikow in Lemma 1.1 of [Ka81] and generalized to the non-uniformly
elliptic case by M.Zerner and F.Merkl in Proposition 3 of [ZM01], along with the 0-1 law proved by
M.Zerner and F.Merkl in [ZM01] (cf. also [Ze07]) for the two-dimensional random walk allow to turn
this theorem into almost-sure results:

Corollary. – Assume α1 > β1.

(i) If d ≤ 2, then
Po-almost surely, Xn · e1 →n +∞.

(ii) If d ≥ 3, then
Po-almost surely, |Xn · e1| →n +∞.

Remark This theorem provides examples of non-ballistic random walks that are transient in a direc-
tion. Proposition 12 of [To09] shows indeed that the condition 2

∑
j(αj +βj)−αi −βi ≤ 1 for a given i

implies Po-almost surely Xn

n →n 0, because of the existence of “finite traps”, so that any choice of small
unbalanced weights (less than 1

4d for instance) is such an example. Another simple example where such
a behaviour happens was communicated to us by A.Fribergh. It is however believed (cf. [Sz04] p.227)
that transience in a direction implies ballisticity if a uniform ellipticity assumption is made, i.e. if there
exists κ > 0 such that, for every edge e, P-almost surely pe ≥ κ.

Under the hypothesis of Theorem 1 we conjecture that, for any d ≥ 1,

Po(Xn · e1 →n +∞) = 1,

and that the following identity is true:

Po(D = +∞) = 1 −
β1

α1
,

where D = inf{n ≥ 0|Xn · e1 < 0}. In this paper, only the “≥” inequality is proved.
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2 Reversed Dirichlet environment. Proof of Proposition 1

It suffices to prove that, for a given starting vertex o, the annealed distributions E
(α)[P

(p̌)
o (·)] and

E
(α̌)[P

(p)
o (·)] on walks on Ǧ are the same.

Indeed, the annealed distribution E[P
(p)
o (·)] characterizes the distribution P of the environment, as

soon as we assume that P is a distribution on Ω =
∏

x∈V Px such that P-almost every environment p

is transitive recurrent. This results from considering the sample environment p(n) at time n:

for every e = (x, y) ∈ E, p(n)
e =

|{0 ≤ i < n|(Xi,Xi+1) = e}|

|{0 ≤ i < n|Xi = x}|
.

From the recurrence assumption and the law of large numbers we deduce that p(n) makes sense for

large n and that, as n → ∞, it converges almost-surely under P
(p)
o , and thus under E[P

(p)
o (·)], to a

random variable p̃ with distribution P. This way we can recover the distribution of the environment
from that of the annealed random walk.

We are thus reduced to proving that, for any finite path γ in G,

E
(α)[p̌(γ̌)] = E

(α̌)[p(γ̌)]. (1)

The only specific property of Dirichlet distribution to be used in the proof is the following “cycle
reversal” property:

Lemma 2. – For any cycle σ = (x1, x2, . . . , xn(= x1)) in G, E
(α)[p(σ)] = E

(α̌)[p(σ̌)], i.e.

E
(α)[p(x1, x2) · · · p(xn−1, xn)] = E

(α̌)[p(xn, xn−1) · · · p(x2, x1)].

Proof. Remembering that the annealed random walk in Dirichlet environment is an oriented edge
linearly reinforced random walk where the initial weights on the edges are the parameters of the
Dirichlet distribution, the left-hand side of the previous equality writes:

E
(α)[p(σ)] =

∏
e∈E αe(αe + 1) · · · (αe + ne(σ) − 1)∏
x∈V αx(αx + 1) · · · (αx + nx(σ) − 1)

,

where ne(σ) (resp. nx(σ)) is the number of crossings of the oriented edge e (resp. the number of visits of
the vertex x) in the path σ. The cyclicity gives ne(σ) = ně(σ̌) and nx(σ) = nx(σ̌) for all e ∈ E, x ∈ V .
Furthermore, by assumption α̌x = αx for every vertex x, and by definition αe = α̌ě for every edge e.
This shows that the previous product matches the similar product with α̌ and σ̌ instead of α and σ,
hence the lemma. �

If σ = (x1, x2, . . . , xn) is a cycle in G (thus xn = x1), the definition of the reversed environment gives:

p(σ) = p(x1, x2)p(x2, x3) · · · p(xn−1, xn)

=
πx2

πx1

p̌(x2, x1)
πx3

πx2

p̌(x3, x2) · · ·
πxn

πxn−1

p̌(xn, xn−1)

= p̌(x2, x1)p̌(x3, x2) · · · p̌(xn, xn−1)

= p̌(σ̌) (2)

Therefore, the previous lemma gives: E
(α)[p̌(σ̌)] = E

(α̌)[p(σ̌)], which is Equation (1) for cycles.
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Consider now a non-cycling path γ in G: γ = (x = x1, . . . , xn = y) with x 6= y. The same computation
as above shows that

p̌(γ̌) =
πx

πy
p(γ).

It is a well-known property of Markov chains that πx

πy
= E

(p)
y [Ny

x ] where N
y
x is the number of visits to

x before the next visit of y: N
y
x =

∑Hy

i=0 1{Xi=x}, with Hy = inf{n ≥ 1 | Xn = y}. It can therefore be
written, in a hopefully self-explanatory schematical way:

πx

πy
=

∞∑

k=0

P (p)
y (Ny

x ≥ k) =

∞∑

k=0

p (
6= x, y

6= x, y

xy
6= x, y

y

≥ k times

) =

∞∑

k=0

p (

k times

6= x, y

6= x, y

xy ) ,

where the subscripts “6= x, y” mean that the paths sketched by the dashed arrows avoid x and y, and
“(≥)k times” refers to the number of loops. Using the notation {x yγ } for the event where the
walk follows the path γ (which goes from x to y), the Markov property at the time of k-th visit of x

gives:

p̌(γ̌) =
∞∑

k=0

p (

k times

6= x, y

6= x, y

xy ) p(γ) =
∞∑

k=0

p (

k times

6= x, y

6= x, y

x γy y) .

The paths in the probability on the right-hand side are cycles. Taking the expectation under P
(α) of

both sides, we can use the Lemma to reverse them. We get:

E
(α)[p̌(γ̌)] =

∞∑

k=0

E
(α̌)[p (

k times

6= x, y

6= x, y

xγ̌y y)].

It only remains to notice that the summation over k ∈ N allows to drop the condition on the path
after it has followed γ̌:

E
(α)[p̌(γ̌)] = E

(α̌)[p(γ̌)].

This concludes the proof of the proposition.

3 Directional transience. Proof of Theorem 1

For any integer M , let us define the stopping times:

TM = inf{n ≥ 0|Xn · e1 ≥ M}

T̃M = inf{n ≥ 0|Xn · e1 ≤ M},

and in particular D = T̃−1. In addition, for any vertex x, we define Hx = inf{n ≥ 1 | Xn = x}.

Let N,L ∈ N
∗. Consider the finite and infinite “cylinders”

CN,L = {0, . . . , L − 1} × (ZN )d−1 ⊂ CN = Z × (ZN )d−1,

endowed with an i.i.d. Dirichlet environment of parameter ~α. We are interested in the probability that
the random walk starting at o = (0, 0, . . . , 0) exits CN,L to the right. Specifically, we shall prove:

E
(α)
[
P (p),CN

o (TL < T̃−1)
]
≥ 1 −

β1

α1
. (3)
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Figure 1: Definition of the weighted graph G. The top and bottom rows are identified (the graph is
based on a cylinder) and the weights are the same on each line. Both vertices called δ are the same.

To that aim, we introduce the finite weighted graph G = GL,N defined as follows (cf. also figure 1).
The set of vertices of G is V = CN,L+1∪{δ}. Let us denote by L = {0}×(ZN )d−1 and R = {L}×(ZN )d−1

the left and right ends of the cylinder. The edges of G inside CN,L+1 go between nearest vertices for
usual distance. In addition, “exiting” edges are introduced from the vertices in L and R into δ, and
“entering” edges are introduced from δ into the vertices in L. The edges in CN,L+1 (including exiting
edges) are endowed with weights naturally given by ~α except that the edges exiting from R toward δ

have weight α1 − β1(> 0) instead of α1. At last, the weight on the entering edges is α1.

These weights, let us denote them by α′, are chosen in such a way that div α′(x) = 0 for every vertex
x (including δ, of course). We are thus in position to apply Proposition 1.

Using Equation (2) to reverse all the cycles in G that start at δ and get back to δ from R (for the
first time), we get the following equality:

P
(p),G
δ (XHδ−1 ∈ R) = P

(p̌),Ǧ
δ (X1 ∈ R) .

In the reversed graph Ǧ, there are N edges that exit δ to L (with reversed weight β1), and N edges
that exit δ to R (with reversed weight α1 −β1). Combined with the Dirichlet distribution of p̌ under P

given by Proposition 1 (notice that in fact we only reverse cycles, hence Lemma 2 suffices), the previous
equality gives:

E
(α′)
[
P

(p),G
δ (XHδ−1 ∈ R)

]
= E

(α̌′)



∑

e∈Ě,e=δ

p(e)


 =

N(α1 − β1)

N(α1 − β1) + Nα1
= 1 −

β1

α1
. (4)

In the second equality we used the fact that under P
(α̌′) the marginal variable pe follows a beta dis-

tribution with parameters (α̌′
e, (
∑

e′∈Ě,e′=δ α̌′
e′) − α̌′

e), and the fact that the expected value of a Beta
random variable with parameters α and β is α

α+β .

Let us show how this equality implies the lower bound (3). First, because of the symmetry of the

weighted graph, the distribution of X1 under E
(α′)[P

(p),G
δ (·)] is uniform on L, hence:

E
(α′)
[
P

(p),G
δ (XHδ−1 ∈ R)

]
= E

(α′)
[
P (p),G

o (XHδ−1 ∈ R)
]
. (5)
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Then we relate the exit probability out of CN,L endowed with parameters α with the exit probability out
of CN,L+1 endowed with modified parameters α′. These weights α and α′ coincide in CN,L; furthermore,
a random walk on the cylinder CN , from o, reaches the abcissa L before the abcissa L + 1, so that:

E
(α)
[
P (p),CN

o (TL < T̃−1)
]
≥ E

(α′)
[
P (p),CN

o (TL+1 < T̃−1)
]

= E
(α′)
[
P (p),G

o (XHδ−1 ∈ R)
]
. (6)

The equalities (4) and (5), along with (6), finally give (3).

To conclude the proof of the theorem, let us first take the limit as N → ∞. Due to the ellipticity of
Dirichlet environments, Lemma 4 of [ZM01] shows that the random walk can’t stay forever inside an
infinite slab:

0 = E
(α)[P (p)

o (TL = T̃−1 = ∞)] = lim
N→∞

E
(α)[P (p)

o (TL ∧ T̃−1 > T⊥
N )]

where T⊥
N = inf{n ≥ 0| |Xn − (Xn · e1)e1| > N} is the first time when the random walk is at distance

greater than N from the axis Re1. Using this with the stopping time T⊥
N/2, we can switch from the

cylinder CN,L to an infinite slab:

E
(α)[P (p),CN

o (TL < T̃−1)] = E
(α)[P (p),CN

o (TL < T̃−1, T
⊥
N/2 > TL)] + E

(α)[P (p),CN
o (TL < T̃−1, T

⊥
N/2 ≤ TL)]

= E
(α)[P (p)

o (TL < T̃−1, T
⊥
N/2 > TL)] + oN (1)

= E
(α)[P (p)

o (TL < T̃−1)] + oN (1),

hence, with (3),

E
(α)[P (p)

o (TL < T̃−1)] ≥ 1 −
β1

α1
.

The limit when L → ∞ simply involves decreasing events:

Po(D = +∞) = E
(α)[P (p)

o (D = +∞)] = lim
L→∞

E
(α)[P (p)

o (TL < T̃−1)] ≥ 1 −
β1

α1
> 0.

Moreover, Lemma 4 from [ZM01] shows more precisely that if a slab is visited infinitely often, then both

half-spaces next to it are visited infinitely often as well. The event {D = ∞} ∩ {lim infn Xn · e1 < M}
has therefore null Po-probability for any M > 0, hence finally:

Po(Xn · e1 →n +∞) ≥ lim
M→∞

Po(D = ∞, lim inf
n

Xn · e1 > M) = Po(D = ∞) > 0.

This concludes the proof of the theorem.
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