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Abstract

In this paper, we analyze a variety of approaches to obtain lower bounds for multi-
level production planning problems with big bucket capacities, i.e., problems in
which multiple items compete for the same resources. We give an extensive survey
of both known and new methods, and also establish relationships between some of
these methods that, to our knowledge, have not been presented before. As will be
highlighted, understanding the substructures of difficult problems provide valuable
insights on why these problems are hard to solve. We conclude with computational
results from widely used test sets and discussion of future research.

Key words: Production Planning, Integer Programming, Strong Formulations,
Lagrangian Relaxation

1 Introduction

Production planning problems have drawn considerable interest from both
researchers and practitioners since the seminal paper of Wagner and Whitin
[1]. These problems search for the production plan with the minimum total
cost, which consists of fixed charges such as setup costs and linear charges
such as inventory holding costs, that satisfies demand and follows restrictions
of the production environment such as those imposed by capacities. The focus
of this paper is on multi-level, multi-item production planning problems with
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“big bucket” capacities, i.e., each resource is shared by multiple items. These
problems often have complicated BOM (Bills of Materials) structures, where
the BOM details which items are required to produce another item. Due to
these prerequisites, the BOM often has multiple levels, where the last level
can be thought of as finished products, the next-to-last level can be thought
of as items required to make finished products, and so forth.

The MRP (Materials Requirement Planning) approach and its successors
MRP-IT (Manufacturing Resource Planning) and ERP (Enterprise Resource
Planning) have been widely used in the manufacturing industry to generate
production plans. While they do provide accurate accounting for BOM struc-
tures, these approaches fail to account accurately for capacity restrictions and
hence they do not consistently achieve feasible (let alone high quality) pro-
duction plans. Realistic multi-level multi-item production planning problems
are complicated and computationally challenging to solve, and therefore the
development of computationally effective methods to tackle these problems is
necessary.

On the theoretical side, the capacitated version of even the single-item lot-
sizing problem is NP-hard (see Florian et al. [2] and Bitran and Yanasse [3]).
Because of problem complexity, dynamic programming algorithms have been
proposed only for some special cases of the problem, see e.g. Zangwill [4],
Florian and Klein [5], Federgruen and Tzur [6], Aggarwal and Park [7].

Heuristic algorithms have been employed for production planning problems
by many researchers with the hope of obtaining good solutions in acceptable
computational times. For a general review of earlier lot-sizing heuristics, refer
to Maes and Van Wassenhove [8]. Heuristic frameworks in general use some
decomposition ideas, such as Lagrangian-based decomposition (e.g. Trigeiro et
al. [9], Tempelmeier and Derstroff [10]), forward scheme and relax-and-fix (e.g.
Afentakis and Gavish [11], Belvaux and Wolsey [12], Stadtler [13], Federgruen
et al. [14]) and coefficient modification (e.g. Katok et al. [15], Van Vyve and
Pochet [16]). The main disadvantage of the heuristic algorithms is the lack
of guarantee of solution quality, and they also do not always provide useful
insights about basic problem structures.

Mathematical programming results on production planning problems have
usually focused on special cases such as single-item problems, and they have
been limited for problems with big bucket capacities. We will briefly discuss
these techniques in two subgroups: 1) Valid inequalities that are added into
the original formulation using separation algorithms, and 2) Extended refor-
mulations that solve the problem in a different variable space.

The first polyhedral study that defines problem-specific valid inequalities for
production planning problems is the study of Barany et al. [17]. The authors



propose the family of (¢,5) inequalities for the single-item uncapacitated lot-
sizing problem, which describe the polytope of these problems. Some special
cases of lot-sizing problems are investigated in Kiigiikyavuz and Pochet [18]
(uncapacitated problem with backlogging), Pochet and Wolsey [19] (constant
capacities), Loparic et al. [20] (uncapacitated problem with sales and safety
stocks), and Constantino [21] (uncapacitated problem with start-up costs).
Chan et al. [22] study a warehouse problem that has a similar structure to a
multi-item production planning problem having piecewise-linear costs associ-
ated with capacities. Atamtiirk and Munoz [23] provide a recent polyhedral
study that investigates the bottleneck cover structure in capacitated single-
item problems. Pochet and Wolsey [24] study multi-item problems using valid
inequalities, extending some single-item results to the multi-level case. On the
other hand, Miller et al. [26,27] provide rare results on multi-item problems
with big-bucket capacities, where the authors study single-period relaxations
and propose valid inequalities. In a recent study, Levi et al. [28] study a version
of the capacitated multi-item problem and they propose an approximation al-
gorithm based on generating flow cover inequalities and randomized rounding.

Extended reformulations provide interesting results for production planning
problems. A compact extended reformulation is the facility location reformu-
lation of Krarup and Bilde [29], which defines the convex hull of the uncapac-
itated single-item problem when projected to original variable space. Eppen
and Martin [30] study the shortest path reformulation, which is of smaller size
compared to facility location reformulation. Rardin and Wolsey [31] investi-
gate the multi-commodity reformulation for fixed-charge network problems.
Belvaux and Wolsey [32] and Wolsey [33] are recent studies about reformu-
lations and modeling issues. Anily et al. [34] provide tight reformulations for
some special cases of the multi-item problem with joint setups.

In spite of this research, big bucket production planning problems remain
hard to solve. Part of the reason for this is that most previous research fo-
cuses on developing and using results for single-item models, which are not
sufficient to capture the fundamental sources of complexity of big bucket prob-
lems. The primary goals of this paper are to evaluate the strength of the re-
laxations defined by different mathematical programming techniques and to
investigate why big bucket production planning problems are hard to solve
in practice. More specifically, we are not primarily interested in extending
single-item results to general production planning problems, but we want to
discover relationships between different methods for generating lower bounds
and the fundamental substructures that often make these methods insufficient
to solve these problems well. We will consider all known methods for gener-
ating lower bounds of which we are aware, and we will investigate previously
untried methods as well.

We can formulate the basic model that we study as follows:



NT NI NT NI

min Y Y fiys+>_ > hisi (1)

t=1i=1 t=1i=1

st.al+s, —st=d te[1,NT),i € endp (2)

Titsi —si= > ria] te[1,NT],ie€[l,NI)\endp (3)
7€4(3)

> (aja; + STiy;) < Cf t€[1,NT],k €[l,NK] (4)
i=1
zi < My t € [1,NT],i € [1,NI] (5)
y € {0, 1} (6)
x>0 (7)
>0 (8)

In this formulation, NT', NI and NK are the number of periods, items, and
machines, respectively. The set endp includes all of the end-items, i.e. items
with external demand; the other items are assumed to have only internal
demand. (We lose no generality with this assumption, since any item that has
both internal and external demand can be considered to be two distinct items,
where the data not related to the demand and BOM is identical for these two
items.) The variables ¢, 3!, and s¢ represent production, setup, and inventory
amounts for item ¢ in period ¢, respectively. The setup and inventory cost
coefficients are represented by f/ and h! for each period ¢ and item 4. The
parameter (i) represents the set of immediate successors of item i, and the
parameter '/ represents the number of items required of i to produce one unit
of j, not only for immediate but for all dependencies between ¢ and j. The
parameter d! is the demand for end-product ¢ in period ¢, and df;’t, is the total

demand for ¢ from period t to t, i.e., df;’t, = ﬁ—/:t ds.

The parameter aj represents the time necessary to produce one unit of i on
machine k, and ST} is the setup time for item i on machine k, which has a
capacity of CF in period t. Note that each item is processed by a preassigned
machine, and we assume that each item is assigned only to one machine. (In
many situations in both practice and the literature this assumption holds;
when it does not, the formulation can be modified by including an additional
index k on the x and y, updating the flow balance constraints, etc. In general,
the results we discuss apply to these more general models as well—as has been
previously observed by Miller [25], Stadtler[13], and others).

The constraints (2) and (3) ensure production balance and demand satisfac-
tion for end-items and intermediate items respectively, (4) are the big bucket
capacity constraints, (5) ensure that the setup variable is set to be 1 if there
is positive production, and finally (6), (7), and (8) provide the integrality and



nonnegativity requirements. Note that we define M} as follows:

; ; Ck — STj
M = min(d; yr, —t_Tk) i € endp
k
. o Ck — 9T
Mj =min( Y r9d] yp, ———%) i € [1, NI]\endp
j€endp k

We next define an echelon reformulation of the problem, see e.g. Pochet and
Wolsey [35]. Our motivation for defining this reformulation is that it clearly
exhibits the single-item structure that is present for each item, and it therefore
enables us to apply results for single-item models to the multi-level model. We
first define echelon demand parameters D} and echelon stock variables E:

Di=d+ Y D] t € [1,NT],i€[l,NI] (9)
Jes(i)

El=si+ Y r7E] te[1,NT],i€[1,NI] (10)
Jes(i)

Substituting (10) into (2) and (3) for si, and using the definition (9), we obtain
an equation that can replace (2) and (3) in the original formulation:

i+ El |, — E =D t€[1,NT],i€[1,NI] (11)

To satisfy (8), we add the following constraints:

Ei> Y riE] t€[1,NT),i € [1,NI] (12)
Jes(i)
E>0 (13)

Finally, to eliminate the original inventory variable s, we define echelon in-
ventory holding costs Hj = h] — >N r¥hi and replace the objective function
(1) with

NT NI NT NI

D2 fii+ 2 Y HE (14)

t=1i=1 t=1i=1

We can therefore define the feasible region of the production planning problem
as X = {(z,y, £)|(4)—(7), (11)— (13)}, which will be referred in the remainder
of the paper as the “basic formulation”. The production planning problem can
be defined as min{(14)|(z,y, F) € X}. We could easily include overtime (i.e.,
extra capacity that can be bought with an additional cost) or backlogging



(i.e., satisfying demand later than requested by the customer with a cost for
customer dissatisfaction) variables to generalize this basic model, and some of
the test problems we consider in Section 4 incorporate them.

For simplicity, we will sometimes use conv(a) to denote conv((x,y, F)|(a)),
where (a) is a set of constraints. For example, {(z,y)|(7) Nconv((6))} repre-
sents {(x,y)|(7)} Nconv({(x,y)|(6)}) in our notation, or, equivalently {(x,y)]
(7),0<y <1}

In Section 2, we provide a comprehensive survey of lower bounding methods
presented in previous research, and we discuss previously untested methods as
well. Section 3 is devoted to theoretical comparisons of different techniques,
which can provide structural insight into multi-level big bucket problems. In
Section 4, we present extensive computational comparisons obtained using
widely known data sets. We conclude with future directions in Section 5.

2 Valid Inequalities, Reformulations, and Relaxations

In this section we discuss different approaches to obtain lower bounds. These
methods vary from defining valid inequalities and reformulations to the use of
Lagrangian relaxation.

The first technique we consider is the use of (¢, S) inequalities of Barany et al.
[17] defined for single-item problems, and generalized by Pochet and Wolsey
[24] to multi-level problems using the echelon reformulation. These can be
defined as follows:

> oay <Y Dy + E; (€ [1,NT),i € [1,NI],S C[1,/] (15)

tesS tesS

Since these inequalities are valid for the single-item submodels defined by
each item, they are valid for the multi-item problem as well. Although there is
an exponential number of these inequalities, a simple polynomial separation
algorithm exists as shown in Barany et al. [36], see Algorithm 1. As will be
discussed later, there exist stronger formulations than that provided by using
the (¢,5) inequalities alone, but (¢,5) inequalities have good practical use,
especially when considering large problems.

The feasible region associated with this formulation can be defined as X ;g =
{(z,y, E)|(4)—(7), (11)—(13), (15) }, and the problem can be defined as Z,g =
min{(14)|(z,y, E) € Xrs}.

The next technique is the facility location reformulation, originally defined by
Krarup and Bilde [29] for the single-item problem. This reformulation divides



Algorithm 1. (¢,S) separation
Input: LP relaxation solution (z*,y*, E*)
Output: Violated (¢, S) inequalities
for i=1 to NI
for / =1to NT
Initialize S « { }
for t=1to ¢
if 44 > D '
S Su{t}
if >ies ¥ > Dies Dt W+ B
Add the violated (¢,S) inequality

production according to which period it is intended for. This requires first
defining new variables uj ,,, which indicate the production of item 7 in period
t to satisfy the demand of period t/, where t' > t. The following constraints
should be added into the basic formulation to finalize the reformulation:

upy < Dy, t€[1,NT),t' €t,NT),i € [1,NI] (16)
t/
Y upy =D t' € [1,NT),i € [1, NI] (17)
Ty = up, t' € [1,NT),i € [1,NI] (18)
t=t’
u>0 (19)

This formulation adds O(NT?NI) variables and O(NT?*NI) constraints to
the problem.

One advantage of using the new variables u;, is that we can rewrite the
capacity constraint (4) as follows:

NI NT
> (@ (X i) + STyyy) < CF te[l,NT] k€ [1,NK] (20)
=1 =t

This, along with constraints (16), can considerably help a state-of-the-art
MIP solver generate knapsack cover cuts. Specifically, note that by adding

Nt a};D; ~n7Yi on both sides and after rearranging the terms, (20) can be
rewritten as

NI ) ] . NI NT )
S (0Dl + STyt < CF + (z S 0Dyl u;,m) (21)
=1 =1 t'=



For each fixed pair of (¢,k), and for any subsets Z C {1,..., NI} and 7T C
{t,..., NT}, we may generate cover cuts for each of the following continuous
0-1 knapsack constraints:

S (ah(5 Dh) + STyl < Ch + (z S ab (Dt - >) )

1€ t'eT €L t'eT

Note that because of (16), the expression in the parenthesis on the right-
hand side of (21) or (22) can be considered as a single nonnegative continu-
ous variable. Binary knapsack constraints with a single nonnegative continu-
ous variable were studied by Marchand and Wolsey [37,38] (see also Richard
et al. [39,40]). Commercial solvers use the kinds of results they present to
efficiently ﬁnd subsets 7 and 7 and generate cover cuts that will approxi-
mate conv(XKN), where Xl(ﬂlff = {(y,u)|(6),(16), (19), (20)} is the feasible
region of the intersection of these continuous 0-1 knag)sack problems for a
fixed (t, k) pair. Note that we can also define it as XKN = projy, uXKN with
X[;]]f, = {(z,y, E,u)|(6), (16), (19), (20), (18), (11)}, just for the convenience
of having it in higher dimension. Related to X}?ﬁ), we will define X}éﬁ’{t(i)}),
for which we first choose a £(i) € [t, NT] for all i € [1, NI], for a given ¢. Then,
we define

up, < Djy t € [t, NT],i € [1, NI] (23)
ug, 4, < Dy, t1 € [t + 1,t(d)], te € [t1,t(2)], (24)
€ [1,NI]
Ty =y ug, i €[1,NI] (25)
t1=t
) t—1 NT )
Bl =) Y u,, i€[l,NI (26)
t1=1ta=t
S i) ) , .
T+ By + Z Z uffl,tz > D;,t(i) i €[1, NI (27)
t1=t+1 ta=t1

Then, X“BVON — £(2 4, E,4)|(6), (19), (20), (23) — (27)}. Note that we will
use this exphclt definition for the purposes of proving a key proposition in the
next section.

On a separate note, basic continuous cover inequalities can also be generated
as MIR inequalities, which are known to be effective for general mixed integer
programs (see e.g. Giinliik and Pochet [41]). Of course, our approach will
increase the problem size and it might easily become so large that it cannot
be solved to optimality in an acceptable time. However, using this approach for



the purpose of generating lower bounds can yield insights into the structure of
our problems. This idea was initially suggested for single-level, single-machine
problems by Van Vyve [42]. To the best of our knowledge, this approach has
not been tested for multi-level problems before.

The feasible region associated with the facility location reformulation can be
defined as Xr = {(x,y, E,u)|(5) — (7), (11) — (13), (16) — (20)}, and the as-

sociated problem as Zpy, = min{(14)|(z,y, E,u) € Xpr}. On the other hand,

generating all cover cuts approximates M NS conv(X}?f@)), which is an ap-

proximation for conv(NN4 NAX X}é’]]f,)). This leads us to define the polyhedron
XEY = {(wy, B,)l(5),(7), (11) = (13), (17), (18)} 1 conv(NI M X))
and the associated problem ZEN = min{(14)|(z,y, F,u) € XEN}.

Next, we discuss the single-period relaxation of Miller et al. [26,27], called
as PI (Preceding Inventory). To describe the single-period formulation, for a
given machine k € [1, NK| and a given time period t € [1, NT'], we choose a
time period t(i) > t for each ¢ € [1, NI]. Then we define

t(4)
S'=Ei_ 1+ Y Dyui i€[1,NI
t=t+1

Then, the single-period formulation can be written as follows:

ri 4+ S > D i€ [1,NI (28)
zy < My i€ [1, NI (29)
NI

>_(aat + STiy;) < CF (30)
=1

zh, S" >0 i€ [1,NI (31)
yi € {0,1} i€ [1,NI (32)

We can define X}(f’[k’{t(i)}) = {(x,y,9)[(28) — (32)} as the feasible region asso-
ciated with a set of ¢(i) values, and Xl(f’[k) = Ny X}(f’[k’{t(i)}) represents the
feasible region for a given (¢, k) pair. Note the similarity between this feasible
region and X[(?]If,) we discussed earlier. Miller et al. [26,27] define valid inequal-
ities (namely cover and reverse cover inequalities) for PI, which are naturally
valid for the original problem as well, and these inequalities can be seen as an
approximation for conv(X ](f’[k)).

Next, we define the shortest path reformulation of Eppen and Martin [30]. In
this formulation, which was originally defined for single-item uncapacitated
models, we define new variables z;t,, which are 1 if production of 7 in period



t satisfies all the demand for 7 in periods t,....t', and 0 otherwise. Note the
relationship between the new and original variables:

Z Dz t€[1,NT],i€[1,NI] (33)

t'=t

For the multi-level capacitated problem, we do not have the same optimality
properties that we do for the single-item problem; we therefore let the z vari-
ables take fractional values. Also, using the echelon inventory holding costs

H}, we define total inventory costs ¢, = Dj , S>> H!. Then the formulation
is
NT NI NTNT NI
win S A+ DS ek )
t=1 i=1 t=1 t'=t i=1
NT
st 1= Z 24 iel,NI] (35)
-1
Z Zhy_q = Zzt, t'€[2,NT],i € [1,NI]  (36)
t=t’
Z Zy <t te[1,NT),i e [1,NI] (37)
t'=t
NI NT
> (STyi+a. ) Dipzi) <Cf te[LNT).k€[LNK]  (38)
=1 t'=t
S SOl - X Dl e e lNTLie N ()
t=1 {=¢ N10)
z>0 (40)
y € {0, 1}V (41)

The constraints (35) and (36) are the flow balance constraints, (37) provide
the relationship between the linear and binary variables, (38) is the capacity
constraint, (39) ensures the relationship between different levels, and finally
(40) and (41) provide the nonnegativity and integrality constraints. Note that
for our multi-level problem, we derive the constraint (39) as follows: Using
(11) and (12), and the assumption of zero initial inventory, we obtain

t/

Yui-0)=Y ¥ o (42)

t=1 t=1j€6(3)

Substituting (33) into (42) and rewriting results in (39). Note that this for-
mulation adds as many variables as the facility location reformulation, but

10



number of constraints is only O(NT x NT). However, this formulation is not
necessarily easier to solve, in part because the new constraints are compara-
tively dense and the coefficients on the new variables comparatively large.

The feasible region associated with this formulation can be defined as Xgp =
{(y,2)|(35) — (41)}, and the problem can be defined as Zsp = min{(34)]
(y,2) € Xgp}. Part of our motivation for completely substituting the x and
E variables out of the formulation is that relaxing the constraints (35), (36),
and (39) decomposes the problem into NT' distinct subproblems, one for each
time period (an analogous observation was first made for single-level problems
by Jans and Degraeve [43]). We will discuss this property in more detail later.

Next, we consider the multi-commodity reformulation proposed by Rardin and
Wolsey [31]. This approach is originally described for fixed-charge network flow
problems. Like the facility location reformulation, it divides production using
destination information, but since we have multiple levels, it also includes in-
formation about which end-item in the BOM it is produced for. Stock variables
are also divided in a similar fashion. Thus, the new variables wz:t; indicate pro-
duction of item 7 in period ¢ to satisfy the demand of end-item j in period ¢/,
t' > t, and the new variables vit, indicate the inventory of item ¢ held over at
the end of period ¢ to satisfy demand of end-item j in period ¢’, ¢ > t. The
following constraints should be added to the basic formulation to finalize the
reformulation:

NT
zp =Y > w?, t' € [1,NT),i€ [1, NI (43)
t=t' j€endp
wt < ridlyi € [1,NT),t € [t,NT], (44)
€ [1,NI],j € endp
vt wey = d; € [1,NT],i € endp (45)
Oy Wl = v te[l,NT —1],¢ €[t+1,NT], (46)
1 € endp
v+ wpf = Y riwlf t € [1,NT],i € [1, NI]\endp, (47)
7€4(3)
q € endp
vy +wih = oph 4+ > rwld te L, NT —1],¢ € t+1,NT], (48)
J€S(7)
€ [1, NI]\endp, q € endp
w,v >0 (49)

This reformulation introduces O(NT?NI?) additional variables and O(NT?
N1I?) additional constraints. This is the main disadvantage of this reformula-

11



tion, which can become computationally intractable as the problem size grows.
However, it is the tightest compact, i.e., polynomial size, reformulation that
we know for the problems in question.

The feasible region associated with this formulation can be defined as X0 =
{(z,y, E,w,v)|(4) — (7),(11) — (13),(43) — (49)}, and the problem can be
defined as Zy;c = min{(14)| (x,y, E,w,v) € Xy}

Next, we discuss three approaches that employ Lagrangian relaxation to obtain
structured subproblems and from those lower bounds for the original problem.
The first approach is to relax the capacity constraints (4), and obtain

NT NI NT NI
LRy(\) =min)_ > fiy;+> .Y H'E;
NTNE T
apIPIRY (Cf - (@i + ST,iyz)) (50)
t=1 k=1 i=1
subject to (x,y, E) € Xrm

where X p1 = {(z,y, E)|(5) — (7),(11) — (13)}. Thus, the Lagrangian sub-
problem is a multi-item, multi-level uncapacitated lot-sizing problem. The
Lagrangian dual problem is

LD, = max LRy()) (51)

The next Lagrangian relaxation approach relaxes the constraints linking sep-
arate levels, i.e. constraints (12), to obtain

NT NI NT NI

LRy(p) =miny > flyi +> > H'E

t=1i=1 t=1i=1

NT NI [ o
S (B s 52
t=1i=1 j€8(i)

subject to (z,y, E) € Xpro

where Xrppe = {(z,y, E)| (4) — (7),(11), (13)}. The Lagrangian subproblem
therefore decomposes into N K disjoint multi-item, big bucket single-machine
problems, one for each machine. The Lagrangian dual problem becomes

LDy = max LRy(p) (53)
n=0

12



Finally, the last Lagrangian approach extends the work of Jans and Degraeve
[43] for single-level problems, which itself uses the shortest path reformulation
of Eppen Martin [30]. Jans and Degraeve [43] simply relaxed the constraints
linking time periods, yielding disjoint single-period subproblems. However,
the problem in the multi-level case is that the constraints linking levels also
involve multiple periods. Therefore, decomposing the problem into disjoint
subproblems for each period is not possible, unless all constraints linking levels
are also dualized. We dualize the constraints (35), (36) and (39) in the shortest
path reformulation to obtain

NT NI NT NT NI

NT NT
LRy(3) —min 35" fiyi+ 35 S ezt = 3 (1 s )
=1 t=1

t=11i=1 t=1t'=ti=1

NI NT t—1 NT
- Z Z ﬁt’ Z Zt H—1 Z ZZ/7t (54)
i=1t= t=t’

NI NT % ' ' '
- Z Z 7t’ Z tt tt Z ”Dit tt) Z17t'

i=1t'=1 t=1 j—¢ j€8(3)
subject to (y,z) € Xpgs

where Xy ps = {(y, 2)| (37),(38), (40), (41)}. The Lagrangian subproblem de-
composes into N KxN'T disjoint capacitated multi-item, single-machine, single-
period problems, and the Lagrangian dual problem is

LDy = max LR3(5,7) (55)

In the next section we provide theoretical comparisons for the various ap-
proaches we have described.

3 Exploring Relationships

Let the superscript LP indicate the LP relaxation of a problem, i.e., the
binary variables y relaxed to be continuous with the bounds 0 < y < 1.
For example, ZFL is the problem Z;s with the integrality requirements for
y variables relaxed. Similarly, X£ is the polyhedron of the LP relaxation of
XLS-

Theorem 1 (Akartunali and Miller [44]) ZLD = ZLP = ZLD e, the
(¢,5) inequalities, the facility location reformulation, and the shortest path
reformulation all provide the same lower bound for the original problem.
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For the proof of the theorem, please refer to Akartunali [45]. The proof uses
Lagrangian duality and the fact that all these formulations provide equal lower
bounds in the single-item case. See Krarup and Bilde [29], Eppen and Martin
[30], and Barany et al. [36] for the convex hull and integrality proofs in the
single-item case.

Theorem 2 ZLl, > ZLP i.e., the multi-commodity reformulation provides a
lower bound that is at least as strong as that provided by the facility location
reformulation. If the problem consists of a single level, then ZE, = ZEF.

Although this result has been known by at least some researchers since the
publication of Rardin and Wolsey [31], it has never been formally stated and
proven, to the best of our knowledge. We therefore provide a proof for the
sake of completeness.

Proof. We will prove this by showing that proj,, g(X1) C proj., s(XED)
for the multi-level case. Let (v*,w*, z*,y*, E*) € XIJ,. First, observe that we
can eliminate v* and rewrite (45)-(48) in terms of w*, as follows:

t=t'

Swyl =rid, t' e [1,NT],i€[1,NI],j € endp (56)
t=1
Now, let
iy = Y wl (57)
j€endp

Obviously u* > 0 since w* > 0. Since w* satisfies (43), 2*! = >0 w*!,. Sim-
ilarly, summing (56) over j € endp, we obtain Y0, u*ly = icenay TV d) =
Dy, where the second equation follows from the definition of echelon de-
mand (9). Finally, using (44) and (57), we obtain u*}, = Y jccnap w, <
(X jeenapTd})y*s = Diy*i. This shows that (u*,z*,y*, E*) € X' Hence,
pTij,%E(X]{’/[%) - pTij,yE(XJI;JLD)’ U

The second part of the theorem can also be shown using the same technique as
in the proof of first theorem, i.e., using Lagrangian duality and the fact that the
multi-commodity reformulation and the facility location reformulation provide
equivalent lower bounds in the single-item case (see Eppen and Martin [30]
and Barany et al. [36]).

This theorem shows us theoretically that the multi-commodity reformulation
is stronger than the formulation defined by adding (¢,S) inequalities, the
facility location reformulation, and the shortest path reformulation. In the next
section, we will computationally address the question of “how much stronger”
for a variety of test problems.
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So far we have made comparisons of different polyhedral approaches. Also
interesting are the relationships between the Lagrangian approaches and these
reformulations, as we investigate in the following results.

Theorem 3 ZLl, < LD;.

In words, the lower bound obtained by the Lagrangian that relaxes the ca-
pacity constraints is at least as strong as the lower bound obtained by multi-
commodity reformulation.

Proof. By the theorem related to the strength of the Lagrangian dual (see e.g.
Theorem 10.3 of Wolsey [46]),

LDy =min{(14)|(z,y, E) € (4) Nconv((5) — (7), (11) — (13))}

On the other hand,

Ziie = min{(14)|(z,y, E,w,v) € (4) N {((5), (7), (11) — (13), (43) — (49))
N conv((6))}}

Observe that

{(2,y, E) € conv((5) = (7),(11) = (13))} €
Projuye{(z,y, E,w,v) € {((5), (7), (11) = (13), (43) — (49)) N conv((6))}}

This follows because conv((5) — (7), (11) — (13)) has integer extreme points
because the polyhedron is the convex hull of an integer feasible region. On the
other hand, {((5), (7), (11)—(13), (43)—(49))N conv((6))} does not necessarily
have integral extreme points. Therefore, ZL/, < LD,. O

Theorem 4 ZEP < ZEN < L D,.

In words, the lower bound obtained by the Lagrangian that relaxes the level
linking constraints is at least as strong as the lower bound obtained by the fa-
cility location reformulation strengthened to approximate the knapsack convex

hulls.

Proof. The first relationship follows from the fact that Z5/ is obtained by
strengthening ZLP with additional constraints. For the second relationship,
first observe that (using the same theorem as in the previous proof)

LDy =min{(14)|(z,y, E) € (12) Nconv((4) — (7),(11),(13))}
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Observe also that

conv((4) — (7),(11),(13)) C

Projay,i {{(367 y, E,u)|(5),(7), (11), (13), (17), (18)} N conv(() () Xﬁ?f@))}

t=1 k=1

This concludes that Z5} is not as strong as LD,. O

As mentioned before, generating cover cuts from (22) only approximates the
knapsack polyhedron and hence Z5} is the best possible bound that can be
obtained by adding cover cuts to the LP relaxation of the facility location
reformulation.

Theorem 5 Z5}) = LD;.
We will use the following result for the proof of the theorem.

Lemma 6 (Pochet and Wolsey [47]) All optimal solutions of the single-
item uncapacitated problem formulated using the facility location reformulation
have the following property:

Ut Uty 41 /
> te|l, NT|,t' >t
Dtl Dt/-‘rl [ ]

Before starting the proof of Theorem 5, let S; = N4 N2 X}ﬁ’]@) = {(y,u)|(6),
(16), (19), (20)} and Sy = {(y,2)[(37),(38),(40), (41)}. Also let T =
{(z,y, E,w)[((11) — (13), (18)) N conv(S1)} and Ty = {(z,y, E, 2)|((11) — (13),
(33)) Nconv(Sy)}. Note that S; and S, are integer feasible regions whereas T}
and Ty are both polyhedra. Then, the proof of Theorem 5 follows.

Proof. We will prove this by showing proj, , g(11) = proj.z(1%).

First, let (2%, y*, £*,u*) € T} and hence (z*,y*, E*) € proj,, g(11). Therefore,

Jp? = (29,97, B9 ,w?) € Sy, j € [1,J], such that (z*, y*, E*,u*) = S27_, A\;p for

some A > 0, Z}’zl Aj =1

For all j € [1,J], let {zinyp} = %, where t € [1, NT] and i € [1, NI].
NT

Then, define recursively {zj,}7 = %’;i — M {ZH, for all t € [1,NTY,
NT

t'=NT —1,...tand i € [1, NI]. Since Y0%, Di, {2} = 07T {u,} and v’
satisfies (20), 27 satisfies (38). Next, note that

NT TRY o
S (ehey = U <y
t'=t t
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where the last inequality is essentially (16). Finally, using Lemma 6, observe
that

{utt’ Y _ {u*it’-i-l }

=0
t’ t'+1

{Ztt’ }] =

Therefore, p/ = (27,97, E?,27) € Sy, and using the same A as before,
(x*,y*, E*, 2") = Z}]:1 Njp? € Ty. Hence, (x*,y*, E*) € proj,, z(Tz). We con-
clude therefore that proj,., g(11) C projs ., g(1s).

Now, let (z*, y*, £*, 2*) € T3 and hence (2%, y*, E*) € proj,, g(1s). Therefore,
3¢*F = (2%, y* E*, 2F) € Sy, k € [1, K], such that (z*,y*, E*, 2*) = %, "
for some p >0, S0y, = 1.

For all k € [1, K], let {ul, }* = ;', SNz }k, where t € [1, NT], t' € [t, NTY,
and i€ [1, NI] Obviously, satisﬁes (19) since 2* satisfies (40). Since

PR ETI L= iz F and 2 satisfies (38), u” satisfies (20). Finally,
note that

{uit'}k = ?) Z{ZZE}IC < D Z{Ztt}k < D {yt}k

t=t/

where the last inequality follows from (37).

Therefore, ¢* = (2 y* E* u*) € S;, and using the same u as before,
(z*,y*, B*,u*) = S5, i@ € Ty. Hence, (z*,y*, E*) € proj.,z(T1). There-
fore, proj, 4 g(12) € projs, x(11). This concludes the proof. O

Corollary 7 LD3 < LDs.

The proof for this corollary follows immediately from the Theorems 4 and 5.
This result is our main motivation for skipping L D3 in the computational tests
discussed in the next section.

Proposition 8 For any given (t, k) pair and set of {t(i)} values,

pTij7y,E(COHU(Xg}k7{t(i)}))) p'rij v, E(CO’TZU(X(t e, {t(d )})))

This result, combined with Corollary 7, is our main motivation for omitting
computationally testing the cover and reverse cover inequalities from Miller
et al. [26,27] in the next section.
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Proof. We show first proj, . E(conv(X(t’k’{t(i)}))) C projuy.e (conv(Xl(f}k’{t(i)})))

for a given (¢,k) pair and set of {t(:)} values. Let ( Lyt Efut) €

conv(XEEHODY Then, we define % = E*_| + !¢
k,{t(i

(xR 0ODy

o t+1 ( y*i It is easy

to observe that (z*,y*, S*) € conv

Next, we prove that proj,.,, E(conv(X(t’k’{t(i)}))) C proja.,y, E(conv()_(g’]]f/{t(i)})))
for any given (t k) pair and set of {t(i)} values. First, let (x*,y*,S*) €
conv(X FHOD) We define first u* b = Diy*y, for all ty € [t + 1,t(i)]
and ty € [t1,t(i)]. Then, we define E*_, = (§* — 2t D’ y*O*. Fi-

t=t+1

nally, define u*} , = (min{D}y*}, z*; — et wish)t forall ¢ € [t t( )], where

they are calculated in the 1ncreasing order of t'. Then, we can observe that
(z*,y*, E*,u*) € conv(X L") O

4 Computational Results
4.1 Overview

In order to provide diversified results, we used the following test instances for
our computations:

e TDS instances: These test problems originate from Tempelmeier and Der-
stroff [10] and Stadtler [13]. These include overtime variables in addition to
the formulation in Section 2. Sets A+ and B+ involve problems with 10
items and 24 periods, and sets C and D involve problems with 40 items
and 16 periods. Sets B4 and D include setup times. We chose the hardest
instances from each data set for our computations, i.e., for each data set, we
picked 10 assembly and 10 general instances with the highest duality gaps
according to results of Stadtler [13].

e LOTSIZELIB instances: These are the multi-level instances of LOT-
SIZELIB [48]. These include big bucket capacities, and backlogging is also
allowed. The problems vary between 40 item, single end-item problems and
15 item, 3 end-item problems. All problems have 12 periods.

e Multi-LSB instances: We have generated 4 sets of test problems based
on the problem family described in Simpson and Erenguc [49], each set hav-
ing 30 instances with low, medium and high variability of demand. From
now on, we will call these sets SET1, SET2, SET3, and SET4. These in-
stances are different from the previous sets in that they take component
commonality into consideration and hence consider joint setup variables for
each family, so setup times are defined for each family. While keeping the
original BOM structures and holding costs, we removed the setup costs and
added backlogging variables into the problem to obtain problems with a
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different nature from those of our other test instances. Except for the prob-
lems in SET2, which consider a horizon of 24 periods, all the instances have
16 periods. The main difference between SET1, SET2 and SET4 is that
they have different resource utilization factors, which are all set over 100%,
i.e., it is not possible to setup all families in a period and to produce that
period’s demand for all items. All problems have 78 items and an assembly
BOM structure, and all instances allow backlogging to the last period. For
more details about these instances, see Multi-LSB [50].

Note that average duality gaps after default times (see next section for more
detail on “default times”) for the test sets of TDS and Multi-LSB are pro-
vided in the Table 1 for an overview of problem complexity, where the basic
formulation is strengthened with all violated (¢,S) inequalities generated at
the root node of the Branch&Bound tree using Algorithm 1.

Table 1
Average duality gaps for TDS and Multi-LSB instances
A+ B+ C D SET1 | SET2 SET3 SET4

25.28% | 34.21% | 35.40% | 364.57% || 17.40% | 13.84% | 236.36% | 78.87%

The main goal of this section is to computationally test the results we have
theoretically proven and to observe how these strength relationships work in
practice. This not only provides us with information about how strong the
lower bounds actually are but also helps us to understand what prevents us
from improving them. All the test instances are run on a PC with an Intel
Pentium 4 2.53 GHz processor and 1 GB of RAM. All the formulations are
implemented using Xpress Mosel (Xpress-MP 2004C, Mosel version 1.4.1).

In evaluating Lagrangians, we do not exactly solve any of the Lagrangian
dual problems, which would require some method (such as a subgradient ap-
proach) to choose the optimal Lagranian multipliers. Instead, we first consider
a strengthened LP formulation, i.e., the echelon formulation with all violated
(¢, 5) inequalities generated at the root node, and then fix the the Lagrangian
multipliers to the values of the optimal dual variables of the constraints to be
relaxed in this formulation. We thus evaluate LR;(u*) and LRy(\*), respec-
tively, for the optimal dual variables p* of the capacity constraints and the
optimal dual variables \* of the level-linking constraints, respectively, in order
to approximate LD, and LD, respectively. These subproblems themselves are
MIPs that, in general, are difficult to solve to optimality. Nevertheless, any
lower bound on the optimal solution of the Lagrangian subproblem MIP is
also a lower bound on the Lagrangian dual (and hence the original problem).
Moreover, in every instance, for both LD, and LD,, the lower bound obtained
computationally for the Lagrangian subproblem MIP is at least as strong as
the lower bound provided by the original echelon formulation strengthened
with (¢, S) inequalities.
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Similarly, as we discussed before, generating cover cuts on top of the facility
location reformulation provides only an approximation of Z5}. Hence, the
computational comparisons we provide for these relationships are all based on
approximations. However, it seems that the approximations are often close.
This gives us the chance to compare empirical results in addition to theoreti-
cally proven relationships.

4.2 Results

The detailed results for TDS instances can be found in the Appendix (as
well as in Akartunali [45]). Note that we obtain the root node solution of the
Branch&Bound tree for (¢,S) inequalities, all generated through Algorithm 1,
and for the multi-commodity reformulation (MC), without the effect of any
solver cuts. For the facility location reformulation (FL), all the cover cuts
generated by the solver are added at the root node and this strengthened
formulation is used as FL lower bound. For comparison purposes, we also use
the lower bound obtained by the heuristic in our companion paper (Akartunali
and Miller [44]), where the lower bound is based on the first iteration of a relax-
and-fix framework, i.e., a partial LP relaxation of the original problem. For the
Lagrangian relaxations that relax the capacity and level-linking constraints, we
use the dual optimal values of the constraints from the strong LP relaxation as
multipliers, and we set default times of 180 seconds for A+ and B+ instances,
and 500 seconds for C and D instances. Note that if the Lagrangian relaxation
subproblem is not solved to optimality in this preassigned time, the lower
(LB) and upper (UB) bounds of this Lagrangian subproblem provide us the
range where the actual lower bound (LB p) of the Lagrangian dual lies, i.e.,
LB < LBpp < UB. Hence, note that we use the lower and upper bounds
of Lagrangian subproblem, i.e., LB and U B, in our discussions. Finally, note
that due to Theorem 1 we omit the shortest path reformulation in our tests.

We review the results in pairwise comparisons, which are summarized in Ta-
ble 2. One interesting computational comparison is the relationship we have
proven in Theorem 2. As we can see from the detailed results, MC improves
the (¢,.5) bound slightly, in general less than %]1. The average improvements
from the (¢, S) inequalities bound to the MC bound, calculated as (MC bound
- ¢, bound)/(¢, S bound) for each test instance, are provided in the column
“MC vs. £,5”, and these values are around 0.20%. Considering the enormous
size of the MC reformulation, these improvements are simply not worth the
computational effort. The Lagrangian relaxation that relaxes the capacity con-
straints (1st LR) provides in general another slight improvement over the lower
bounds of the MC reformulation, as can be seen in the second column of the
same table (Column LB under “Ist LR vs. MC”), which is calculated in a
similar fashion, i.e., (1st LR bound - MC bound)/(MC bound). Note that we
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also provide averages calculated in the same way using the 1st LR’s upper
bounds instead of its lower bounds (Column UB under “1st LR vs. MC”). An
interesting observation from the problems in set D, where 1st LR problems
for all instances are solved to optimality, is that although in general 1st LR
improves the MC bound, it is an approximation of LD; and it might result in
a bound not as strong as the MC bound. However, as these results indicate,
these two bounds are in general very close to each other.

Table 2
Pairwise comparisons of lower bounds and LR gaps for TDS instances
Test | MC vs. | 1st LR vs. MC || FL vs. | 2nd LR vs. FL Gaps

Set (8 LB UB ¢S LB UB Ist LR | 2nd LR

A+ || 0.29% | 0.80% | 2.99% | 1.81% | -0.05% | 7.44% | 2.09% | 6.87%

B+ || 0.28% | 0.59% | 3.06% | 1.37% | -0.35% | 6.23% | 2.38% | 6.18%

C 0.14% | 0.20% | 1.67% || 0.86% | -0.32% | 6.25% 1.44% | 6.14%

D 0.21% | -0.06% | -0.06% || 0.45% | -0.43% | 19.88% 0% 15.85%

On the other hand, as the “FL vs. £, 5”7 column of Table 2 indicates, the facil-
ity location reformulation with cover cuts added (FL) improves in general the
(¢, S) bound more significantly compared to previous methods. These average
percentages are calculated by (FL bound - ¢, S bound)/(¢, S bound). Simi-
lar to our previous comparisons, we also provide the average improvements
of the Lagrangian relaxation that relaxes level-linking constraints (2nd LR)
over the FL bound in the column “2nd LR vs. FL”, calculated by (2nd LR
bound - FL bound)/(FL bound). Although one would expect the 2nd LR, the
approximation of LDs, to improve the FL lower bounds, at first sight this
does not seem to be the case for many problem instances, particularly due
to negative averages in the LB column of Table 2. However, as can be seen
from the UB column of the table, these problems are not close to optimality,
particularly the bigger instances of test sets C and D, and the challenge here is
that these problems need much more time than the assigned default times (or
any reasonable amount of time) for optimality or even for an acceptable gap.
For testing whether this is the case here, we experimented with a few of the
small A+ and B+ instances that did not achieve the FL bounds earlier and
ran them either until the lower bound was at least as strong as the FL. bound
or to optimality. However, this experiment failed due to memory problems for
the instances from sets C and D.

Finally, the last two columns of Table 2 should also be addressed briefly. These
columns indicate the duality gaps for the two Lagrangian problems, and as
we mentioned before, the 1st LR problem is in general comparatively easier to
solve than the 2nd LR problem. We had a total of 11 instances where the 1st
LR could achieve the optimal solution in the assigned default times, compared
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to none for the 2nd LR.

Next, we present results for LOTSIZELIB instances in Table 3, where all
values are shown explicitly, including the optimal solutions (OPT) in the last
column. MC provides significant improvement over the (¢, S) bound for some
of these instances, whereas FL provides negligible improvement over MC. The
1st LR is comparatively more efficient on these instances than the 2nd LR.
Note that 1st LR and 2nd LR do not necessarily improve MC and FL bounds
respectively, similarly to the results for some TDS instances, since these are
approximations for LD; and LDs. Also, note that all 2nd LR problems are
at optimality or near, whereas 1st LR did not result in optimality in quite a
few instances after the default time of 180 seconds. This indicates that these
instances have the bottleneck not in capacity constraints but in the multi-
level structure. This seems to be due in part to the fact that there is a single
machine, and the capacity in these problems is comparatively loose.

Table 3
LOTSIZELIB results

Lower Bounds Upper Bounds

l,5 MC FL | Heur. | 1st LR | 2nd LR || 1st LR | 2nd LR | OPT
(Cap) (Lev) (Cap) (Lev)
3.888 | 3,800 | 3,892 | 3,915 | 3,888 | 3,888 | 3,888 | 3,888 | 3,965

1,904 | 1,993 | 1,998 | 2,067 | 1,904 1,904 1,904 1,905 | 2,083

4534 | 4,794 | 4,795 | 4,714 | 4,766 | 4,534 | 6,095 | 4,535 | 6,482

2,341 | 2,361 | 2,361 | 2,416 | 2,462 | 2,341 | 3,136 | 2,341 | 2,801

0" |09 Q|

2,075 | 2,098 | 2,111 | 2,099 | 2,237 2,079 2,459 2,079 | 2,429

The detailed results on Multi-LSB instances can be seen in Akartunali [45],
and the pairwise comparisons are summarized in Table 4, which is organized
in the same fashion as Table 2. The default times for the first two sets are
180 seconds, and for the last two sets 500 seconds. First of all, note that MC
improves the (¢, S) bound poorly in most of the instances. Also note that the
1st LR is solved to optimality for all these test problems, and as the table
indicates, this approximation of LD; does not often provide an improvement
over MC. This is due in part to poor multipliers generated from the (¢,5)
formulation.

On the other hand, FL improves in general the (¢, S) bound more significantly
than MC, although the improvements are still minuscule. Note that 2nd LR
does not solve to optimality for many test instances, particularly for the hard
problems. Similar to the 1st LR, the 2nd LR does not provide necessarily an
improvement over FL bound, due to poor multipliers. Compared to previous
test problems, Multi-LSB instances are parallel to TDS problems, where the
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Table 4
Pairwise comparisons of lower bounds and LR gaps for Multi-LSB instances

Test || MC vs. | 1st LR vs. MC || FL vs. | 2nd LR vs. FL Gaps

Set (8 LB UB ¢S LB UB 1st LR | 2nd LR

SET1 | 0.02% | -0.02% | -0.02% || 0.85% | -0.29% | -0.28% | 0.00% | 0.01%

SET2 || 0.06% | -0.06% | -0.06% || 0.28% | -0.11% | -0.05% | 0.00% | 0.06%

SET3 || 6.28% |-4.27% | -4.27% || 6.11% | -5.14% | 24.83% | 0.00% | 21.92%

SET4 | 1.23% | -1.14% | -1.14% || 3.40% | -0.99% | 4.34% | 0.00% | 4.76%

bottleneck lies in the capacities rather than the multi-level structure of these
problems.

4.8  Summary

One of our main goals of this paper was to understand the structure of produc-
tion planning problems and the underlying difficulties that make these prob-
lems very hard. In general, the Lagrangian relaxations we tested are helpful for
this. First of all, recall that in general the Lagrangian relaxation that relaxes
capacity constraints provides only slight improvement over the (¢, S) bound.
This bound is an approximation for the uncapacitated problem polyhedron,
which indicates that removing capacities makes the problem much easier. This
can also be observed by recalling that the final gaps after the default times
were quite small for this Lagrangian relaxation in general.

On the other hand, the facility location reformulation with cover cuts and
the Lagrangian that relaxes the level-linking constraints improve the lower
bounds much more significantly. Recall that the cover cuts approximate the
intersection of all knapsack sets included in the problem, and 2nd LR is an
approximation for a single-level capacitated problem. Having higher duality
gaps compared to the 1st LR, this Lagrangian relaxation problem is in general
much harder to solve, indicating that the level-linking constraints are not
the bottleneck of these problems. A similar comparison is achieved by Jans
and Degraeve [43] for single-level problems, where their Lagrangian relaxation
relaxing only period-linking constraints is a harder problem than the one that
relaxes capacities. Recall that we did not report computational results on LDs,
due to the result presented in Corollary 7.
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5 Conclusion

In this paper, we have provided an extensive survey of different methodologies
for obtaining lower bounds for big bucket production planning problems, and
presented both theoretical and computational comparisons of them.

In summary, it seems that the multi-level structure by itself makes some of our
problems challenging to solve. However, for most instances, and in particular
for the most challenging, the single-level, capacitated substructures are clearly
a much greater contributor to problem difficulty. It is this substructure for
which the tools currently at our disposal are evidently not sufficient.

These observations indicate that the main bottleneck with these problems lies
in the fact that there is no efficient polyhedral approximation of the multi-
item, multi-period, single-level, single-machine capacitated problems. It seems
that if we could solve these problems well or even adequately, our ability to
solve multi-level bug bucket problems would increase dramatically. While ini-
tial efforts to find strong formulations for these problems have been made (e.g.
see Miller et al. [26]), this is a fundamental area in which it is crucial for the
research community to improve the current state of the art. We will attempt
to make contributions in this direction in future research.
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Appendix A: Detailed Results

Lower Bounds

Upper Bounds

Instance (8 MC FL Heuristic | 1st LR | 2nd LR || 1st LR | 2nd LR | Best
(Cap) (Lev) (Cap) (Lev) Soln.

AGH01130 || 116,183 | 116,600 | 118,340 | 119,146 | 117,808 | 120,764 || 123,203 | 127,683 | 153,418
AGH01131 || 107,829 | 108,106 | 108,987 | 109,714 | 109,298 | 108,822 || 115,656 | 117,533 | 145,225
AGH01132 || 118,677 | 118,957 | 119,986 | 121,740 | 120,163 | 120,454 || 123,663 | 128,249 | 154,191
AGH01141 || 133,424 | 134,008 | 135,519 | 134,421 | 135,078 | 136,547 || 141,548 | 147,696 | 171,895
AGH01142 || 145,508 | 145,873 | 147,646 | 148,911 | 146,527 | 149,002 || 151,197 | 156,488 | 192,582
AGH02130 || 122,353 | 123,904 | 125,925 | 128,101 | 125,087 | 127,119 || 125,472 | 134,118 | 167,927
AGH02131 || 109,085 | 109,501 | 110,500 | 111,001 | 111,043 | 109,959 || 116,443 | 121,005 | 145,322
AGH02141 || 134,971 | 135,527 | 136,973 | 136,353 | 136,792 | 139,060 || 141,900 | 146,767 | 173,640
AGH02232 | 97,032 | 97,488 | 97,890 | 97,632 | 98,529 | 98,206 || 101,859 | 102,415 | 121,108
AG5H02531 || 102,340 | 103,252 | 102,817 | 103,506 | 103,216 | 103,211 || 105,542 | 109,727 | 129,080
AK501131 || 96,968 | 96,983 | 99,966 | 99,020 | 97,892 | 97,811 || 98,030 | 112,060 | 123,366
AK501132 || 101,699 | 101,781 | 103,276 | 103,077 | 102,289 | 102,847 || 102,887 | 109,206 | 123,473
AK501141 || 134,805 | 134,943 | 139,399 | 136,428 | 135,487 | 137,303 || 136,315 | 163,011 | 170,897
AK501142 || 134,880 | 135,006 | 138,151 | 135,875 | 135,122 | 137,867 || 137,204 | 151,661 | 161,262
AK501432 | 92,533 | 92,605 | 92,968 | 93,546 | 94,679 | 93,270 || 94,679 | 93,645 | 109,249
AK502130 || 102,222 | 102,245 | 106,358 | 103,949 | 103,054 | 104,351 || 103,460 | 117,191 | 127,889
AK502131 | 93,369 | 93,423 | 95,912 94,969 | 93,778 | 94,338 | 94,145 | 101,804 | 115,819
AK502132 | 96,312 | 96,396 | 98,423 | 97,233 | 96,933 | 97,644 || 97,092 | 104,528 | 118,319
AK502142 || 127,792 | 127,977 | 129,654 | 129,034 | 128,226 | 129,863 || 130,758 | 138,752 | 146,616
AK502432 | 88,980 | 89,088 | 89,550 | 89,609 | 90,193 | 89,995 | 91,779 | 91,225 | 105,415
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Lower Bounds

Upper Bounds

Instance (8 MC FL Heuristic | 1st LR | 2nd LR | 1st LR | 2nd LR | Best
(Cap) (Lev) (Cap) (Lev) Soln.

BGH11132 || 108,772 | 109,045 | 109,875 | 110,466 | 110,136 | 109,545 || 114,629 | 116,781 | 137,637
BGH11142 || 133,158 | 133,652 | 134,424 | 133,880 | 134,500 | 134,648 || 137,991 | 146,913 | 159,769
BGH12131 || 104,054 | 104,483 | 105,158 | 105,804 | 105,469 | 104,580 || 110,855 | 112,766 | 138,752
BGH12132 || 114,786 | 115,314 | 115,894 | 116,135 | 115,931 | 115,156 || 119,395 | 125,132 | 151,770
BGbH12142 || 142,917 | 143,659 | 144,840 | 143,848 | 144,161 | 145,305 | 148,340 | 158,261 | 199,051
BG521132 || 108,324 | 108,559 | 109,338 | 110,024 | 109,805 | 109,109 || 113,609 | 115,077 | 138,133
BGH21142 || 131,363 | 131,908 | 132,996 | 132,604 | 132,905 | 133,224 | 137,629 | 141,350 | 156,694
BGH22130 || 113,540 | 114,876 | 116,472 | 121,578 | 115,240 | 115,961 || 119,850 | 123,968 | 154,581
BGH22132 || 113,382 | 113,838 | 114,305 | 115,158 | 114,551 | 114,262 || 119,158 | 121,255 | 147,894
BGH22142 || 137,126 | 137,782 | 138,608 | 138,077 | 138,405 | 138,851 | 142,417 | 144,180 | 186,268
BK511131 || 92,602 | 92,640 | 93,964 | 94,411 93,107 | 93,304 || 94,310 | 99,779 | 120,303
BK511132 || 95,323 | 95,355 | 97,283 | 95,938 | 95,942 | 96,310 | 96,844 | 103,668 | 115,416
BK511141 || 125,307 | 125,494 | 126,753 | 126,769 | 125,679 | 126,534 || 127,256 | 135,597 | 162,629
BK512131 || 90,733 | 90,787 | 92,253 | 92,058 | 91,391 | 91,568 | 92,036 | 96,009 | 113,536
BK512132 || 90,814 | 90,858 | 92,896 | 91,346 | 91,738 | 91,870 | 92,208 | 98,554 | 112,809
BK521131 || 92,350 | 92,382 | 93,469 | 94,164 | 92,881 | 92,884 | 94,004 | 97,318 | 118,217
BK521132 || 94,257 | 94,317 | 96,197 | 94,957 | 94,932 | 95,110 || 95,914 | 101,441 | 117,423
BKb521142 || 124,988 | 125,257 | 126,384 | 125,480 | 125,333 | 126,548 || 128,448 | 134,871 | 153,805
BK522131 || 90,532 | 90,588 | 91,731 91,742 | 91,131 | 91,291 | 91,802 | 96,184 | 111,339
BKb522142 || 119,559 | 119,739 | 120,794 | 119,625 | 120,047 | 120,956 || 124,160 | 127,283 | 148,471
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Lower Bounds

Upper Bounds

Instance l,S MC FL Heuristic | 1st LR 2nd LR 1st LR 2nd LR Best
(Cap) (Lev) (Cap) (Lev) Soln.
CG5H01120 || 1,011,260 | 1,012,042 | 1,025,118 | 1,027,177 | 1,012,992 | 1,017,258 || 1,022,396 | 1,109,345 | 1,252,308
CGH01131 || 472,421 | 472,711 | 475,464 | 478,437 | 473,125 | 472947 476,392 | 513,188 | 614,303
CG5H01141 | 627,035 | 627,631 | 630,113 | 628,114 | 628,641 | 627,980 631,308 | 678,899 | 777,831
CGH01121 || 945,696 | 946,442 | 953,112 | 959,756 | 948,052 | 946,612 953,730 | 1,045,688 | 1,247,493
CGH02221 || 724,648 | 725,517 | 725,827 | 728,105 | 726,515 | 724,779 743,421 | 765,713 | 889,548
CGH01132 || 561,827 | 562,158 | 566,137 | 606,568 | 562,887 | 567,379 567,636 | 597,061 | 842,734
CGH01222 | 697,129 | 698,410 | 699,934 | 699,021 | 699,024 | 697,860 718,231 | 723,508 | 858,289
CGHO1142 || 754,238 | 757,449 | 761,826 | 824,887 | 757,128 | 764,794 758,835 | 802,021 | 1,146,638
CGH01122 | 1,161,383 | 1,162,216 | 1,171,502 | 1,281,687 | 1,165,839 | 1,174,289 || 1,178,726 | 1,243,710 | 1,787,833
CGH02222 || 704,096 | 705,161 | 707,153 | 708,597 | 706,766 | 704,971 725,192 | 753,284 | 873,858
CK501120 || 141,900 | 142,034 | 143,869 | 143,260 | 142,581 143,212 145,659 | 156,264 | 176,187
CK501221 || 101,028 | 101,108 | 101,570 | 101,105 | 101,299 | 101,114 103,024 | 106,030 | 123,066
CK501121 || 131,993 | 132,185 | 133,494 | 132,840 | 132,708 | 132,496 137,522 | 147,865 | 169,804
CK502221 || 101,478 | 101,740 | 102,242 | 101,899 | 101,968 | 101,623 103,730 | 107,423 | 122,596
CK501222 || 97,937 98,050 98,858 98,096 98,313 98,267 100,271 102,163 | 122,485
CK501422 || 101,864 | 102,007 | 102,660 | 102,150 | 102,135 | 103,846 102,981 107,102 | 124,315
CKb502222 || 98,052 98,236 98,898 98,282 98,450 98,333 100,835 | 104,359 | 119,965
CKb501122 || 153,861 154,358 | 156,048 | 155,485 | 154,841 155,016 155,914 | 165,574 | 206,646
CKb501132 || 75,257 75,301 76,198 75,782 75,648 75,780 76,311 80,388 98,248
CKb501142 || 90,218 90,347 91,277 90,673 90,477 90,701 91,215 96,230 115,918
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Lower Bounds

Upper Bounds

Instance (S MC FL Heuristic | 1st LR | 2nd LR || 1st LR | 2nd LR Best
(Cap) | (Lev) (Cap) (Lev) Soln.
DG5/12141 || 609,464 | 610,630 | 611,291 | 615,992 | 610,613 | 609,599 | 610,613 | 659,071 | 736,181
DG5H12131 || 465,272 | 466,156 | 466,203 | 469,460 | 466,333 | 465,372 || 466,333 | 495,481 | 581,932
DGO012132 || 554,595 | 556,651 | 559,610 | 555,689 | 556,441 | 554,922 || 556,441 | 781,344 | 3,160,347
DG012142 || 756,588 | 758,120 | 763,304 | 756,588 | 757,387 | 756,898 | 757,387 | 1,001,177 | 3,121,762
DGO012532 || 554,167 | 555,261 | 556,877 | 555,032 | 555,045 | 554,167 || 555,045 | 775,666 | 1,194,004
DG012542 || 756,062 | 756,956 | 759,793 | 756,062 | 756,563 | 756,159 | 756,563 | 982,363 | 1,413,476
DG512132 || 512,330 | 513,440 | 514,386 | 514,682 | 512,722 | 512,376 || 512,722 | 554,333 | 2,909,628
DG512142 || 678,733 | 679,821 | 681,450 | 682,205 | 679,062 | 678,777 || 679,062 | 854,902 | 3,583,354
DG512532 || 509,567 | 511,041 | 510,510 | 512,147 | 510,670 | 509,587 || 510,670 | 542,328 | 584,491
DG512542 || 674,241 | 675,180 | 675,969 | 677,189 | 674,734 | 674,241 || 674,734 | 715,533 | 767,428
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Lower Bounds

Upper Bounds

Instance l,S MC FL Heuristic | 1st LR | 2nd LR || 1st LR | 2nd LR | Best
(Cap) | (Lev) (Cap) | (Lev) | Soln.

SET1.01 || 17,888 | 17,888 | 18,173 | 18,840 | 17,888 | 17,888 || 17,888 | 17,972 | 22,781
SET1.02 || 23,534 | 23,534 | 23,656 | 24,134 | 23,534 | 23,534 | 23,534 | 23,534 | 28,624
SET1.03 || 21,227 | 21,227 | 21,346 | 21,676 | 21,227 | 21,227 | 21,227 | 21,227 | 26,349
SET1.04 || 22,232 | 22,232 | 22,334 | 23,175 | 22,232 | 22,232 || 22,232 | 22,232 | 26,337
SET1.05 || 21,446 | 21,446 | 21,540 | 21,994 | 21,446 | 21,446 || 21,446 | 21,446 | 25,621
SET1.06 || 22,974 | 22,974 | 23,072 | 23,636 | 22,974 | 22974 || 22,974 | 22,974 | 26,741
SET1.07 || 20,360 | 20,360 | 20,386 | 21,125 | 20,360 | 20,360 | 20,360 | 20,360 | 24,693
SET1.08 || 25,582 | 25,582 | 25,616 | 26,249 | 25,582 | 25,582 | 25,582 | 25,582 | 29,810
SET1.09 || 16,321 | 16,321 | 16,442 | 17,013 | 16,321 | 16,321 | 16,321 | 16,338 | 21,146
SET1.10 || 17,998 | 17,998 | 18,151 | 18,945 | 17,998 | 17,998 | 17,998 | 18,011 | 22,863
SET1_11 || 11,080 | 11,080 | 11,237 | 11,407 | 11,080 | 11,164 | 11,080 | 11,169 | 12,956
SET1.12 || 24,721 | 24,721 | 24,762 | 25,238 | 24,721 | 24,721 | 24,721 | 24,725 | 26,985
SET1.13 || 20,782 | 20,788 | 20,830 | 21,195 | 20,782 | 20,782 | 20,782 | 20,786 | 23,129
SET1.14 || 22,264 | 22,268 | 22,331 | 22,745 | 22,264 | 22,264 | 22,264 | 22,264 | 25,720
SET1.15 || 12,401 | 12,404 | 12,805 | 12,575 | 12,401 | 12,564 | 12,401 | 12,564 | 14,121
SET1.16 || 15,122 | 15,122 | 15,356 | 15,387 | 15,122 | 15,543 | 15,122 | 15,543 | 17,542
SET1.17 || 20,468 | 20,475 | 20,498 | 20,864 | 20,468 | 20,468 | 20,468 | 20,468 | 23,404
SET1.18 || 11,075 | 11,077 | 11,366 | 11,456 | 11,075 | 11,462 | 11,075 | 11,462 | 12,300
SET1.19 || 13,276 | 13,276 | 13,528 | 13,342 | 13,276 | 13,388 | 13,276 | 13,388 | 17,448
SET1.20 || 14,101 | 14,101 | 14,177 | 14,612 | 14,101 | 14,101 || 14,101 | 14,113 | 17,167
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Lower Bounds

Upper Bounds

Instance l,S MC FL Heuristic | 1st LR | 2nd LR || 1st LR | 2nd LR | Best
(Cap) | (Lev) (Cap) | (Lev) | Soln.

SET1.21 || 10,159 | 10,166 | 10,429 | 10,392 | 10,159 | 10,325 || 10,159 | 10,325 | 12,421
SET1.22 || 38,040 | 38,056 | 38,166 | 38,040 | 38,040 | 38,040 | 38,040 | 38,077 | 40,158
SET1.23 || 29,331 | 29,343 | 29,376 | 29,355 | 29,331 | 29,331 | 29,331 | 29,331 | 30,606
SET1.24 || 28,858 | 28,858 | 29,074 | 29,250 | 28,858 | 28,886 | 28,858 | 28,886 | 32,174
SET1.25 || 51,371 | 51,371 | 51,403 | 51,371 | 51,371 | 51,371 | 51,371 | 51,371 | 53,009
SET1.26 || 39,379 | 39,379 | 39,463 | 39,488 | 39,379 | 39,402 | 39,379 | 39,402 | 41,442
SET1.27 || 40,838 | 40,838 | 40,838 | 40,918 | 40,838 | 40,838 | 40,838 | 40,838 | 43,320
SET1.28 || 39,846 | 39,864 | 39,894 | 40,144 | 39,846 | 39,857 | 39,846 | 39,857 | 40,993
SET1.29 || 23,155 | 23,165 | 23,275 | 23,232 | 23,155 | 23,182 | 23,155 | 23,182 | 25,606
SET1.30 || 68,989 | 68,989 | 69,074 | 68,989 | 68,989 | 68,989 | 68,989 | 68,989 | 70,868
SET2.01 || 46,116 | 46,116 | 46,207 | 46,591 | 46,116 | 46,116 | 46,116 | 46,116 | 55,039
SET2.02 || 47,780 | 47,780 | 47,861 | 48,159 | 47,780 | 47,780 | 47,780 | 47,780 | 57,825
SET2.03 || 40,551 | 40,551 | 40,610 | 40,814 | 40,551 | 40,551 | 40,551 | 40,551 | 49,147
SET2.04 || 36,347 | 36,347 | 36,564 | 36,808 | 36,347 | 36,347 | 36,347 | 36,430 | 44,656
SET2.05 || 45,395 | 45,395 | 45,508 | 45,784 | 45,395 | 45,395 | 45,395 | 45,395 | 55,650
SET2.06 || 45,902 | 45,902 | 45,939 | 45,902 | 45,902 | 45,902 | 45,902 | 45,902 | 54,361
SET2.07 || 52,825 | 52,825 | 52,939 | 53,108 | 52,825 | 52,825 | 52,825 | 52,825 | 61,140
SET2.08 || 48,033 | 48,033 | 48,280 | 48,632 | 48,033 | 48,084 | 48,033 | 48,084 | 56,444
SET2.09 || 37,553 | 37,553 | 37,661 | 37,943 | 37,553 | 37,553 | 37,553 | 37,553 | 44,523
SET2_10 || 38,751 | 38,751 | 38,898 | 39,181 | 38,751 | 38,751 || 38,751 | 38,751 | 49,481
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Lower Bounds

Upper Bounds

Instance (0,5 MC FL Heuristic | 1st LR | 2nd LR || 1st LR | 2nd LR | Best
(Cap) (Lev) (Cap) (Lev) Soln.

SET2_11 | 65,210 | 65,211 | 65,213 | 65,648 | 65,210 | 65,210 | 65,210 | 65,210 | 69,177
SET2.12 || 62,792 | 62,792 | 62,979 | 62,792 | 62,792 | 62,803 | 62,792 | 62,803 | 66,914
SET2.13 || 34,778 | 34,778 | 34,882 | 34,987 | 34,778 | 34,885 | 34,778 | 34,885 | 40,114
SET2_14 || 62,907 | 62,907 | 62,993 | 62,907 | 62,907 | 62,907 | 62,907 | 62,916 | 67,201
SET2_15 || 59,079 | 59,079 | 59,125 | 59,079 | 59,079 | 59,079 | 59,079 | 59,079 | 61,616
SET2.16 | 75,682 | 75,682 | 75,698 | 75,682 | 75,682 | 75,682 | 75,682 | 75,682 | 79,576
SET2.17 || 36,809 | 36,818 | 36,918 | 36,925 | 36,809 | 36,826 | 36,809 | 36,935 | 41,484
SET2.18 || 77873 | 77,874 | 77,935 | 78,087 | 77,873 | 77,873 | 77,873 | 77,873 | 83,200
SET2.19 || 54,981 | 54,981 | 55,120 | 55,484 | 54,981 | 55,026 | 54,981 | 55,026 | 59,010
SET2.20 || 119,568 | 119,568 | 119,588 | 119,568 | 119,568 | 119,568 || 119,568 | 119,568 | 122,974
SET2.21 || 22,281 | 22,315 | 22,557 | 22,281 | 22,281 | 22,643 | 22,281 | 22,643 | 24,459
SET2.22 || 51,279 | 51,279 | 51,439 | 51,279 | 51,279 | 51,414 | 51,279 | 51,414 | 53,690
SET2.23 || 29,793 | 30,067 | 30,210 | 29,793 | 29,793 | 29,814 | 29,793 | 29,815 | 33,969
SET2.24 || 65,891 | 65,891 | 65,984 | 65,891 | 65,891 | 65,891 | 65,891 | 65,891 | 68,727
SET2.25 || 75,627 | 75,628 | 75,745 | 75,627 | 75,627 | 75,705 | 75,627 | 75,705 | 78,266
SET2.26 | 60,952 | 61,002 | 61,173 | 60,977 | 60,952 | 60,988 | 60,952 | 60,988 | 63,558
SET2.27 || 53,016 | 53,016 | 53,052 | 53,016 | 53,016 | 53,016 | 53,016 | 53,441 | 54,797
SET2.28 || 44,545 | 44,552 | 44,705 | 44,549 | 44,545 | 44,923 | 44,545 | 44,923 | 46,733
SET2.29 || 93,631 | 93,638 | 93,659 | 93,631 | 93,631 | 93,632 | 93,631 | 93,632 | 96,281
SET2.30 || 68,324 | 68,333 | 68,573 | 68,573 | 68,324 | 68,324 | 68,324 | 68,324 | 71,919




Ge

Lower Bounds

Upper Bounds

Instance l,S MC FL Heuristic | 1st LR | 2nd LR || 1st LR | 2nd LR | Best
(Cap) | (Lev) (Cap) | (Lev) Soln.

SET3.01 || 65,668 | 71,594 | 71,584 | 71,533 | 66,984 | 65,761 || 66,984 | 112,652 | 209,129
SET3.02 || 82,342 | 89,855 | 89,887 | 89,980 | 84,865 | 82,704 || 84,865 | 105,740 | 243,511
SET3.03 || 74,209 | 82,398 | 82,440 | 81,340 | 77,086 | 74,611 || 77,086 | 99,483 | 235,198
SET3.04 || 78,282 | 85,258 | 85,229 | 86,280 | 80,716 | 78,436 || 80,716 | 108,664 | 240,339
SET3.05 || 76,607 | 83,692 | 83,667 | 84,430 | 78,931 | 76,884 || 78,931 | 102,852 | 227,758
SET3.06 || 79,093 | 88,689 | 88,737 | 85,674 | 82,910 | 79,625 || 82,910 | 112,534 | 235,642
SET3.07 || 72,979 | 79,067 | 79,181 | 79,668 | 75,365 | 73,098 || 75,365 | 105,466 | 237,218
SET3.08 || 88,610 | 94,504 | 94,481 | 98,469 | 92,108 | 89,213 | 92,108 | 129,505 | 251,628
SET3.09 || 64,180 | 67,768 | 67,760 | 73,019 | 64,336 | 64,180 | 64,336 | 85,114 | 216,025
SET3_10 || 66,878 | 74,333 | 74,324 | 73,902 | 67,928 | 66,912 | 67,928 | 92,540 | 229,242
SET3_11 || 42,946 | 46,063 | 45,997 | 47,273 | 43,902 | 43,012 | 43,902 | 69,501 | 152,962
SET3_12 || 86,047 | 95,953 | 95,980 | 97,672 | 90,412 | 87,641 | 90,412 | 112,402 | 217,497
SET3.13 || 74,643 | 81,477 | 81,348 | 83,699 | 75,379 | 74,987 | 75,379 | 102,771 | 224,670
SET3_14 || 85,209 | 91,252 | 91,435 | 94,426 | 86,813 | 85,493 | 86,813 | 102,438 | 225,657
SET3_15 || 40,715 | 43,551 | 43,343 | 45,265 | 40,843 | 40,750 || 40,843 | 74,085 | 167,494
SET3.16 || 46,548 | 50,868 | 50,784 | 51,811 | 48,528 | 48,360 | 48,528 | 62,509 | 162,616
SET3_17 || 71,555 | 78,132 | 77,988 | 82,199 | 72,458 | 71,837 | 72,458 | 95,764 | 212,399
SET3.18 || 39,533 | 40,406 | 40,259 | 46,743 | 39,658 | 39,616 || 39,658 | 57,199 | 112,468
SET3.19 || 47,495 | 50,636 | 50,497 | 53,815 | 48,266 | 47,636 | 48,266 | 84,711 | 154,981
SET3.20 || 58,189 | 60,240 | 60,125 | 62,614 | 58,529 | 59,753 || 58,529 | 95,852 | 191,639




9¢

Lower Bounds

Upper Bounds

Instance (0,5 MC FL Heuristic | 1st LR | 2nd LR || 1st LR | 2nd LR | Best
(Cap) (Lev) (Cap) (Lev) Soln.

SET3.21 || 44,182 | 45,435 | 45,383 | 53,138 | 44,359 | 44,182 | 44,359 | 60,262 | 150,758
SET3.22 || 130,235 | 138,607 | 138,279 | 136,582 | 133,995 | 130,930 || 133,995 | 142,716 | 292,199
SET3.23 | 96,810 | 102,993 | 102,912 | 107,981 | 99,719 | 96,939 | 99,719 | 115,205 | 240,643
SET3.24 || 105,300 | 110,117 | 109,994 | 115,086 | 105,327 | 105,300 || 105,327 | 136,353 | 292,996
SET3.25 || 203,044 | 210,031 | 209,928 | 210,037 | 204,955 | 203,044 || 204,955 | 212,110 | 349,975
SET3.26 || 145,184 | 152,864 | 152,545 | 160,639 | 146,938 | 145,198 || 146,938 | 155,347 | 323,870
SET3.27 || 145,420 | 154,121 | 153,805 | 154,499 | 148,698 | 145,674 || 148,698 | 169,988 | 343,486
SET3.28 || 145,227 | 153,083 | 153,327 | 152,942 | 147,940 | 145,927 || 147,940 | 162,729 | 254,008
SET3.29 || 79,813 | 87,043 | 86,551 | 84,552 | 81,494 | 80,206 | 81,494 | 96,912 | 207,127
SET3.30 || 274,018 | 283,252 | 282,958 | 275,167 | 276,810 | 274,018 || 276,810 | 284,338 | 431,136
SET4.01 || 16,353 | 16,532 | 18,093 | 21,961 16,353 | 16,951 | 16,353 | 23,694 | 58,720
SET4.02 || 31,541 | 32,773 | 34,074 | 41,393 | 31,541 | 31,726 | 31,541 | 33,919 | 82,496
SET4.03 | 24,864 | 25,616 | 27,464 | 33,068 | 24,864 | 24,864 | 24,864 | 28,061 | 73,740
SET4.04 || 27,786 | 28,837 | 30,023 | 36,512 | 27,786 | 27,928 | 27,786 | 31,426 | 73,651
SET4.05 || 25,450 | 26,353 | 27,335 | 35,022 | 25,450 | 25,450 | 25,450 | 29,755 | 67,874
SET4.06 | 30,632 | 31,495 | 32,990 | 40,513 | 30,632 | 31,054 | 30,632 | 35,402 | 79,781
SET4.07 || 22,650 | 23,189 | 24,599 | 31,952 | 22,650 | 23,884 | 22,650 | 30,365 | 65,736
SET4.08 | 40,532 | 42,512 | 43,131 | 48,381 | 40,532 | 40,538 | 40,532 | 41,812 | 88,388
SET4.09 | 13,490 | 13,557 | 14,687 | 21,182 | 13,490 | 14,650 | 13,490 | 19,585 | 57,070
SET4.10 || 15,542 | 15,553 | 16,857 | 25,595 15,542 | 16,041 | 15,542 | 26,902 | 59,319




LE

Lower Bounds

Upper Bounds

Instance (0,5 MC FL Heuristic | 1st LR | 2nd LR || 1st LR | 2nd LR | Best
(Cap) (Lev) (Cap) (Lev) Soln.

SET4.11 || 12,802 | 12,996 | 13,825 17,303 | 12,802 | 13,675 | 12,802 | 15,205 | 28,989
SET4.12 || 43,341 | 44,527 | 45,100 | 50,868 | 43,341 | 44,523 | 43,341 | 46,502 | 78,062
SET4.13 || 28,152 | 28,736 | 30,049 | 34,945 | 28,152 | 28,152 | 28,152 | 33,352 | 53,833
SET4.14 || 56,174 | 57,052 | 57,302 | 64,255 | 56,174 | 56,406 | 56,174 | 57,049 | 82,406
SET4.15 || 14,628 | 14,715 | 15,304 | 15,863 | 14,628 | 15,244 | 14,628 | 16,260 | 26,980
SET4.16 || 17,171 | 17,529 | 17,990 | 22,405 17,172 | 17,662 | 17,172 | 19,874 | 35,280
SET4.17 || 29,001 | 29,886 | 30,581 | 36,480 | 29,225 | 29,237 | 29,225 | 31,729 | 54,515
SET4.18 || 19,184 | 19,213 | 19,309 | 22,584 | 19,185 | 19,705 | 19,185 | 19,997 | 26,279
SET4.19 || 10,724 | 10,769 | 11,780 | 14,950 | 10,724 | 12,581 | 10,724 | 15,411 | 31,974
SET4.20 || 18,718 | 18,858 | 19,702 | 23,969 | 18,731 | 19,420 | 18,731 | 21,014 | 39,983
SET4.21 || 15,812 | 16,243 | 16,819 | 18,259 | 15,812 | 16,386 | 15,812 | 17,720 | 25,899
SET4.22 || 91,715 | 93,010 | 93,185 | 93,869 | 91,733 | 92,228 | 91,733 | 92,310 | 120,166
SET4.23 || 55,058 | 55,601 | 56,077 | 57,298 | 55,151 | 55,562 | 55,151 | 56,132 | 76,857
SET4.24 || 58,919 | 59,231 | 59,512 | 63,700 | 58,919 | 59,213 | 58,919 | 60,947 | 85,119
SET4.25 || 171,987 | 172,779 | 172,904 | 173,663 | 171,987 | 171,987 | 171,987 | 171,988 | 201,717
SET4.26 || 110,570 | 111,393 | 111,703 | 117,746 | 110,570 | 110,570 || 110,570 | 110,577 | 142,090
SET4.27 || 101,114 | 102,197 | 102,182 | 103,873 | 101,471 | 101,267 || 101,471 | 101,340 | 139,874
SET4.28 || 112,892 | 113,353 | 114,022 | 113,987 | 112,892 | 112,987 || 112,892 | 112,987 | 126,027
SET4.29 || 51,149 | 51,394 | 51,776 | 56,304 | 51,149 | 51,253 | 51,149 | 51,253 | 68,320
SET4.30 || 241,678 | 243,702 | 243,998 | 242,481 | 241,801 | 241,678 || 241,801 | 241,693 | 267,976




