A note on Furstenberg's filtering problem

Rodolphe Garbit

To cite this version:

Rodolphe Garbit. A note on Furstenberg's filtering problem. 2009. hal-00387100v1

HAL Id: hal-00387100 https://hal.science/hal-00387100v1

Preprint submitted on 24 May 2009 (v1), last revised 12 Jun 2009 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A NOTE ON FURSTENBERG'S FILTERING PROBLEM

RODOLPHE GARBIT

Abstract

This short note gives a positive answer to an elementary question in probability theory that arose in Furstenberg's famous article "Disjointness in Ergodic Theory". As a consequence, Furstenberg's filtering theorem holds without any integrability assumption.

1. The context

In his famous article [1] , Furstenberg applied his concept of disjointness to a filtering problem : if $\left(X_{n}\right)$ and $\left(Y_{n}\right)$ are two stationary sequences of realvalued random variables, X_{n} being the emitted signal and Y_{n} the noise, is it possible to recover X_{n} from the knowledge of the received signal $X_{n}+Y_{n}$? Furstenberg obtained the following result :
Theorem 1.1 (蓜, Theorem I.5). Let $\left(X_{n}\right)$ and $\left(Y_{n}\right)$ be two stationary sequences of integrable random variables, and suppose that the two sequences are absolutely independent (i.e., that the processes they determine are disjoint). Then the σ-fields spanned by $\left(X_{n}+Y_{n}\right)$ and $\left(X_{n}, Y_{n}\right)$ are identical, so that $\left(X_{n}\right)$ is a "function" of $\left(X_{n}+Y_{n}\right)$.

For the defintion of disjoint processes, we refer the reader to [1] or (2].
This Theorem is a consequence of an isomorphism lemma for two dynamical systems, and the following elementary lemma :
Lemma 1.2 (烏, Lemma I.3). Let $U_{1}, U_{2}, V_{1}, V_{2}$ denote four integrable random variables with each of the U_{i} independent of each V_{j}. Then $U_{1}+V_{1}=$ $U_{2}+V_{2}$ together with $\mathbb{E}\left[U_{1}\right]=\mathbb{E}\left[U_{2}\right]$ implies $U_{1}=U_{2}$ and $V_{1}=V_{2}$.

Furstenberg noted that "It would be of interest to know if the integrability stipulation may be omitted, replacing the equality of the expectations of U_{1} and U_{2} by equality of their distributions", because a positive answer would mean that the integrability assumption in Theorem 1.1 can also be omitted.

As far as we know, this elementary question remained unsolved. It is shown in the next section that the answer is positive.

2. An ELEMENTARY LEMMA IN PROBABILITY THEORY

Lemma 2.1. Let $U_{1}, U_{2}, V_{1}, V_{2}$ be four real random variables such that :
(1) U_{1} and U_{2} have the same distribution;
(2) For all $i, j \in\{1,2\}, U_{i}$ and V_{j} are independent.

Date: May 22, 2009.

Then $U_{1}+V_{1}=U_{2}+V_{2}$ a.s. implies $U_{1}=U_{2}$ a.s.
Proof. We first note that the equality of the distributions of U_{1} and U_{2}, and the independence of U_{1} with V_{1} and U_{2} with V_{2}, together with $U_{1}+V_{1}=$ $U_{2}+V_{2}$ imply that V_{1} and V_{2} have the same distribution. This is easily seen by the mean of characteristic functions.

Fix $n \geq 1$ and let ϕ_{n} be the continuous function defined by

$$
\phi_{n}(x)= \begin{cases}n & \text { if } x>n \\ x & \text { if } x \in[-n, n] \\ -n & \text { if } x<-n\end{cases}
$$

Set $U_{i, n}=\phi_{n}\left(U_{i}\right)$ and $V_{j, n}=\phi_{n}\left(V_{j}\right)$. These variables are bounded and verify :
(1) $U_{1, n}$ and $U_{2, n}$ have the same distribution;
(2) $V_{1, n}$ and $V_{2, n}$ have the same distribution;
(3) For all $i, j \in\{1,2\}, U_{i, n}$ and $V_{j, n}$ are independent;

Let $H_{n}=\left(U_{1, n}-U_{2, n}\right)\left(V_{2, n}-V_{1, n}\right)$. By independence and equality of distributions, we get

$$
\begin{aligned}
\mathbb{E}\left[H_{n}\right] & =\mathbb{E}\left[U_{1, n} V_{2, n}\right]-\mathbb{E}\left[U_{1, n} V_{1, n}\right]-\mathbb{E}\left[U_{2, n} V_{2, n}\right]+\mathbb{E}\left[U_{2, n} V_{1, n}\right] \\
& =\mathbb{E}\left[U_{1, n}\right] \mathbb{E}\left[V_{2, n}\right]-\mathbb{E}\left[U_{1, n}\right] \mathbb{E}\left[V_{1, n}\right]-\mathbb{E}\left[U_{2, n}\right] \mathbb{E}\left[V_{2, n}\right]+\mathbb{E}\left[U_{2, n}\right] \mathbb{E}\left[V_{1, n}\right] \\
& =0
\end{aligned}
$$

Furthermore, since ϕ_{n} is a non-decreasing function and $U_{1}-U_{2}=V_{2}-V_{1}$ a.s, we see that $H_{n} \geq 0$ a.s: if $U_{1}-U_{2}=V_{2}-V_{1} \geq 0$ then $U_{1, n}-U_{2, n} \geq 0$ and $V_{2, n}-V_{1, n} \geq 0$, hence $H_{n} \geq 0$; the same argument holds if $U_{1}-U_{2}=$ $V_{2}-V_{1} \leq 0$.

Since $H_{n} \geq 0$ a.s. and $\mathbb{E}\left[H_{n}\right]=0$, we get $H_{n}=0$ a.s. Now, observe that $H_{n} \rightarrow\left(U_{1}-U_{2}\right)\left(V_{2}-V_{1}\right)$ as $n \rightarrow \infty$. Thus,

$$
\left(U_{1}-U_{2}\right)^{2}=\left(U_{1}-U_{2}\right)\left(V_{2}-V_{1}\right)=0 \text { a.s. }
$$

and the lemma is proven.

References

[1] Furstenberg, H. (1967). Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation. Math. Sys. Theory 1 : 1-49.
[2] De la Rue, T. (2006). An introduction to joinings in ergodic theory. Discrete and Continuous Dynamical Systems 15(1) : 121-142.

Laboratoire de Mathématiques Jean Leray, UMR CNRS 6629, Université de Nantes, BP 92208, 44322 Nantes Cedex 3, France.

E-mail address: rodolphe.garbit@univ-nantes.fr

