Noël Bernard

Yves Dumond

Reification of substitutions in the asynchronous π-calculus

Keywords: concurrency, process algebra, π-calculus, explicit substitutions

In this paper, we bring in a dialect of the π-calculus, namely the π S -calculus, which involves explicit substitutions. This mechanism has the property to handle substitutions in such a way that it avoids deep parsing of the terms concerned. Then, we show that the π S -calculus can faithfully simulate the π-calculus, thus putting in evidence the fact that terms of the latter can be interpreted more efficiently.

Introduction

Name substitution is a basic feature in the semantics of the λ-calculus and of many process calculi. For instance, let us pay attention to the following reduction rule which is part of the semantics of the π-calculus:

a(r).P a(v) -→ P{v/r}
Here, the name v is received on the channel a and it is then substituted for the free occurrences of the placeholder r in the term P. Therefore, this one must be parsed in order to perform this task. Moreover, if the process P is made of a set of processes running in parallel, e.g.:

P ≡ P 1 | . . . | P n
the substitutions should normally involve several communications, which are not considered in the usual semantics. Consequently, as it stands, this mechanism might appear fairly artificial. Thus, we investigate in this paper the reification of name substitution under the form of dedicated π-processes.

Explicit substitutions are well known in the λcalculus, starting from [START_REF] Abadi | Explicit substitutions[END_REF]. The question of adding a similar construct in the π-calculus has not been so widely studied. The first attempt has been the π ξcalculus of [START_REF] Ferrari | A π-calculus with explicit substitutions: the late semantics[END_REF]. A term in this calculus consists of a pair denoted ξ :: P of an environment ξ, that is a list of equalities between names, and a process P. A closer proposal to ours can be found in [START_REF] Hirschkoff | Handling substitutions explicitely in the πcalculus[END_REF][START_REF] Stehr | CINNI -A generic calculus of explicit substitutions and its application to λ-, σand π-calculi[END_REF], where processes are ordinary processes of the π-calculus with an additional construct P [s], where s is a substitution, i.e. a correspondence between names in P and values. Explicit fusions [START_REF] Gardner | Explicit fusions[END_REF] adopt a point of view very close to that in this paper: they present an equality x = y as a process in itself. The main difference is the use of structural equivalences such as symmetry and transitivity relations between equalities, which amount to neglect of the computational aspect of explicit substitutions. The Applied π-calculus [START_REF] Abadi | Mobile values, new names, and secure communication[END_REF][START_REF] Abadi | Just fast keying in the pi calculus[END_REF] also introduces processes {M/x} but unlike the present paper these processes act globally on a process P not taking into account the computational content of deep propagation of substitution inside P.

Syntax

The syntax of the π-calculus widely differs from one author to another. Our point of view about this calculus is strongly influenced by the Chemical Abstract Machine [START_REF] Berry | The chemical abstract machine[END_REF]. This leads us to choose an asynchronous version of the π-calculus [START_REF] Boudol | Asynchrony and the π-calculus (note)[END_REF][START_REF] Honda | On asynchronous communication semantics[END_REF] involving guarded sums as the reference dialect. In addition, we define explicit substitutions as a specific kind of process: Definition 1 (π S -calculus syntax). The following is an inductive definition of the syntax of the π S -calculus:

The π S -terms (also called π S -processes) have to fulfill the Barendregt's hygiene condition (Bhc) [START_REF] Barendregt | The Lambda Calculus: Its Syntax and Semantics[END_REF] which prohibits name capture: for any two occurrences of a given name, either both are free or both are bound in the same binding.

The set of the π S -terms is denoted Π S . Moreover, in the explicit substitution {{r ← v}}, the name r is called the repository while v is called the value.

With regard to the Bhc, it is important to point out the fact that such a property can only be managed globally. Therefore, in this paper we study the derivation of processes considered individually but with the proviso that they are embedded in a syntactical context under the form of a π S -process that complies with the Bhc.

Action of explicit substitutions

The outer names are names which, with regard to their location in a given π S -term, are potentially subject to the action of explicit substitutions.

Definition 2 (outer names). Let P and P ′ be two π Sterms. The set O(P) of outer names of P is defined by induction on P by the following list of equations:

-O(0) = ∅ -O({{r ← v}}) = ∅ -O(āb) = {a, b} -O(a(x).P) = {a} -O(P|P ′) = O(P) ∪ O(P ′) -O(S + S ′) = O(S) ∪ O(S ′) -O((ν x)P) = O(P) -{x} -O([x = y]P) = O(P) ∪ {x, y} -O(D(v)) = {v 1 , . . . , v n } with v = (v 1 , . . . , v n)
Definition 3 (occurrences in outer name position). Let P be a π S -term. An occurrence x of an element of O(P) is said to be in outer name position if and only if x is not in the scope of an input prefix. We denote Oc(P) the set of occurrences which are in outer name position in P.

Remark 1. For any π S -term P, O(P) is finite. Moreover, the outer names of P can be found in one step starting from the root of the syntactical tree related to this term and consequently any deep parsing of P is not necessary. This appears as a direct consequence of the syntax chosen for π S -terms, in particular the fact that sums must be guarded. Now, we have to discriminate among the explicit substitutions, those which, due to their location in a given term, are in a position to act on outer names. These are called active explicit substitutions: Definition 4 (active explicit substitutions). Let P be a π S -term. We call active explicit substitutions of P the explicit substitutions embedded in P which are not in the scope of an input prefix.

Definition 5 (set of repositories). Let P be a π S -term. We denote ρ(P) the set of the repositories of the active explicit substitutions embedded in P.

The semantic rules below give the details of implementation of the effect of active explicit substitutions on outer names as a function of the morphology of the terms concerned. This specification involves a meta-operator denoted by "≻", the corresponding meta-transitions, which are obviously not performed in the π S -calculus, being all labeled by the symbol "τ k ".

- (a 1) {{r ← v}} ≻ r(x).P τ k -→ v(x).P r ∈ {a, b} (a 2) {{r ← v}} ≻ āb τ k -→ āb{v/r} {{r ← v}} ≻ P τ k -→ P ′ ∧ x r (a 3) {{r ← v}} ≻ (ν x)P τ k -→ (ν x)P ′ r ∈ w ∧ w ′ = w{v/r} (a 4) {{r ← v}} ≻ D(w) τ k -→ D(w ′) {{r ← v}} ≻ S 1 τ k -→ S ′ 1 ∧ r O(S 2) (a 5) {{r ← v}} ≻ S 1 + S 2 τ k -→ S ′ 1 + S 2 {{r ← v}} ≻ S 1 τ k -→ S ′ 1 ∧ {{r ← v}} ≻ S 2 τ k -→ S ′ 2 (a 6) {{r ← v}} ≻ S 1 + S 2 τ k -→ S ′ 1 + S ′ 2 {{r ← v}} ≻ P τ k -→ P ′ (a 7) {{r ← v}} ≻ [x = y]P τ k -→ [x = y]{v/r}P ′ r ∈ {x, y} ∧ r O(P) (a 8) {{r ← v}} ≻ [x = y]P τ k -→ [x = y]{v/r}P {{r ← v}} ≻ P τ k -→ P ′ (a 9) {{r ← v}} ≻ Q | P | R τ k -→ Q | P ′ | R
These rules deserve the following comments:

(a 1) The process P remains unchanged. (a 3) Because of the Bhc, the names r and x are supposed to be different. (a 5) This rule is written up to left-right symmetry. (a 6) Occurrences of the repository r are substituted both in S 1 and in S 2 . 2

Semantics

The operational semantics for the π S -calculus is given hereafter under the form of a list of conditional term rewriting rules. The rules b 1 , b 2 and b 3 are specific to the π S -calculus. The other rules have the form which they take in usual specifications of the semantics of the asynchronous π-calculus apart from the side conditions. Indeed, while giving the π-calculus a transition semantics, side conditions are associated to some rules with the goal of imposing α-conversions which avoid name capture. There is no need to take such precautions in the π S -calculus since the Bhc radically prevents this phenomenon:

{{r ← v}} ≻ P τ k -→ P ′ ∧ r v ∧ r ∈ O(P) (b 1) {{r ← v}} | P τs -→ {{r ← v}} | P ′ - (b 2) a(r).P a(v) -→ (ν r)({{r ← v}} | P) D(u) de f = P ∧ P α { v/ u} γ -→ P ′ (b 3) D(v) γ -→ P ′ - (b 4) āb āb -→ 0 P γ -→ P ′ (b 5) [a = a]P γ -→ P ′ S 1 γ -→ S ′ 1 (b 6) S 1 + S γ -→ S ′ 1 P γ -→ P ′ (b 7) P | Q γ -→ P ′ | Q P γ -→ P ′ ∧ x γ (b 8) (ν x)P γ -→ (ν x)P ′ P āb -→ P ′ ∧ Q a(b) -→ Q ′ (b 9) P | Q τ -→ P ′ | Q ′ P āx -→ P ′ ∧ a x (b 10) (ν x)P ā(x) -→ P ′ P ā(x) -→ P ′ ∧ Q a(x) -→ Q ′ (b 11) P | Q τ -→ (ν x)(P ′ | Q ′)
These rules deserve the following comments: (b 1) This rule, which is written up to left-right symmetry, specifies the effect of an active explicit substitution on processes of another kind. No action is possible on explicit substitutions since they have no outer names. The corresponding transition, performed in the π S -calculus, is labeled by the special action τ s . The condition r v prevents infinite derivations of the form

{{r ← v}} | P τs -→ {{r ← v}} | P τs -→ .
. . Furthermore, this rule stresses the fact that explicit substitutions are permanent processes, i.e. they do not disappear, nor are modified, after an interaction with another process. (b 2) When the value v is received, the explicit substitution {{r ← v}} is created and this one runs in parallel with the process P. Both the new explicit substitution and the process P are in the scope of the restricted name r which was formerly a placeholder. (b 3) The Bhc must be preserved by constant unfolding. Hence, all the bound names of P are first replaced by fresh names, the corresponding process, denoted P α , being obviously not unique. Then, actual parameters are substituted for formal ones. Once the corresponding process P α { v/ u} has been built up, the transition γ can be performed. Proof. Consider a π S -term P. We reason by cases on the action γ performed by P, i.e. P γ -→ P ′ : -Case γ = āb and γ is not combined with a constant unfolding. The emitting process āb is replaced by 0 in P ′ and the status of the remaining names is unchanged.

-Case γ = ā(b) and γ is not combined with a constant unfolding. Again, the emitting process āb is replaced by 0 in P ′ . In addition, the concerned restriction statement (ν b) is removed from P. Therefore, b becomes free in P ′ but remains different from the bound names of P ′ . Moreover, the status of the other names of P ′ is unchanged.

-Case γ = a(v) and γ is not combined with a constant unfolding. Then, P encompasses a process of the form S ′ + a(r).Q + S ′′ . This one is turned into (ν r)({{r ← v}} | Q) in P ′ . Hence, the name r is a placeholder before the transition and becomes a restricted name after it. Therefore, it remains a bound name different from the other bound and free names of P ′ , including the incoming name v (because of the Bhc). Moreover, the status of the other names remaining in P ′ is unchanged.

-Case γ = τ, γ is not combined with a constant unfolding and the exchanged name is free. This case is a simple combination of the first and the third ones.

-Case γ = τ, γ is not combined with a constant unfolding and the exchanged name b is bound. The process P is subject to the following modifications:

• The emitting process āb is replaced by 0.

• The scope of the restricted name b is extended and no α-conversion is required since name capture is not possible in π S . • A new explicit substitution is created and a placeholder is turned into a restricted name.

Again, the status of all the names remaining in P ′ is not modified.

-Case γ = τ s and γ is not combined with a constant unfolding. The consequence of a τ s -action consists in substituting one or several occurrences of a given repository which stand in outer name position in P, by the corresponding value. This does not bring in any new name nor modifies the status of the names remaining in P ′ .

-Case γ is combined with a constant unfolding. The process P encompasses a constant invocation D(v) and a constant defining equation, i.e. D(u)

de f
= T, is associated to the process P. First, fresh names are substituted for all the bound names of T: this generates a term T α . By definition, all the names that occur free in T appear in u. Then, these ones are replaced in T α by the names of v, i.e. by names already present in P. Let us denote Q the process P in which the term T α { v/ u} has been substituted for D(v). Then, the names of v occur free in T α { v/ u} and they have in Q the status, i.e. bound or free, that they had in P. Moreover, the only names that have appeared in Qby the fact of the unfolding process of the constant D are the fresh names. The latter are bound in T α { v/ u}, and consequently in Q, and they differ, by construction, from all the other names of Q. Furthermore, the status of the latter, in particular that of the names of v, has not been modified by the constant unfolding. Thence, Q fulfills the Bhc. At this stage, the action γ can be performed, and we are led to consider one of the previous cases.

Reduction of π-terms in π S

From now on, we focus on derivations carried out in the π S -calculus under the assumption that they start from π-terms. This criterion characterizes a specific subset among the π S -terms. In particular, all the explicit substitutions present in these terms are active: this comes from the fact that they are the result of the application of the rule b 2 .

Definition 6 (π ′

S -calculus). We denote Π ′ S the set of π Sterms which can be obtained by derivation of π-terms and we call π ′ S the calculus made of Π ′ S outfitted with the semantic rules of π S .

The next definition characterizes terms on which rule b 3 can no longer be applied.

Definition 7 (enacted processes). Let P be a π ′ S -term which encompasses the following explicit substitutions {{r 1 ← v 1 }}, . . . , {{r n ← v n }}. The process P is said to be enacted if and only if O(P) ∩ ρ(P) = ∅.

Definition 8 (enactment phase). Let P be a π ′ S -term. Any (possibly empty) sequence of τ s -actions, due to the action of the explicit substitutions of P, which turns it into an enacted process P ′ is called an enactment phase. The corresponding derivation is denoted P ❀ P ′ . We define hereafter a property which is fulfilled by the set of explicit substitutions of π ′ S -terms provided the latter are reduced according to a given strategy. This property is subsequently used to establish the termination and the confluence of the enactment phase.

Definition 9 (disjunction property). Let P be a π ′ Sterm which encompasses the following explicit substitutions

{{r 1 ← v 1 }}, . . . , {{r n ← v n }}.

The term P is said to fulfill the disjunction property on repositories and values if and only if:

-all the repositories r i are distinct, -no value v i is equal to a repository r j . We denote D(P) the fact that P abides by this property.

Lemma 1. Let P be a π ′ S -term that derives from a πterm P 0 . Then, D(P) holds provided along the derivation that leads from P 0 to P, all the actions different from τ s have been performed by enacted processes.

Proof. Consider a π ′ S -term P that encompasses the list of explicit substitutions {{r 1 ← v 1 }}, . . . , {{r n ← v n }}. We reason by induction on the length of a derivation path that complies with the aforementioned constraints.

Base case : no explicit substitution is present in P 0 and consequently D(P 0) is verified.

Induction step : by induction hypothesis, D(P) holds. According to the semantics of the π ′ S -calculus, active explicit substitutions are permanent processes, i.e. they cannot disappear nor be modified. Therefore, the only transitions which are worth considering are those that generate a new explicit substitution: this expels the actions āv, ā(v) and τ s . The mechanism of constant unfolding does not generate new explicit substitutions, either. Hence, in the proof below, the two actions, i.e. a(v) and τ, are considered with the proviso that they are not combined with a constant unfolding. Thus, if we denote {{r ← v}} the explicit substitution which has appeared in P ′ , then for all explicit substitution {{r i ← v i }} of P, we have to prove that r r i , r v i , r v and r i v. We proceed by cases on the action γ performed by P, i.e. P γ -→ P ′ :

-Case γ = a(v):

• r r i . The repository r i either is a placeholder present in the original term P 0 or a fresh name that has appeared due to a constant unfolding. In both cases, because of the Bhc, r r i .

• r v i . We reason ad absurdum. Assume that for some i, r = v i . Then, P necessarily encompasses:

a process S ′ + a(r).Q + S ′′ , which becomes (ν r)({{r ← v}} | Q) in P ′ , an explicit substitution {{r i ← r}} which, by hypothesis, cannot be embedded in Q since in π ′ S -terms, all the explicit substitutions are active. Here, Q is the scope of the placeholder r and this name also occurs outside Q, namely in the explicit substitution {{r i ← r}}. This is clearly in contradiction with the Bhc.

• r v. Again, we reason ad absurdum. Assume that r = v. Then, P necessarily encompasses a process

S ′ + a(v).Q + S ′′ which becomes (ν v)({{v ← v}} | Q) in P ′ .
Here, the incoming name v appears in P as a placeholder and outside P in an emitting process of the form āv. This is in contradiction with the Bhc, to which the context encompassing P is supposed to comply.

• r i v. Here, we have to prove that the incoming name v cannot be equal to one of the repositories r i . Each of them either was a placeholder in the term P 0 or has appeared as a fresh name during a constant unfolding. In both cases, it could not occur anywhere else. So, it can be received by P only if it has been previously sent out by a process from which P derives, and subsequently sent back to P. Consider the explicit substitution {{r i ← v i }}: because of the disjunction property, r i i . Under this assumption, any action ār i or ā(r i) is prohibited because the encompassing process is not enacted: the value v i must be substituted for r i before the emission. Therefore, the received value v cannot be equal to one of the repositories of P.

-Case γ = τ and the emitted name is free:

• r r i and r v i . We can reason in the same way as in case γ = a(v): the only difference is that the emitting process is embedded in P.

• r v. We reason ad absurdum. Assume that r = v. Then, P necessarily encompasses:

a process āv, a process S ′ + a(v).Q + S ′′ which becomes

(ν v)({{v ← v}} | Q) in P ′ .
Moreover, the emitting process āv is obviously not embedded in Q. Hence, the name v occurs in Q as a placeholder and outside Q in the emitting process, which is in contradiction with the Bhc.

• r i v. Again, we reason ad absurdum. Assume that for some i, r i = v. Then, P necessarily encompasses:

a process āv, a process S ′ + a(r).Q + S ′′ , which becomes (ν r)({{r ← v}} | Q) in P ′ , an active explicit substitution {{v ← v i }} which is not embedded in Q.

Since D(P)holds, we have v v i . Here, the contradiction comes from the fact that the action τ cannot be performed because P is not enacted: v i must be substituted for v in the process āv prior to this action. As a result, the repository v cannot be emitted and ergo cannot become the value of the newly created explicit substitution.

-Case γ = τ and the emitted name is bound, i.e. is a restricted name:

• r r i , r v i and r v. We can reason as we did in the previous case.

• r i v. We reason ad absurdum. Assume that for some i, r i = v. Then, P necessarily encompasses:

-a process (ν v)(R ′ | āv | R ′′), -a process S ′ + a(r).Q + S ′′ , which becomes (ν r)({{r ← v}} | Q) in P ′ , -an explicit substitution {{v ← v i }} which, be- cause of the Bhc, is necessarily embedded in R ′ or R ′′ and such that v v i .
Again, we can argue that the τ-action cannot be performed if P is not enacted: the name v i has to be substituted for v before the emission.

Remark 2. If the π ′ S -term P 0 has been derived up to P according to the hypotheses made in the terms of Lemma 1, then D(P) is verified whether P is enacted or not.

Lemma 2 (finiteness of enactment phase). Let P be a π ′

S -term such that D(P) holds. Then, any enactment phase of P is finite.

Proof. If P is enacted, then the enactment phase is empty. Now, assume that P is a non enacted π ′ Sprocess. The outer names which are affected during the enactment phase are the elements of the finite set E = O(P) ∩ ρ(P). By the fact of the disjunction property, each element of E can be subject to the action of one, and one only, explicit substitution. Once the substitution(s) has (have) been performed, the names(s) appearing at the corresponding location(s) cannot be modified anymore since no value is equal to a repository. Therefore, if nb-occ(x, P) denotes the number of occurrences of x in outer names position in P, we can argue that the integer value e∈E nb -occ(e, P) strictly decreases, up to zero, at each τ s -step.

Lemma 3 (confluence of enactment phase). Let P be a π ′ S -term such that D(P) holds. Then, the enactment phase of P has the property of confluence.

Proof. Obvious: due to the disjunction property, any occurrence of an element of the set E = O(P)∩ρ(P)is subject to the action of one, and one only, explicit substitution. Hence, any τ s -action is performed in total causal independency towards the other.

Simulation of π by π ′

S

We show in this section that any π-term can be derived, respectively in π and in π ′ S , in such a way that, at each step, the terms reached are closely related, thus putting in evidence a relation of simulation between the derivations they respectively belong to. This clearly shows the possibility to interpret π-terms in an efficient way, avoiding the parsing phases of terms made necessary by in-depth substitutions.

To begin with, we need to define the two calculi, one compared to the other:

• The Bhc is assumed to be implemented both in π and in π ′ S . • The only difference between the two syntaxes resides in the fact that in π ′ S , explicit substitutions do not exist.

• From a semantic point of view the relationship between the two calculi is specified hereafter. Thus, for what concerns the π-calculus:

-Substitutions are performed in-depth after each reception, so there is no need for a meta-operation handling them. Consequently, the rule b 1 must be removed and the input rule b 2 has to be written under its usual form:

a(r).P a(v) -→ P{v/r}
-All the other semantic rules, in particular b 3 which preserves the Bhc, are unchanged.

At this point, we introduce a notion that aims at defining a morphological relation between πand π ′ S -terms. The latter are characterized by the presence of explicit substitutions and of restriction statements (ν r i) related to the repositories. Hence, these features have to be removed in order to make the comparisons possible between terms of the two calculi.

Definition 10 (concrete term). If P is a π ′

S -term, we denote P the π-term defined by the following set of axioms, where ≡ is the syntactic identity between terms:

-P | . . . | Q ≡ P | . . . | Q -a 1 (x 1).P 1 + . . . + a n (x n).P n ≡ a 1 (x 1). P 1 + . . . + a n (x n). P n -∃v, {{r ← v}} is a subprocess of P ⇒ (ν r)P ≡ P -∄v, {{r ← v}} is a subprocess of P ⇒ (ν r)P ≡ (ν r) P -({{r ← v}} | P) ≡ P -[x = y]P ≡ [x = y] P -āb ≡ āb -D(w) ≡ D(w) -0 ≡ 0
We bring in below the simulation relation considered in this paper, as well as some related notions: Definition 11 (name occurrence location). Let x be an occurrence of a name n in the π ′ S -term P. We call location of x and denote loc(x, P) the number of symbols preceding x in P, the names and the constant identifiers being counted as 1.

Definition 12 (֒→-transition). If P and Q are two π ′ Sterms and γ an action different from τ s , any derivation of the form P

γ -→ P ′ ❀ Q is denoted P γ ֒→ Q.
Corollary 1. Let P 0 be a π-term and consider the following derivation P 0

γ 0 ֒→ . . . γ n-1 ֒→ P n performed in π ′ S .
Then, for all i, P i is enacted and D(P i) holds.

Proof. Obvious since the above derivation of P 0 is in conformity with the reduction strategy defined by the terms of Lemma 1.

Definition 13 (M-equivalence). Let P be a π-term and Q an enacted π ′ S -term such that D(Q) holds. Consider the list {{r 1 ← v 1 }}, . . . , {{r n ← v n }} of explicit substitutions encompassed by Q. Then, the terms P and Q are said to be M-equivalent if and only if:

M.1 P ≡ Q {v 1 /r 1 } . . . {v n /r n } M.2 (x ∈ Oc(P) ∧ x is an occurrence of n ⇒ ∃x ′ ∈ Oc(Q) s.t. : (x ′ is an occurrence of n ∧ loc(x, P) = loc(x ′ , Q)))
and conversely

The M-equivalence is denoted ∼.

Definition 14 (σ-simulation). A relation ≍ is said to be a σ-simulation of π by π ′ S if for any derivation

∆ : P ≡ P 0 γ 0 -→ P 1 γ 1 -→ . . . γ n-1
-→ P n in π there exists a derivation ∆ ′ :

P ≡ Q 0 γ 0 ֒→ Q 1 γ 1 ֒→ . . . γ n-1 ֒→ Q n in π ′
S such that for all i,

P i ≍ Q i .
Remark 3. At first sight, one may be surprised that we consider a simulation relation between derivations and not between terms as it is usually done. In fact, by explicitly considering derivations of the process P as a whole, we deal with terms which encompass all the required explicit substitutions.

Proposition 2. The relation∼ is a σ-simulation of π by π ′ S .

Proof. We reason by induction on the length of a derivation path. Moreover, in the proof below, any expression of the form [x = x] denotes a list of adjacent matching statements [

x 1 = x 1] . . . [x n = x n].
Base case : The π-terms P, P 0 and Q 0 are identical, i.e. P ≡ P 0 ≡ Q 0 and the set of explicit substitutions encompassed by Q 0 is empty. Thence P 0 ∼ Q 0 .

Induction step : We reason by cases on the transition γ n undergone by the π-term P n , i.e. P n γn -→ P n+1 :

-Case γ n = āb and γ n is not combined with a constant unfolding. By induction hypothesis, P n ∼ Q n . Therefore, the processes P n and Q n are such that they both encompass an emitting process of the form [x = x]āb, the location of the corresponding occurrences of a being respectively the same in P n and in Q n . Hence, there exists a π ′ S -term Q n+1 for which Q n āb -→ Q n+1 . Moreover, P n+1 and Q n+1 can be respectively deduced from P n and Q n by replacing the process [x = x]āb by 0. By induction hypothesis, Q n is enacted and since no new explicit substitution has appeared in Q n+1 , this one is enacted too. Consequently, the π ′ S -term Q n+1 is such that Q n āb ֒→ Q n+1 . Furthermore, under the assumption that P n ≡ Q n {v 1 /r 1 } . . . {v n /r n }, if we respectively replace [x = x]āb by 0 in P n and in Q n , the location of all the occurrences of the remaining names is either unchanged or shifted symmetrically in P n and in Q n . This is in particular true for:

• the occurrences of the different repositories r i and ergo

P n+1 ≡ Q n+1 {v 1 /r 1 } . . . {v n /r n },
• the occurrences in outer name position which remain identical, at any concerned location, respectively in P n+1 and Q n+1 .

In conclusion, M.1 and M.2 hold and thence P n+1 ∼ Q n+1 .

-Case γ n = ā(b) and γ n is not combined with a constant unfolding. Here, the reasoning is basically the same as that of the previous case. The only difference lies in the fact that in addition to the emitting process, a restriction statement (ν b) disappears from P n and Q n as well.

-Case γ n = a(v) and γ n is not combined with a constant unfolding. The process P n encompasses a process of the form [y = y](S ′ + a(ρ i).P i n + S ′′). By induction hypothesis, P n ∼ Q n and consequently Q n encompasses a process of the form [y = y](T ′ + a(ρ i).Q i n + T ′′) for which:

• Q i n is a π-term such that P i n ≡ Q i n {v 1 /r 1 } . . . {v n /r n },
• the location of the corresponding occurrences of a is the same in P n and in Q n , • S ′ ∼ T ′ and S ′′ ∼ T ′′ .

After the reception of the value v on the channel a, the two receiving processes are respectively replaced by:

• P i n {v/ρ i } in P n+1 , i.e. the substitution {v/ρ i } is per- formed in-depth in the process P i n , • (ν ρ i)({{ρ i ← v}} | Q i n)
in the immediate derivative of Q n here denoted Q, i.e. a new explicit substitution {{ρ i ← v}} is created that runs in parallel with the process Q i n , the whole being in the scope of the restricted name ρ i .

By induction hypothesis, D(Q n) holds. Thence, after Lemma 1 D(Q) does too. Moreover, after Lemma 2 and Lemma 3 the enactment phase of Q is finite and confluent. Therefore, there exists a unique enacted π ′ S -term

Q n+1 for which Q ❀ Q n+1 and Q n a(v)
֒→ Q n+1 . From a morphological point of view, the processes Q and Q n+1 do not differ since the latter can be deduced from the former by a finite set of τ s -actions. In fact, Q is subject to the action of the previously existing explicit substitutions, i.e. {{r 1 ← v 1 }}, . . . , {{r n ← v n }} plus that of the new created one {{ρ i ← v}}. Consequently, at the end of the enactment phase, the process Q i n has been turned into a process

Q i n+1 such that P i n {v/ρ i } ≡ Q i n+1 {v 1 /r 1 } . . . {v n /r n }{v/ρ i }, which, by the fact that (ν ρ i)({{ρ i ← v}} | Q i n+1) ≡ Q i n+1 , leads to: P i n {v/ρ i } ≡ (ν ρ i)({{ρ i ← v}} | Q i n+1) {v 1 /r 1 } . . . {v n /r n }{v/ρ i }
By hypothesis, Q n is an enacted process and because of the scope definition of ρ i , occurrences of its own cannot be found outside Q i n . Hence, the enactment phase of Q only affects the process Q i n . From this, we deduce:

P n+1 ≡ Q n+1 {v 1 /r 1 } . . . {v n /r n }{v/ρ i } So, M.1 holds. From P i n {v/ρ i } ≡ Q i n+1 {v 1 /r 1 } . . . {v n /r n }{v/ρ i }and by the fact that Q i
n+1 is no longer subject to the action of any explicit substitution, we can deduce that for any concerned location, the occurrences of names in outer name position are identical in P i n {v/ρ i } and in Q i n+1 . Furthermore, the processes that appear in the following couples, i.e.

(S ′ , T ′), (S ′′ , T ′′)and (P i n {v/ρ i }, Q i n+1)being all respectively made of the same number of symbols, the location of the occurrences of outer names present in P n+1 and in Q n+1 outside P i n {v/ρ i } and Q i n+1 are either unchanged or shifted symmetrically. Therefore, M.2 holds.

Again, we can assert that P n+1 ∼ Q n+1 .

-Case γ n = τ and γ n is not combined with a constant unfolding. If the name subject to the communication is free, the present case is a simple combination of the cases γ n = āb and γ n = a(b). If the emitted name is bound, i.e. is a restricted name, the reasoning is globally similar, the only difference lying in the fact that a scope extrusion must be considered, the restriction statement (ν b) remaining in P n+1 and Q n+1 .

-Case γ n is combined with a constant unfolding. By induction hypothesis, P n and Q n respectively encompass, at the same location in P n and in Q n , an occurrence of the same process D(u). This assumes the existence of a constant defining equation D(w) de f = T . At this point, consider that:

• During the constant unfolding phase, we are free to assume that D(u) is replaced by the same term T α { u/ w} both in P n and in Q n . Remember that this term is obtained by respectively substituting fresh names for all the bound names of T and the names of u for those of w. Thus, the process Q n being enacted, neither D(u) nor T α { u/ w} is subject to the action of any explicit substitution. Now, if we denote P δ n and Q δ n the terms P n and Q n in which T α { u/ w} has been substituted at the same location for D(u), then under the assumption that P n ≡ Q n {v 1 /r 1 } . . . {v n /r n }, we can state that P δ n ≡ Q δ n {v 1 /r 1 } . . . {v n /r n }, i.e. that M.1 holds for P δ n and Q δ n . • As mentioned above, the same term T α { u/ w}is substituted for D(u) both in P n and in Q n . Therefore, the respective locations of the occurrences of outer names of P δ n and Q δ n appearing respectively outside T α { u/ w} are either unchanged or shifted symmetrically. Consequently, M.2 holds for P δ n and Q δ n . We can deduce from what precedes that the Mequivalence is preserved by any constant unfolding phase, i.e. P δ n ∼ Q δ n . Note that as constant unfolding is not an actual transition, P δ n and Q δ n are not, strictly speaking, P -derivatives. Nevertheless, D(Q δ n) holds since Q δ n and Q n encompass the same set of explicit substitutions. Therefore, while considering the transition γ n starting from P δ n and Q δ n , the same reasonings as in the previous cases can be applied, which leads to P n+1 ∼ Q n+1 .

 (b 6), (b 7), (b 9), (b 11) These rules are written up to leftright symmetry. (b 10) The label ā(x) denotes the emission of the restricted name x on the channel a. Proposition 1. The Bhc property is preserved in the π S -calculus.