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Approximation of quasi-stationary distributions for

1-dimensional killed diffusions with unbounded drifts

Denis Villemonais

May 22, 2009

Abstract

The long time behavior of an absorbed Markov process is well described by the
limiting distribution of the process conditioned to not be killed when it is observed.
Our aim is to give an approximation’s method of this limit, when the process is a
1-dimensional Itô diffusion whose drift is allowed to explode at the boundary. In a
first step, we show how to restrict the study to the case of a diffusion with values
in a bounded interval and whose drift is bounded. In a second step, we show an
approximation method of the limiting conditional distribution of such diffusions,
based on a Fleming-Viot type interacting particle system. We end the paper with
two numerical applications : to the logistic Feller diffusion and to the Wright-Fisher
diffusion with values in ]0,1[ conditioned to be killed at 0.

Key words : quasi-stationary distribution, interacting particle system, empirical process,
Yaglom limit, diffusion process.
MSC 2000 subject : Primary 65C50, 60K35; secondary 60J60

1 Introduction

Let (Xt) be a killed Markov process with law P, taking its values in E ∪ {∂}, where ∂
is a cemetery point. We denote by τ∂ = inf{t ≥ 0, Xt = ∂} the killing time of (Xt).
A probability measure ν on E is called a quasi-stationary distribution (QSD) if, for
all t ≥ 0, the distribution of the process X, initially distributed with respect to ν and
conditioned to be not killed before time t, is still ν at time t, that is Pν (Xt ∈ A|τ∂ > t) =
ν(A) for every A ⊂ E and t ≥ 0. Without loss of generality, we suppose that ∂ is an
absorbing point, so that {τ∂ > t} = {Xt 6= ∂}.

Let µ be a probability measure on E. If it exists and provided it is a probability, the
limiting conditional distribution

lim
t→+∞

Px(Xt ∈ .|Xt 6= ∂)

is called the Yaglom limit for µ, from the Russian Mathematician A.M. Yaglom. He
showed in [27] that the limiting conditional distribution of the number of descendants in
the nth generation of a Galton-Watson process always exists in the subcritical case.
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The existence or uniqueness of such invariant conditional distributions have been
proved in a host of contexts. When E is finite, it is proved in [7] that there exists a
unique QSD ν and that the Yaglom limit converges to ν independently of the initial
distribution. In [4], the case of a birth and death process on N is studied. For this pro-
cess, the set of QSDs is either empty, or a singleton, or a continuum indexed by a real
parameter and given by an explicit recursive formula. This is an exception : most of
the known results on QSDs are related with existence or uniqueness problems. In [11],
the existence of a quasi-stationary distribution for a continuous time Markov chain on N

killed at 0 is proved under conditions on moments of the killing time, using an original
renewal dynamical approach. In [6], the case of 1-dimensional diffusion on [0, + ∞[ with
C1 drift and killed at 0 are studied, with the assumption that +∞ is a natural boundary.
The dependence between the initial measure and the Yaglom limit is explored in [19] (for
a Brownian motion with constant drift killed at 0) and [18] (for the Orstein-Uhlenbeck
process killed at 0). In [26], the case of 1-dimensional diffusions with general killing on
the interior of a given interval is investigated. In [3], the authors study the existence and
uniqueness of the QSD for 1-dimensional diffusions killed at 0 and whose drift is allowed
to explode at the boundary, which is the case under study in the present paper. See [23]
for a regularly updated extensive bibliography on QSD.

In this paper we are concerned with 1-dimensional Itô diffusions with values in ]0, +
∞[∪{∂} killed at 0 and defined by the stochastic differential equation

dXt = dBt − q(Xt)dt, X0 = x > 0,

where B is a standard 1-dimensional Brownian motion and q ∈ C1(]0,+ ∞[). In [3], the
Yaglom limit of this process is studied and the authors give some conditions on the drift
q, which are sufficient for the existence and the uniqueness of the QSD. In particular, they
allow the drift to explode at the origin. As explained in the paper, this diffusion is closely
related with some Markov mortality models. Such applications need the computation of
the process QSD, but the tools used in [3] are based on spectral theory’s arguments and
don’t allow us to get explicit values. Our aim is to give an easily simulable approximation’s
method of this QSD.

The problem of QSD’s approximation has been already explored in [2], [12] when E is
a bounded open set of R

d and X is a Brownian motion killed at the boundary of E. The
authors proved an approximation’s method exposed in [1], which is based on a Fleming-
Viot type system of interacting particles whose number is going to infinity. In [10], it is
proved that this method works well for a continuous time Markov chain in a countable
state space under suitable assumption on the transition’s rates (moreover, the existence
of a QSD is a consequence of the approximation’s method). New difficulties arise from
our case with unbounded drift. For instance, the interacting particle process introduced
in [1] isn’t necessarily well defined. To avoid this difficulty, we begin by proving that one
can approximate our QSD by the QSD’s of diffusions with bounded drifts.

Let us denote by P
ǫ the law of a diffusion with values in ]ǫ,1/ǫ[, defined by the stochastic

differential equation dXt = dBt − q(Xt)dt and killed when it hits ǫ or 1/ǫ. In [22], it is
proved that the Yaglom limit associated with P

ǫ exists and is its unique QSD. We will
denote it by νǫ. In the first part of this paper, we give some conditions on q ∈ C1(]0,+∞[)
for the family (νǫ)0<ǫ≤1/2 to be tight and to converge, when ǫ → 0, to a QSD for the law
P

0. We point out the fact that this result remains valid in the case of an unbounded drift
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diffusion with values in a bounded interval. In a second part, we prove an approximation
method for each probability measure νǫ, based on the interacting process introduced in [1].
Fix ǫ > 0 and let us describe the interacting particle process of size N ≥ 2: each particle
moves independently in ]ǫ,1/ǫ[, each one with law P

ǫ until one of them hits the boundary.
At this time, the killed particle jumps on the position of an other particle, chosen uniformly
between the N − 1 remaining one. Then the particles evolve independently, until one of
them is killed and so on (see Figure 1). One has to prove that the particles don’t degenerate

1
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1

Figure 1: The interacting particle system (X1,X2)

at the boundary. In [2], the authors prove a non-degeneracy result with arguments based
on a construction of the d-dimensional Brownian motion due to Itô, where d ≥ 2. It
seems that this tool can’t be easily generalized to other diffusions. To prove such results
under our settings, we build an original coupling between the interacting particle process
and an independent particle system of the same size. This coupling is valid for all drifted
Brownian motions with continuous bounded drift, killed at the boundary of a bounded
interval of R+. It will be used in each step of the proof.

We conclude the paper by two numerical applications. At first, we treat the case of
the logistic Feller diffusion introduced in [17] and studied in [3] with values in ]0, + ∞[,
driven by the stochastic differential equation

dZt =
√
ZtdBt + (rZt − cZ2

t )dt, Z0 = z > 0,

where B is a 1-dimensional Brownian motion and r, c are two positive constants. Clearly,
0 is an absorbing state for this diffusion. In a second time we study in detail the case of
the Wright-Fisher diffusion on ]0,1[ conditioned to be killed at 1 (see [13]). This diffusion
takes values in ]0,1[, and is defined by

dZt =
√
Zt(1 − Zt)dBt + (1 − Zt)dt, Z0 = z ∈]0,1[,

where B is a 1-dimensional Brownian motion. This diffusion is absorbed at 1.
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2 From unbounded drift to bounded drift

Let P
0
x be the law of a diffusion process taking its values in ]0,+ ∞[∪{∂}, killed when it

hits 0 and defined by the stochastic differential equation (SDE)

dXt = dBt − q(Xt)dt, X0 = x > 0,

where B is a 1-dimensional Brownian motion. The drift q is taken in the set of real valued
continuously differentiable functions C1(]0, + ∞[). We denote by L0 the infinitesimal
generator associated with P

0.
We define, ∀x ∈]0,+ ∞[,

Q(x) =

∫ x

1

q(y)dy,

dµ(x) = e−2Q(x)dx,

and
W (x) = q(x)2 − q′(x).

For all ǫ ∈]0,1/2[, we define P
ǫ
x as the law of the diffusion taking its values in ]ǫ,1/ǫ[,

defined by the SDE
dXt = dBt − q(Xt)dt, X0 = x ∈]ǫ,1/ǫ[

and killed when it hits the boundary {ǫ,1/ǫ}. Let Lǫ be the infinitesimal generator 1/2∆−
q∇ with the Dirichlet boundary condition on {ǫ,1/ǫ}. −Lǫ has a simple real eigenvalue λǫ

(see [22, Theorem KR]) at the bottom of its spectrum. The corresponding eigenfunction
ηǫ is positive and belongs to C2([ǫ,1/ǫ]). We choose it so that

∫ 1/ǫ

ǫ

ηǫ(x)
2dµ(x) = 1. (1)

Let us recall some results of [22]:

Theorem (Pinsky (1985)) The Yaglom limit associated with P
ǫ exists for all initial

distributions δx, x ∈]ǫ,1/ǫ[, and doesn’t depend on x. This limit is a QSD, which we
denote by νǫ. Furthermore, we have

dνǫ(x) =
ηǫ(x)dµ(x)

∫ 1/ǫ

ǫ
ηǫ(x)dµ(x)

. (2)

In fact, νǫ is the unique QSD of the process, as proved in Lemma 19 below, but we won’t
use it in this section. The aim of this section is to study the asymptotic behaviour of (νǫ)
when ǫ goes to 0.

From now, M1(]0,+∞[) denotes the space of probability measures on ]0,+∞[ equipped
with the weak topology. The following hypotheses arise naturally in the proof of Theorem
1, which is based on a compactness-uniqueness method.

Hypothesis 1 (H1) W is bounded below by −C, where C is a positive constant. More-
over, W (x) → +∞ when x→ ∞.
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Hypothesis 2 (H2)

∫ +∞

1

e−2Q(x)dx < +∞ and

∫ 1

0

1

W (x) + C + 1
µ(dx) < +∞.

Hypothesis 3 (H3)

∫ +∞

1

e−2Q(x)dx < +∞ and

∫ 1

0

x e−Q(x)dx < +∞.

Theorem 1 Assume that hypotheses (H1) and (H2 or H3) are satisfied. Then

νǫ−→
ǫ→0

ν ∈ M1(]0,+ ∞[),

where ν is a QSD for P
0, which is equal to the Yaglom limit limt→+∞ P

0
x(Xt ∈ .|t < τ∂),

∀x ∈]0, + ∞[.

Remark 1 The hypotheses (H1) and (H2 or H3) are the assumptions that are made in
[3] to prove the existence of the Yaglom limit.

Remark 2 If a process satisfies the hypotheses of Theorem 1, then it is killed in finite
time a.s or it is never killed a.s. Indeed, assume that the process can be killed in finite
time with a positive probability. Then

∫ 0

1
eQ(x)

(∫ x

1
e−Q(y)dy

)
dx < +∞ (see [14]) and∫ +∞

1
eQ(x)dx = +∞ (as a consequence of (H1) and (H2 or H3)). But this two conditions

are fulfilled if and only if the process is killed in finite time almost surely (see [14, Theorem
3.2 p.450]).

Remark 3 The existence of a QSD for P
0 can be seen as a consequence of Theorem 1.

The existence of the Yaglom limit is proved in [3, Theorem 5.2].

Remark 4 In Part 2.3, we give the counterpart of Theorem 1 for diffusions with values
in a bounded interval.

The end of the section is devoted to the proof of Theorem 1.

2.1 Tightness of the family (νǫ)0<ǫ<1/2

This part is devoted to the proof of the following result,

Proposition 2 Assume that the hypotheses (H1) and (H2 or H3) are satisfied. Then
the family (νǫ)0<ǫ≤1/2 is tight. Moreover, every limit point is absolutely continuous with
respect to the Lebesgue measure.

We know that Lǫηǫ = −λǫηǫ, ηǫ ∈ C2([ǫ,1/ǫ]), and ηǫ satisfies the differential equation

1/2η′′ǫ (x) − q(x)η′ǫ(x) = −λǫηǫ(x)

with the boundary conditions
ηǫ(ǫ) = ηǫ(1/ǫ) = 0.
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Define vǫ = ηǫe
−Q. By (1), we know that:

∫ 1/ǫ

ǫ

vǫ(x)
2dx = 1.

We have
vǫ(x)W (x) − v′′ǫ (x) = 2λǫvǫ(x),

with the boundary conditions
vǫ(ǫ) = vǫ(1/ǫ) = 0. (3)

Lemma 3 Assume that the hypothesis (H1) is fulfilled. Then (vǫ)0<ǫ<1/2 is uniformly
bounded above and the family (v2

ǫ (x)dx)0<ǫ<1/2 is tight.

Proof of Lemma 3 : From the differential equation satisfied by vǫ, we have

vǫ(x)
2W (x) − v′′ǫ (x)vǫ(x) = 2λǫvǫ(x)

2.

Integrating by parts and looking at the boundary conditions (3),

∫ 1/ǫ

ǫ

v′′ǫ (x)vǫ(x)dx = −
∫ 1/ǫ

ǫ

v′ǫ(x)
2dx,

where vǫ is normalized in L2(dx). That implies

∫ 1/ǫ

ǫ

v′ǫ(x)
2dx+

∫ 1/ǫ

ǫ

vǫ(x)
2W (x)dx = 2λǫ.

The eigenvalue λǫ of −Lǫ is given by (see for instance [28, chapter XI, part 8])

λǫ = inf
φ∈C∞

0
(]ǫ,1/ǫ[)

(Lǫφ,φ)µ,

= inf
φ∈C∞

0
(]ǫ,1/ǫ[)

(L0φ,φ)µ, (4)

where C∞
0 (]ǫ,1/ǫ[) is the vector space of infinitely differentiable functions with compact

support in ]ǫ,1/ǫ[ and (f,g)µ =
∫ +∞

0
f(u)g(u)dµ(u). We deduce from it that λǫ increases

with ǫ and is uniformly bounded above by λ1/2.
We have then

0 ≤
∫ 1/ǫ

ǫ

v′ǫ(x)
2dx+

∫ 1/ǫ

ǫ

vǫ(x)
2(W (x) + C + 1)dx ≤ 2λ1/2 + C + 1. (5)

Looking at the boundary conditions (3), we obtain, for all x ∈]ǫ,1/ǫ[,

v2
ǫ (x) = −2

∫ 1/ǫ

x

v′ǫ(y)vǫ(y)dy

≤ − 2

min[x,1/ǫ[

√
W + C + 1

∫ 1/ǫ

x

v′ǫ(y)vǫ(y)
√
W (y) + C + 1dy.
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Then, applying the Cauchy-Schwarz inequality to the right term above,

v2
ǫ (x) ≤ 2

min[x,1/ǫ[

√
W + C + 1

√∫ 1/ǫ

x

v′ǫ(y)
2dy

√∫ 1/ǫ

x

vǫ(y)2(W (y) + C + 1)dy.

From (5), the integral product is bounded by 2λ1/2 + C + 1, thus ∃A > 0, independent
from ǫ, such that

v2
ǫ (x) ≤ A

min[x,1/ǫ[

√
W + C + 1

≤ A

min[x,+∞[

√
W + C + 1

, (6)

where W (x) + C + 1 ≥ 1 for all x ∈]0, + ∞[, thanks to Hypothesis (H1). That implies
the first part of Lemma 3.

Let us prove that the family (v2
ǫdx)0<ǫ<1/2 is tight. Fix δ > 0. We have to find a

compact subset Kδ in ]0,+ ∞[ such that

∫

]0,+∞[\Kδ

v2
ǫ (x)dx ≤ δ, (7)

for all ǫ ∈]0,1/2[. Thanks to (6), we have v2
ǫ ≤ A, then

∫ δ/(2A)

0

v2
ǫ ≤ δ/2.

From the second part of Hypothesis (H1), ∃Mδ > 0 such that W (x) + C + 1 > 2(2λ +
C + 1)/δ for all x ≥Mδ. That implies

∫ +∞

Mδ

vǫ(x)
2dx ≤

∫ 1/ǫ

ǫ

vǫ(x)
2 δ(W (x) + C + 1)

2(2λ+ C + 1)
dx

≤ δ/2,

where the last inequality is due to (5). Finally, the compact set Kδ = [δ/(2A),Mδ] satisfies
(7). 2

Lemma 4 Assume that (H1) is satisfied. Then
∫ 1/ǫ

ǫ
ηǫ(y)dµ(y) is uniformly bounded

below by a constant B > 0.

Proof of Lemma 4 : Assume that
∫ 1/ǫ

ǫ
ηǫ(y)dµ(y) isn’t uniformly bounded below : one can

find a sub-sequence
∫ 1/ǫk

ǫk

vǫk
(y)e−Q(y)dy =

∫ 1/ǫk

ǫk

ηǫk
(y)dµ(y), where ǫk → 0, which tends

to 0. From Lemma 3, (vǫ)0<ǫ≤1/2 is uniformly bounded, so that
∫ 1/ǫk

ǫk

vǫk
(y)2e−Q(y)dy → 0.

The family (vǫ(x)
2dx) being tight, one can find (after extracting a sub-sequence) a positive

map m such that, for all continuous and bounded φ : R+ → R,

∫ 1/ǫk

ǫk

vǫk
(y)2φ(y)dy →

∫ +∞

0

m(y)φ(y)dy. (8)
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Indeed, (v2
ǫ ) being uniformly bounded, all limit measure is absolutely continuous with

respect to the Lebesgue measure. In particular,

∫ 1/ǫk

ǫk

vǫk
(y)2 min (e−Q(y),1)dy →

∫ +∞

0

m(y) min (e−Q(y),1)dy,

then ∫ +∞

0

m(y) min (e−Q(y),1)dy = 0.

But min (e−Q(.),1) is continuous and positive on R+, so that m vanishes almost every
where. Finally, by the convergence property (8) applied to φ equal to 1 almost everywhere,
we have

1 =

∫ 1/ǫk

ǫk

v2
ǫk
dx→ 0,

what is absurd. Thus, one can define B = infǫ

∫ 1/ǫ

ǫ
ηǫ(y)dµ(y)/A > 0. 2

Lemma 5 Assume that (H1) and (H2) are satisfied. Then the family (ηǫ(x)dµ(x))0<ǫ<1/2

is tight.

Proof of Lemma 5 : By (5), we have

∫ 1/ǫ

ǫ

η2
ǫ (y)(W (y) + C + 1)dµ(y) =

∫ 1/ǫ

ǫ

v2
ǫ (y)(W (y) + C + 1)dy

≤ λ1/2 + C + 1.

For all δ,M > 0, using Cauchy-Schwarz inequality, we get on one hand

∫ δ

0

ηǫ(y)dµ(y) ≤
(∫ δ

0

ηǫ(y)
2(W (y) + C + 1)dµ(y)

) 1

2
(∫ δ

0

1

W (y) + C + 1
dµ(y)

) 1

2

(9)

≤
(
λ1/2 + C + 1

) 1

2

(∫ δ

0

1

W (y) + C + 1
dµ(y)

) 1

2

. (10)

On the other hand,

∫ +∞

M

ηǫ(y)dµ(y) ≤
(∫ +∞

M

η2
ǫ (y)dµ(y)

) 1

2
(∫ +∞

M

dµ(y)

) 1

2

(11)

≤
(∫ +∞

M

dµ(y)

) 1

2

. (12)

Thanks to (H2), both terms are going to 0 uniformly in ǫ, when δ and M tend respectively
to 0 and +∞. As a consequence, the family (ηǫ(x)dµ(x))0<ǫ<1/2 is tight. 2

Lemma 6 Assume that (H1) and (H3) hold. Then the family (ηǫ(x)dµ(x))0<ǫ<1/2 is tight.

8



Proof of Lemma 6 : The first part of the hypothesis (H3) is the same as (H2)’s one, then

∫ +∞

M

ηǫ(y)dµ(y) → 0

when M goes to infinity, uniformly in ǫ.
Moreover, there exists a constant K > 0 such that, for any x ∈]0,1] and any ǫ ∈]0,1/2],

ηǫ(x) ≤ KxeQ(x).

This is a consequence of [3, Proposition 4.3] whose proof is still available under our
settings. This inequality allows us to conclude the proof of Lemma 6. 2

Thanks to equality (2) and Lemmas 4, 5 and 6, the first part of Proposition 2 is proved.
Moreover, νǫ has a density with respect to the Lebesgue measure which is bounded on
every compact set, uniformly in ǫ > 0. Thus every limit point is absolutely continuous
with respect to the Lebesgue measure.

2.2 The limit points of the family (νǫ)0<ǫ<1/2

Proposition 7 Assume that Hypotheses (H1) and (H2 or H3) are fulfilled and let ν be
a probability measure which is the limit of a sub-sequence (νǫk

)k∈N, where ǫk → 0 when
k → ∞. Then ν is a QSD with respect to P

0.

Proof of Proposition 7 : From Proposition 2, the family (νǫ)0<ǫ<1/2 is tight. Let ν be a
limit point of the family (νǫ)0<ǫ<1/2. There exists a sub-sequence (νǫk

)k which converges
to ν, where (ǫk)k∈N is a decreasing sequence which tends to 0. We already know that ν
is absolutely continuous with respect to the Lebesgue measure. That implies that, for all
open intervals D =]c,d[⊂ R+,

νǫk
(D) → ν(D), (13)

and, for all bounded maps φ continuous on R+,
∫

R+

φ(x)dνǫk
(x) →

∫

R+

φ(x)dν(x). (14)

Let νt (resp. νǫ,t) be the distribution at time t of a diffusion with law P
0
ν (resp. P

ǫ
νǫ

),
conditioned to be not killed until time t, that is

νt(dx) = P
0
ν(ωt ∈ dx|τ∂ > t)

and
νǫ,t(dx) = P

ǫ
νǫ

(ωt ∈ dx|τ∂ > t)

The probability measure νǫ being a QSD for P
ǫ, we have νǫ,t = νǫ for all t > 0. We want

to show that ν = νt for all t > 0, we have then to prove the following convergence result:

∀t > 0, ∀D =]c,d[⊂ R+, νǫk,t(D) −→
k→+∞

νt(D). (15)

Indeed, suppose that (15) holds, then on the one hand, νǫk
(D) = νǫk,t(D) → νt(D). In

the other hand νǫk
(D) → ν(D). We have then νt(]c,d[) = ν(]c,d[), ∀]c,d[⊂ R+ and this

conclude the proof of Proposition 7.
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Let us prove (15). By definition,

νǫk,t(D) =

∫
]ǫk,1/ǫk[

P
ǫk

x (ωt ∈ D)dνǫk
(x)

∫
]ǫk,1/ǫk[

P
ǫk
x (τ∂ > t)dνǫk

(x)
.

The numerator is equal to
∫

]ǫk,1/ǫk[

P
ǫk

x (ωt ∈ D)dνǫk
(x) =

∫

]ǫk,1/ǫk[

P
0
x(ωt ∈ D)dνǫk

(x)

+

∫

]ǫk,1/ǫk[

[
P

ǫk

x (ωt ∈ D) − P
0
x(ωt ∈ D)

]
dνǫk

(x)

For all t > 0, the map x 7→ P
0
x(ωt ∈ D) is continuous and bounded, then, by the

convergence property (14),
∫

]ǫk,1/ǫk[

P
0
x(ωt ∈ D)dνǫk

(x) →
∫

]0,∞[

P
0
x(ωt ∈ D)dν(x),

Assume that (H2) is fulfilled, then, similarly to (9) and (11), we have, for all bounded
continuous functions f :]0, + ∞[→ R and all M > 0,

∫ +∞

M

f(x)ηǫk
(x)dµ(x) ≤

(∫ +∞

M

|f(x)|2 dµ(x)

) 1

2

,

and, for all m > 0,

∫ m

0

f(x)ηǫk
(x)dµ(x) ≤

(
λ1/2 + C + 1

) 1

2

(∫ m

0

|f(x)|2
W (x) + C + 1

dµ(x)

) 1

2

.

Replacing f(x) by P
0
x(ωt ∈ D)− P

ǫk

x (ωt ∈ D), which is decreasing to 0 when k → ∞, and
by monotone convergence theorem, we have

∫

]0,m[

[
P

ǫk

x (ωt ∈ D) − P
0
x(ωt ∈ D)

]
dνǫk

(x) −→
k→+∞

0

and ∫

]M,+∞[

[
P

ǫk

x (ωt ∈ D) − P
0
x(ωt ∈ D)

]
dνǫk

(x) −→
k→+∞

0.

Finally, the density of νǫk
being bounded above in every compact set [m,M ], uniformly in

ǫk, the same argument of monotone convergence gives us
∫

]ǫk,1/ǫk[

[
P

ǫk

x (ωt ∈ D) − P
0
x(ωt ∈ D)

]
dνǫk

(x) −→
k→+∞

0.

With similar arguments, the same holds under (H3). Finally, we obtain
∫

]ǫk,1/ǫk[

P
ǫk

x (ωt ∈ D)dνǫk
(x) →

∫

]0,+∞[

P
0
x(ωt ∈ D)dν(x).

Thanks to [3, Lemma 5.3 and Theorem 2.3], the map x 7→ P
0
x(τ∂ > t) = P

0
x(ωt ∈

]0, + ∞[) is continuous, and P
0
x(τ∂ > t) − P

ǫk

x (τ∂ > t) is increasing to 0 when k → ∞.
Thus the denominator can be treated in the same way. 2

We can now conclude the proof of Theorem 1:
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Proposition 8 Assume that (H1) and (H2 or H3) hold. The limit measure ν in the
statement of Proposition 7 is unique. Moreover ν is the Yaglom limit associated with P

0
x,

∀x ∈]0, + ∞[.

Proof of Proposition 8 : The proof of Proposition 7 implies that

P
ǫ
νǫ

(τ∂ > t)−→
ǫ→0

P
0
ν(τ∂ > t), ∀t > 0.

The probability measure νǫ being a QSD for P
ǫ, we have

P
ǫ
νǫ

(τ∂ > t) = e−λǫt, ∀t > 0.

Thanks to (4), λǫ is decreasing to λ0 = infφ∈C∞

0
(]0,+∞[) (L0φ,φ)µ when ǫ goes to 0. As a

consequence,
P

0
ν(τ∂ > t) = e−λ0t, ∀t > 0.

In this case, the density of ν with respect to dµ is an eigenfunction of L0 with eigenvalue
−λ0 < 0, where (L0)∗ is the adjoint operator of L0 (this is a consequence of the spectral
decomposition proved in [3, Theorem 3.2]). As defined, −λ0 is at the bottom of the
spectrum of (L0)∗. Thanks to [3, Theorem 3.2], this eigenvalue is simple. Moreover, [3,
Theorem 5.2] states that this QSD is equal to limt→+∞ P

0
x(Xt ∈ .|τ∂ > t), what concludes

the proof. 2

2.3 Diffusions with values in a bounded interval

Theorem 1 is stated for 1-dimensional diffusions with values in ]0, + ∞[. However, most
of the proofs can be easily adapted to diffusions with values in a bounded interval ]a,b[,
where −∞ < a < b < +∞, defined by the SDE

dXt = dBt − q(Xt)dt, X0 = x ∈]a,b[,

and killed when it hits a or b. Here B is a standard Brownian motion and q ∈ C1(]a,b[).
More precisely, let us denote by P

0 the law of such a diffusion. For each ǫ > 0, define
P

ǫ as the law of a diffusion with values in ]a + ǫ,b− ǫ[, driven by the SDE

dXt = dBt − q(Xt)dt, X0 = x ∈]a + ǫ,b− ǫ[,

and killed when it hits a + ǫ or b − ǫ. As proved in [22], there exists a unique QSD νǫ

associated with P
ǫ.

We define Q(x) =
∫ x

(a+b)/2
q(y)dy and W (x) = q(x)2 − q′(x). The counterpart of

Theorem 1 under these settings is

Theorem 9 Assume that the following hypotheses are fulfilled:

Hypothesis 4 (HH1) W is uniformly bounded below by −C, where C is a positive
constant.

Hypothesis 5 (HH2) x 7→ 1
W (x)+C+1

e−2Q(x) or x 7→ (x − a)e−Q(x) is integrable on a
neighbourhood of a.

11



Hypothesis 6 (HH3) x 7→ 1
W (x)+C+1

e−2Q(x) or x 7→ (b − x)e−Q(x) is integrable on a
neighbourhood of b.

Then the family of QSD (νǫ) is tight as family of measures on ]a,b[. Moreover, every limit
point of the family (νǫ)0<ǫ<1/2 is a QSD for P

0.

Remark 5 Our aim isn’t to develop this part, but we point out that to show that Propo-
sition 8 remains valid, most of the arguments used to prove the key results [3, Theorem
3.2] and [3, Theorem 5.2] can be adapted to these settings.

3 Approximation of νǫ, QSD for P
ǫ

We are interested in proving an approximation method for the QSD associated with P
ǫ.

It will be sufficient to prove it for any diffusion (Xt) taking its values in ]0,1[ in place of
]ǫ,1/ǫ[, defined by the stochastic differential equation (SDE)

dXt = dBt − q(Xt)dt, X0 = x > 0, (16)

and killed when Xt hits the boundary {0,1}. Here B is a real Brownian motion and
q ∈ C1([0,1]). The law of X will be denoted by P.

From [22], the QSD of X is unique and equals the Yaglom limit. It will be denoted by
ν. For notational convenience, new notations have been defined for this section, which is
totally independent of the previous one.

Fix N ≥ 2 and let us define formally the interacting particle process with N particles
described in the introduction. Let B1,...,BN be N independent Brownian motions and
(X1

0 ,...,X
N
0 ) ∈]0,1[N be the starting point of the process.� For each i ∈ {1,...,N}, the particle X i evolves in ]0,1[ and satisfies the SDE dX i

t =
dBi

t −q(X i
t)dt (and then it is independent of the others) until τ i

1 = inf{t ≥ 0, X i
t− =

0 or 1}.� At time τ1 = min{τ 1
1 ,...,τ

1
N}, the path of a particle, denoted by i1 (it is unique), has

a left limit equal to 0 or 1.� A particle j1 is chosen in {1,...,N} \ {i1}. The particle i1 jumps on the position of
the particle j1: we set X i1

τ1 := Xj1
τ1 .� After time τ1, each particle X i evolves in ]0,1[ with respect to the SDE dX i

t =
dBi

t − q(X i
t)dt until τ i

2 = inf{t > τ1, X
i
t− = 0 or 1}. At time τ1, all the particles are

in ]0,1[, so that we have τ i
2 > τ1 for all i ∈ {1,...,N} almost surely.� At time τ2 = min{τ 1

2 ,...,τ
N
2 } (which is then strictly bigger than τ1), a unique particle

i2 has a path whose left limit is equal to 0 or 1.� A particle j2 is chosen in {1,...,N} \ {i2}. The particle i2 jumps on the position of
the particle j2: we set X i2

τ2 := Xj2
τ2 .� After time τ2, the particles evolve independently from each other and so on.

Following this way, we define the strictly increasing sequence of stopping times 0 < τ1 <
τ2 < τ3 < ..., the time τ∞ = limn→∞ τn and the interacting particle system (X1

t ,...,X
N
t )

for all t ∈ [0,τ∞[. The law of (X1,...,XN ) will be denoted by P
ipp.

12



We can now state the main result of this section:

Theorem 10 (X1,...,XN ) is well defined, that means τ∞ = +∞ almost surely. It is
geometrically ergodic, with unique stationary distribution MN .

Let XN be the empirical stationary measure of the interacting particle process with N
particles, that is the empirical measure of a random vector (x1,...,xN ) ∈]0,1[N distributed
with respect to the stationary measure MN of the process (X1,...,XN ). The sequence of
random measures (XN)N≥2 converges in law to the deterministic measure ν, QSD of the
process X.

Subsection 3.1 is devoted to prove a coupling which ensures the non-degeneracy of
the particles at the boundary. A consequence will be that τ∞ = +∞ almost surely. In
Subsection 3.2, the process is studied in finite time. We prove that the empirical measure
of the process (X1,...,XN ) at time t converges, when N goes to infinity, to the distribution
of Xt conditioned to not be killed until time t, which is Pµ0

(Xt ∈ .|Xt 6= ∂) (µ0 denotes
the limit of the empirical measure of the process at time 0). We prove in Subsection 3.3
that the interacting particle system (X1,...,XN ) is geometrically ergodic. We conclude by
showing the convergence of the empirical stationary measure to the QSD ν.

3.1 Existence and non-degeneracy at the boundary

One of the most important fact when studying the interacting particle system is that
the particles don’t degenerate at the boundary. This is an evidence if the particles are
independent. In our case, we will prove a coupling between (X1,...,XN ) and an other
process (Y 1,...,Y N) whose components are independent identically distributed and don’t
degenerate at the boundary and such that, for all i ∈ {1,...,N},

0 ≤ Y i ≤ X i ≤ 1 − Y i ≤ 1 a.s. (17)

With this construction, the process (X1,...,XN ) doesn’t degenerate at the boundary, be-
cause each of its particles X i is contained in [Y i,1 − Y i]. This coupling will be useful in
each step of the proof.

3.1.1 Coupling’s construction

Define Q = supx∈]0,1[ |q(x)| (we have Q < +∞ by hypothesis) and fix i ∈ {1,...,N}. The
process Y i is defined with values in [0,1/3] by the SDE

dY i
t = dW i

t −Qdt, Y i(0) = min
{
X i(0),1 −X i(0),1/3

}
,

with 0 and 1/3 as reflecting boundary (see [5] for the definition of a reflected diffusion).
The coupling inequality (17) is fulfilled at time t = 0. The Brownian motion W i will
depend on Bi and on the position of X i.

If X i
t belongs to [0,1/3], then X i

t ≤ 1/3 and the second part of the coupling inequality
is satisfied, independently of the choice of W i. We only need to ensure that X i

t stays
bigger than Y i

t . If X i
t belongs to [2/3,1[, we only need to ensure that it is smaller than

1 − Y i
t . If it belongs to ]1/3,2/3[, the coupling inequality is obviously fulfilled, thanks to

the reflection of Y i on 1/3.

13



Assume that X i
t is in ]0,1/3] and that the coupling inequality is fulfilled at time t. We

have d(X i
t − Y i

t ) = dBi
t − dW i

t + (Q − q(Xt))dt, with Q − q(Xt) ≥ 0. If we choose W i

so that dBi
t − dW i

t = 0, then d(X i
t − Y i

t ) = (Q− q(Xt))dt is increasing with time almost
surely and the coupling inequality remains fulfilled. In a similar way, if X i

t is in [2/3,1[,
we have to choose W i so that dBi

t + dW i
t = 0. We will see in the proof of the coupling

inequality that the jumps of X i and the reflexion of Y i on 0 do not play any role in the
coupling inequality (see Figure 2).

1

0

t

2

3

1

3

t0 t1 t2 t3

Y
1

X
1

1 − Y
1

Figure 2: The process Y 1

Let us define the Brownian motionW i in an explicit form. First, we build a sequence of
strictly increasing times (tin)n≥0 such that, for each n ≥ 0, X i

t ∈]0,2/3[ for all t ∈ [ti2n,t
i
2n+1[

and X i
t ∈]1/3,1[ for all t ∈ [ti2n+1,t

i
2n+2[. Define

ti0 = inf {t ∈ [0,+ ∞], X i
t ∈]0,1/3]},

ti1 = inf {t ∈ [t0,+ ∞], X i
t ∈ [2/3,1[},

and, for n ≥ 1,

ti2n = inf {t ∈ [ti2n−1,+ ∞], X i
t ∈]0,1/3]},

ti2n+1 = inf {t ∈ [ti2n,+ ∞], X i
t ∈]2/3,1]}.

Depending on the position of X i, which is stated by the sequence (tn)n≥2, we define W i

by

W i
t = −Bi

t for t ∈ [0,t0],

and, for all n ≥ 0,

W i
t = W i

t2n
+ (Bi

t − Bi
t2n

) for t ∈ [t2n,t2n+1]

W i
t = W i

t2n+1
− (Bi

t −Bi
t2n+1

) for t ∈ [t2n+1,t2n+2].

14



If limn→∞ tn < +∞, then W i can be extended by continuity on [0, + ∞[, so that Y i
t is

well defined for all t ∈ [0,+ ∞[.
The sequence (tin)n∈N is a sequence of stopping times for the natural filtration of the

process (X1,...,XN). Conditionally to the sequence (jn)n≥1 (the particles which are chosen
at each successive jump), (X1,...,XN ) only depends on (B1,...,BN ). One can then apply
the strong Markov property to (B1,...,BN ) at time tin, ∀i ∈ {1,...,N} and ∀n ∈ N.

As a direct consequence of the symmetry of a Brownian motion’s law and of the strong
Markov property applied to the N -dimensional Brownian motion (B1,...,Bi,...,BN ), W i

is a Brownian motion. Note that the sequence of stopping times depends clearly on the
position of other particles and then on the Bj ’s, for j ∈ {1,...,N}. However, the Brownian
motions {W j}j=1,...,N are independent processes. Indeed, the sequence (tn)n≥0 doesn’t play
any role in the law of W i and, to be convinced of that, one can compute the covariance
matrix of the Gaussian variables W j

t , for any t ∈ [0,+∞[, which is clearly a diagonal one.

Proposition 11 The coupling inequality (17) is fulfilled for all t ∈ [0,τ∞[.

Proof of Proposition 11 : Define the time ζ = inf {0 ≤ t ≤ τ∞, Y
i
t > X i

t} and let us work
conditionally to ζ < τ∞, then we have, by right continuity of the two processes, Y i

ζ ≥ X i
ζ

a.s.
We first show that ζ is a jump time for the particle i. Assume the converse. If ζ = 0,

thenX i
ζ = Y i

ζ and, if ζ > 0, then X i and Y i are continuous in a neighbourhood [ζ−h,ζ+h]
of ζ , where h > 0, and we have Y i

t ≤ X i
t , for all t ∈ [ζ − h,ζ [, so that, by left continuity

Y i
ζ ≤ X i

ζ, and then Y i
ζ = X i

ζ . Therefore, we have X i
ζ ∈]0,1/3] and ∃n ≥ 0 such that

ζ ∈ [t2n,t2n+1[, and, for h small enough, one can assume that ζ + h < t2n+1. Then, for all

t ∈ [ζ,ζ + h], d(X i
t − Y i

t ) = (Q − q(X i
t))dt + dL

1/3
t , where Q − q(X i

t) ≥ 0 and L
1/3
t is an

increasing process due to the reflecting property of the boundary 1/3 for Y i (note that
Y i

ζ > 0, so that, for h > 0 small enough, Y i
t > 0 for all t ∈ [ζ,ζ + h[). Then X i − Y i stays

non-negative between times ζ and ζ + h, what contradicts the definition ζ .
The time ζ is then a jump time for the particle i. If X i

ζ− = 0, then, by definition of
ζ , Y i

ζ− = 0 and, by left continuity of the process Y i, Y i
ζ = 0, so that X i

ζ = 0, what is
impossible. Therefore X i

ζ− = 1 > 1 − Y i
ζ−, and, by existence of left limits for the two

processes, ∃t < ζ such that X i
t > 1 − Y i

t . Define ζ ′ = inf {t ≥ 0, 1 − Y i
t < X i

t}. We have
then, conditionally to ζ < τ∞, ζ ′ < ζ .

By symmetry, conditionally to the event ζ ′ < τ∞, we have ζ < ζ ′, then ζ < τ∞ and
therefore ζ < ζ ′. Finally, ζ = ζ ′ = τ∞ almost surely. 2

3.1.2 Existence of the interacting particle process

Proposition 12 For all N ≥ 2, the interacting particle system (X1,...,XN ) is well de-
fined, that is τ∞ = +∞ almost surely.

Proof of Proposition 12 : Let N ≥ 2 be the size of the interacting particle system and fix
arbitrarily its starting point x ∈]0,1[N . We define the event Cx = {τ∞ < +∞}.

Conditionally to Cx, the total number of jumps is equal to +∞. There is a finite
number of particles, then at least one particle, say i0, makes an infinite number of jump
before τ∞. At each jump of i0, a particle is uniformly chosen in {1,...,N}. By the law of
large numbers, each particle is chosen infinitely often before τ∞. Assume that a particle,
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say j0, remains all the time in ]ǫ,1 − ǫ[, with ǫ > 0. i0 will jump on the position of j0
infinitely often. Then it will come back from ]ǫ,1 − ǫ[ to the boundary infinitely often in
finite time, what is impossible. We deduce that, conditionally to Cx, all particles of the
interacting particle system are going near to the boundary, that is

Cx ⊂
{

lim
t→τ∞

min (X i
t ,1 −X i

t) = 0

}
, (18)

for each particle i ∈ {1,2,...,N}.
Using the coupling inequality of Proposition 11, we deduce from (18) that

Cx ⊂
{

lim
t→τ∞

(Y 1
t ,...,Y

N
t ) = 0

}
.

Then, conditionally to Cx, Y
1 and Y 2 are independent reflected diffusions with bounded

drifts, which hit 0 at the same time. This occurs for two independent reflected Brownian
motions with probability 0, and then for Y 1 and Y 2 too, by the Girsanov’s Theorem.
That implies P (Cx) = 0.

Finally, we have τ∞ = +∞ almost surely.

Remark 6 One could hope to apply this method directly to the process with law P
0

studied in the first part of this paper. Unfortunately, it can be very difficult to show
the existence of the process or the non-degeneracy at the boundary: the drift being
unbounded, the law of the reflected diffusion used in this proof isn’t absolutely continuous
with respect to the law of the reflected Brownian motion and stay at 0 all the time after
hitting it.

3.1.3 Non-degeneracy at the boundary

For all r > 0, we define the open set Dr =]r,1− r[. Let µN(t,dx) (resp. µ′N(t,dx)) be the
empirical measure of the system of particles (X i

t)i=1,...,N (resp. (Y i
t )i=1,...,N), that is

µN(t,dx) =
1

N

N∑

i=1

δXi
t
(dx) and µ′N(t,dx) =

1

N

N∑

i=1

δY i
t
(dx).

We will suppose that, at time 0, the sequence of empirical measures (µN(0,dx))N≥2 satisfies
the following non-degeneracy property, which ensures that the mass of µN(0,dx) doesn’t
degenerate at the boundary, uniformly in N :

Definition 1 The family of random probabilities {µN(dx)} is said to verify the non-
degeneracy property if, for any ǫ > 0,

lim
r→0

lim sup
N→∞

P
(
µN(Dc

r) > ǫ
)

= 0, (19)

where Dc
r =]0,r] ∪ [1 − r,1[.

From definition of (Y i
0 )i∈{1,...,N}, the non-degeneracy of µ′N(0,dx) is the consequence of

the non-degeneracy of µN(0,dx). The end of the section is devoted to prove the following
Proposition, which states that the non-degeneracy property is maintained over time:

16



Proposition 13 Assume that (µN(0,dx))N≥2 satisfies the non-degeneracy property, then,
for all T > 0 and all ǫ > 0,

lim
r→0

lim sup
N→∞

P ( sup
t∈[0,T ]

µN(t,Dc
r) > ǫ) = 0.

Proof of Proposition 13 : Fix T > 0 and ǫ > 0. Because of the non-degeneracy of
µ′N(0,dx), one can find a > 0 such that

P

(
1

N

N∑

i=1

1Y i
0
≤a ≥ ǫ/2

)
→ 0 (20)

when N goes to ∞.
We want to apply a law of large numbers, but the Y i

0 aren’t independent and depend
on the number of particles N . Let us define the diffusion Z i with values in [0,1/3], defined
by the SDE

dZ i
t = dW ′i

t −Qdt, Zi(0) = a,

with 0 and 1/3 as reflecting boundary. Here the W ′i are independent Brownian mo-
tions. The random processes 1Zi

.∈Dc
r

are independent, identically distributed with values
in D([0,T ],R). One can apply to them the following law of large numbers, proved in [24]:

sup
t∈[0,T ]

∣∣∣∣∣
1

N

N∑

i=1

1Zi
t
∈Dc

r
− E

(
1Zi

t
∈Dc

r

)
∣∣∣∣∣

Prob−→
N→∞

0.

We have E
(
1Zi

.∈Dc
r

)
= P (Z i

. ∈ Dc
r), which tends uniformly to 0 when r → 0. We deduce

from it that

lim
r→0

lim
N→∞

P

(
sup

t∈[0,T ]

1

N

N∑

i=1

1Zi
t
∈Dc

r
≥ ǫ/2

)
= 0. (21)

For each number of particles N ≥ 2, one can easily find a coupling between Z i and
Y i, where Z i

0 ≤ Y i
0 implies Z i

t ≤ Y i
t for all t ∈ [0,T ]. With such a coupling, we have

1

N

N∑

i=1

1Y i
t
∈Dc

r
1Y i

0
≥a ≤ 1

N

N∑

i=1

1Zi
t
∈Dc

r
.

By adding the contribution of the Y i which starts in ]0,a[, we get

1

N

N∑

i=1

1Y i
t
∈Dc

r
≤ 1

N

N∑

i=1

1Zi
t
∈Dc

r
+

1

N

N∑

i=1

1Y i
0
<a.

The limits (20) and (21) allow us to conclude the proof.

3.2 Convergence in finite time

Fix T > 0. This section is devoted to the proof of the following proposition, which
states that the empirical measure process converges to the distribution of the process X
conditioned to not be killed.
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Proposition 14 Assume that (µN(0,dx))N∈N converges in law to the random probabil-
ity measure µ(0,dx) with respect to the weak topology and satisfies the non-degeneracy
property.

Then, ∀T > 0, the measure processes (µN(t,dx))t∈[0,T ] converge in law to (P(Xt ∈
dx|Xt 6= ∂))t∈[0,T ] in the Skorokhod space D([0,T ],M1(]0,1[)) when N → ∞. Here
M1(]0,1[) denotes the space of probability measures on ]0,1[ equipped with the weak topol-
ogy.

Proof of Proposition 14 : For all maps ψ ∈ C2
0 ([0,1]) vanishing on {0,1}, one can apply

the Itô’s formula to the semimartingale ψ(X i
t) (see [21, Theorem 27.1]), whose number of

jumps in [0,T ] is finite almost surely :

ψ(X i
t) = ψ(X i

0) +

∫ t

0

ψ′(X i
s-)dB

i
s +

∫ t

0

(
ψ′(X i

s-)q(X
i
s-) +

1

2
ψ′′(X i

s-)

)
ds

+
∑

0≤s≤t

ψ(X i
s) − ψ(X i

s-) (22)

Let us denote by (τ i
n)1≤n the increasing sequence of jump times of the particle i. We have

∑

0≤s≤t

ψ(X i
s) − ψ(X i

s-) =
∑

0≤τ i
n≤t

ψ(X i
τn

) − ψ(X i
τn-) (23)

=
∑

0≤τ i
n≤t

ψ(X i
τn

), (24)

because X i
τ i
n- ∈ {0,1} and ψ(0) = ψ(1) = 0. That implies

∑

0≤s≤t

ψ(X i
s) − ψ(X i

s-) =
∑

0≤τ i
n≤t

(
ψ(X i

τ i
n
) − 1

N − 1

N∑

j=1

ψ(Xj
τ i
n-

)

)
(25)

+
1

N − 1

N∑

j=1

∑

0≤τ i
n≤t

ψ(Xj
τ i
n-

). (26)

By summing over i ∈ {1,...,N}, we obtain

µN(t,ψ) = µN(0,ψ) +

∫ t

0

µN(s-,ψ′q +
1

2
ψ′′)ds+ Mc(ψ,t) + Mj(ψ,t)

+
1

N − 1

∑

0≤τn≤t

µN(τn-,ψ), (27)

where Mc(ψ,t) is the continuous martingale 1
N

∑N
i=1

∫ t

0
ψ′(X i

s-)dB
i
s and Mj(ψ,t) is the

pure jump martingale

Mj(ψ,t) =
1

N

N∑

i=1

∑

0≤τ i
n≤t

(
ψ(X i

τ i
n
) − 1

N − 1

N∑

j=1

ψ(Xj
τ i
n-)

)
. (28)
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Now, we interpret each jump as a killing. Then we introduce a loss of 1/N of the total
mass at each jump: we look at the measure process µN decreased by a factor N−1

N
at each

jump. More precisely, we set

νN(t,dx) =

(
N − 1

N

)AN
t

µN(t,dx),

where AN (t) = #
⋃N

i=1{τ i
n, 0 ≤ τ i

n ≤ t} denotes the total number of jumps before time t.

Lemma 15 The sequence of measure processes
(
νN (.,dx)

)
N

converges in law to Pµ0
(X. ∈

dx) in the Skorokhod topology D([0,T ],M(]0,1[)).

Proof of Lemma 15 : Applying the Itô’s formula to the semimartingale νN(t,ψ), we deduce
from (27) that

νN (t,ψ) = νN (0,ψ) +

∫ t

0

νN (s-,ψ′q + ψ′′)ds+

∫ t

0

(
N − 1

N

)AN
s-

dMc(ψ,s)

+
∑

0≤τn≤t

(νN (τn,ψ) − νN (τn-,ψ)),

Where we have

νN(τn,ψ) − νN (τn-,ψ) =

(
N − 1

N

)AN
τn (

µN(τn,ψ) − µN(τn-,ψ)
)

+ µN(τn-,ψ)

((
N − 1

N

)AN
τn

−
(
N − 1

N

)AN
τn-

)
,

with

µN(τn,ψ) − µN(τn-,ψ) =
1

N − 1
µN(τn-,ψ) + Mj(ψ,τn) −Mj(ψ,τn-)

and
(
N − 1

N

)AN
τn

−
(
N − 1

N

)AN
τn-

= − 1

N − 1

(
N − 1

N

)AN
τn

,

then

νN (τn,ψ) − νN (τn-,ψ) =

(
N − 1

N

)AN
τn (

Mj(ψ,τn) −Mj(ψ,τn-)
)
.

=
N − 1

N

(
N − 1

N

)AN
τn- (

Mj(ψ,τn) −Mj(ψ,τn-)
)

That implies

νN(t,ψ) − νN (0,ψ) −
∫ t

0

νN (s-,ψ′q +
1

2
ψ′′)ds =

∫ t

0

(
N − 1

N

)AN
s-

dMc(ψ,s)

+
N − 1

N

∑

0≤τn≤t

(
N − 1

N

)AN
τn- (

Mj(ψ,τn) −Mj(ψ,τn-)
)

19



We deduce that for all smooth functions Ψ(t,x) vanishing at the boundary

νN(t,Ψ(t,.)) − νN (0,Ψ(0,.)) −
∫ t

0

νN (s-,
∂Ψ(s,.)

∂s
+
∂Ψ(s,.)

∂x
q +

1

2

∂2Ψ(s,.)

∂x2
)ds

=

∫ t

0

(
N − 1

N

)AN
s-

dMc(Ψ(s,.),s)

+
N − 1

N

∑

0≤τn≤t

(
N − 1

N

)AN
τn- (

Mj(Ψ(τn,.),τn) −Mj(Ψ(τn-,.),τn-)
)

(29)

Because
(

N−1
N

)AN
s- ≤ 1 a.s. and by the Doob’s inequality , we have

E


 sup

t∈[0,T ]

∣∣∣∣∣

∫ t

0

(
N − 1

N

)AN
s-

dMc(Ψ(t,.),s)

∣∣∣∣∣

2

 ≤ 1

N
T‖∂Ψ

∂x
‖2
∞. (30)

Note that the jumps of the martingale Mj are smaller than 2
N
‖Ψ‖∞, then

E

[
∑

0≤τn≤T

(
N − 1

N

)2Aτn-(
Mj(Ψ(τn,.),τn) −Mj(Ψ(τn-,.),τn-)

)2
]

≤ 4

N2
‖Ψ‖2

∞E

[
∑

0≤τn≤T

(
N − 1

N

)2Aτn-

]

≤ 4

N
‖Ψ‖2

∞

By the Doob’s inequality, we have then

E


 sup

t∈[0,T ]

∣∣∣∣∣
∑

0≤τn≤t

(
N − 1

N

)AN
τn- (

Mj(Ψ(τn,.),τn) −Mj(Ψ(τn-,.),τn-)
)
∣∣∣∣∣

2

 ≤ 4

N
‖Ψ‖2

∞,

(31)
Define Ψ(s,x) = Pt−sf(x), where f ∈ C∞([0,1]) vanishes on {0,1}, and (Pt) is the

semigroup associated with the diffusion X defined by (16). From Kolmogorov’s equation
(see [9, Proposition 1.5 p.9]),

∂

∂s
Ψ(s,x) +

1

2
∆Ψ(s,x) + q(x)∇Ψ(s,x) = 0.

We deduce from (29), (30) and (31), that

E

(
sup

t∈[0,T ]

∣∣∣∣ν
N (t,f) −

∫ 1

0

Ptf(x)dµN(0,x)

∣∣∣∣
2
)

≤ 1

N
C(f),

where C(f) is a positive constant, which only depends on f . For each map g ∈ C∞([0,1]),
one can set fr(x) = γr(x)g(x), with r > 0, where γr ∈ C∞([0,1]) is equal to 1 on ]2r, 1−2r[
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and vanishes on ]0,r[∪]1 − r,1[. Then

∣∣∣∣ν
N (t,g) −

∫ 1

0

Ptg(x)dµ
N(0,x)

∣∣∣∣ ≤
∣∣∣∣ν

N (t,fr) −
∫ 1

0

Ptfr(x)dµ
N(0,x)

∣∣∣∣

+
∣∣νN (t,(1 − γr)g)

∣∣ (32)

+

∣∣∣∣
∫ 1

0

Pt ((1 − γr)g) (x)dµN(0,x)

∣∣∣∣ , (33)

where (32) (see Proposition 13) and (33) are going to 0 when r tends to 0, uniformly in
N , and fr ∈ C∞([0,1]) vanishes on {0,1}. Then

sup
t∈[0,T ]

∣∣∣∣ν
N (t,g) −

∫ 1

0

Ptg(x)dµ
N(0,x)

∣∣∣∣
L2

−→
N→∞

0.

In particular, νN (.,dx) converges in law to Pµ0
(X. ∈ dx). 2

Let us conclude the proof of Proposition 14. From Lemma 15,

(νN (t,]0,1[),νN (t,dx))t∈[0,T ]
law−→

N→∞
(Pµ(0,dx)(Xt ∈]0,1[),Pµ(0,dx)(Xt ∈ dx))t∈[0,T ]

in the Skorokhod topology D([0,T ],R ×M1(]0,1[)). That means

((
N − 1

N

)AN
t

,νN (t,dx)

)

t∈[0,T ]

law−→
N→∞

(Pµ(0,dx)(Xt ∈]0,1[),Pµ(0,dx)(Xt ∈ dx))t∈[0,T ].

The process Pµ(0,dx)(X. ∈]0,1[) never vanishing almost surely and the limit process being
continuous almost surely, we have

((
N − 1

N

)AN
t

νN (t,dx)

)

t∈[0,T ]

law−→
N→∞

(
Pµ(0,dx)(Xt ∈ dx)/Pµ(0,dx)(Xt ∈]0,1[)

)
t∈[0,T ]

in the Skorokhod topology D([0,T ],M1(]0,1[)). That means

(µN(t,dx))t∈[0,T ]
law−→

N→∞
(Pµ(0,dx)(Xt ∈ dx|Xt 6= ∂))t∈[0,T ]

in the Skorokhod topology D([0,T ],M1(]0,1[)). The proof of Proposition 14 is then com-
plete.

3.3 Existence and convergence of the empirical stationary mea-
sures XN

For each N ≥ 2, we say that the interacting particle process (X1,...,XN) is exponentially
ergodic, if there exists a probability measure MN on ]0,1[N such that,

||Px((X
1
t ,...,X

N
t ) ∈ .) −MN ||TV ≤ C(x)ρt, ∀x ∈]0,1[N , ∀t ∈ R+, (34)

where C(x) is finite, ρ < 1 and ||.||TV is the total variation norm. In particular, MN is a
stationary measure for the process (X1,...,XN). When MN exists, we denote by XN the
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empirical stationary measure associated with MN , that is a random probability which is
distributed as 1

N

∑N
i=1 δxi

, where (x1,...,xN ) is a random vector in ]0,1[N distributed with
respect to MN .

In a first time, we prove that for all N ≥ 2, the interacting particle process with N
particles (X1,...,XN) associated with X is exponentially ergodic. We conclude by proving
that (XN)N converges in law to the unique QSD of X.

3.3.1 Exponential ergodicity

Here N ≥ 2 is fixed. We are interested in proving the following result, which is the first
part of Theorem 10

Proposition 16 The interacting particle process (X1,...,XN ) with law P
ipp is exponen-

tially ergodic.

Proof of Proposition 16 : We focus on the 1-skeleton of the interacting particle process
with N particles, which is the Markov chain (X1

n,...,X
N
n )n∈N. Thanks to [8, Theorem 5.3

p.1681], exponential ergodicity of (X1,...,XN ) will be obtained as soon as the associated
1-skeleton is geometrically ergodic, which means that it exists a probability measure πN

on ]0,1[N such that

||Px((X
1
n,...,X

N
n ) ∈ .) − πN ||TV ≤ C0(x)ρ

n
0 , ∀x ∈]0,1[N , ∀n ∈ N,

where C0(x) is finite and ρ0 < 1.
To prove the geometrical ergodicity of the 1-skeleton, let us introduce the following

definition:

Definition 2 C ⊂]0,1[N is said to be a small set for the Markov chain (X1
n,...,X

N
n )n∈N

if, for some nontrivial probability measure ϑ and some n ≥ 1, ǫ > 0, the n-step transition
probability kernel P n(x,A) := P

ipp
x ((X1

n,...,X
N
n ) ∈ A) satisfies, for all x ∈ C,

P n(x,A) ≥ ǫϑ(A), A ∈ B(]0,1[N).

Lemma 17 All compact set C = [r,1− r]N (with r > 0) is a small set for the 1-skeleton.
Moreover, ∃κ > 0 so that

sup
x∈C

Ex(κ
τ ′

C ) <∞, (35)

where τ ′C is the return time to C.

Proof of Lemma 17: Fix r > 0 and let F be the event “the process (X1,...,XN) has no
jumps between times 0 and 1”. Define p = infx∈[r,1−r]N P

ipp
x (F). Thanks to the coupling

with (Y 1,...,Y N ), we have p > 0. Conditionally to the event F , the particles of the
interacting particle process are independent from each other.

Let us study ϑ1(dx) = P
ipp
(x1,...,xN)(X

1
1 ∈ dx and F). The law of X1 conditionally to F

is the same as the law of X conditioned to not jump, because, given this last event, the
processX1 doesn’t depend on the other particles. Thus the probability of“X1

1 ∈ dx and F”
is Px1

(X1 ∈ dx). The law of X1 has a density p1(x1,y) with respect to the Lebesgue’s
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measure and p1(x1,y) depends continuously on x1 and y. It only vanishes when y = 0 or
1. Then

inf
(x1,y)∈[r,1−r]×[r,1−r]

p1(x1,y) > 0

Denoting this minimum by ǫ′, we have, for all x1 ∈ [r,1 − r], ϑ1(dx) ≥ ǫ′1[r,1−r](x)dx.
Conditionally to F , the particles are independent from each other, so that

P
ipp
(x1,...,xN)((X

1
1 ,...,X

N
1 ) ∈ dy1...dyN |F) =

N∏

i=1

P
ipp
(x1,...,xN)(X

i
1 ∈ dyi|F),

where P
ipp
(x1,...,xN)(X

i
1 ∈ dyi|F) is greater than P

ipp
(x1,...,xN)(X

i
1 ∈ dyi and F) and then greater

than ϑ1(dyi). Finally, we have

P
ipp
(x1,...,xN)((X

1
1 ,...,X

N
1 ) ∈ dy1...dyN |F) ≥ ǫ′

N
1[r,1−r]N (y1,...,yN)dy1...dyN ,

so that [r,1 − r]N is a small set.
For all x ∈]0,1[N , and all n ≥ 1, the probability of being in C at time n + 1 starting

from x at time n is bounded below by the probability pC > 0 for (Y 1,...,Y N) to enter C
at time n+ 1, starting from 0 at time n. Hence, at each time n ≥ 1, (X1,...,XN) returns
to C at time n + 1 with a probability greater than pC > 0. That implies that the return
time to C for the 1-skeleton of the interacting particle process with N particles is bounded
above by a time of geometrical law, independent of the starting point x ∈]0,1[N , and then
satisfies condition (35). 2

The chain (X1
n,...,X

N
n )n∈N is aperiodic. Moreover, if the Lebesgue measure of a subset

A ⊂]0,1[N is strictly positive, then P
ipp
x (τA < ∞) > 0 for all x ∈]0,1[N , where τA is the

first hitting time on A for the chain (X1
n,...,X

N
n )n∈N. Thanks to [8, Theorem 2.1 p.1673], if

such a Markov chain has a small set which satisfies (35), then it is geometrically ergodic.
As a consequence, Lemma 17 allows us to conclude the proof of Proposition 16.

3.3.2 Convergence to the QSD

We are interested in proving the following result, which is the second part of Theorem 10

Proposition 18 The sequence of random measures
(
XN
)

N≥2
converges in law to the

deterministic measure ν, QSD of the process X.

Proof of Proposition 18 : For each r ∈]0,1/4[, we define γr as a non-negative continuous
bounded function from ]0,1[ to R, equal to 1 on D2r and equal to 0 on Dc

r. We have

XN(Dc
r) ≤ XN(1 − γr), ∀r ∈]0,1/4[.

Thanks to Proposition 16, the sequence of random measures (µN(t,dx))N≥2 converges in
law to XN when t tends to +∞. That implies

E
(
µN(t,1 − γr)

)
−→

t→+∞
E
(
XN(1 − γr)

)
, ∀r ∈]0,1/4[.
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We denote by µ′N(t,dx) the empirical measure of (Y 1
t ,...,Y

N
t ). Let us choose γr monotone

on ]r,2r[ and ]1 − 2r,1 − r[. From the coupling inequality,

µN(t,1 − γr) ≤ µ′N(t,1 − γr)

for all t ∈ R+ and r > 0. Then

E
(
µN(t,1 − γr)

)
≤ E

(
µ′N(t,1 − γr)

)
,

which tends to 0 when t tends to +∞ and r to 0, uniformly in N . As a consequence,

E(XN)(1 − γr)−→
r→0

0,

where E(XN) is the deterministic measure defined by E(XN)(A) = E(XN(A)), for all
measurable set A. That yields

E(XN)(Dc
r)−→

r→0
0,

uniformly in N . The family of intensity measures (E(XN))N is then tight. This is a
sufficient condition for the family of random variables (XN) to be tight, as shown in [16,
Corollary 2.2]. We conclude that it exists a sub-sequence (X φ(N)) which converges in law
to a random probability measure X .

Choose µN(0,dx) = XN(dx). The non-degeneracy property is fulfilled. Thanks to
Proposition 14,

(µφ(N)(t,dx))t∈[0,T ]
law−→

N→∞
(PX (Xt ∈ dx|Xt 6= ∂))t∈[0,T ], ∀T > 0

in the Skorokhod topology D([0,T ],M1(]0,1[)). The limiting process (PX (Xt ∈ dx|Xt 6=
∂))t∈[0,T ] being almost surely continuous,

µφ(N)(t,dx)
law−→

N→∞
PX (Xt ∈ dx|Xt 6= ∂), ∀t > 0,

with respect to the weak topology of M1(]0,1[). By stationarity, the random probability
measures µφ(N)(t,dx) and X φ(N) have the same law. Making N tend to ∞, we deduce
that PX (Xt ∈ dx|Xt 6= ∂) and X have the same law too. This looks like a QSD, but X is
a priori a random measure and we need the following result to conclude.

Lemma 19 For all m ∈ M1(]0,1[),

lim
t→∞

Pm(Xt ∈ A|τ > t) = ν(A),

where τ is the killing time of the process X and ν its unique QSD.

Proof of Lemma 19 : Let m be a probability measure on ]0,1[. ∃λ0 > 0, φ0 and φ̃0

two continuous maps vanishing on 0 and 1 such that, for all x ∈]0,1[ (see R.G. Pinsky’s
explanations [22, Hypotheses 2 and 3]):

lim
t→∞

eλ0tPx(τ > t) = C1φ0(x), (36)

lim
t→∞

eλ0tPx(Xt ∈ A, τ > t) = C2φ0(x)

∫

A

φ̃0(y)dy. (37)
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Here eλ0tPx(τ > t) is uniformly bounded above in the variables t and x (see [3, Proof of
the equality 7.2, p27]), then, by dominated convergence, one can integrate with respect
to m under the limit in (36),

lim
t→∞

eλ0tPm(τ > t) = C1

∫

D

φ0(x)m(dx).

The same holds for (37):

lim
t→∞

eλ0tPm(Xt ∈ A, τ > t) = C2

∫

D

φ0(x)

∫

A

φ̃0(y)dy m(dx).

Then, by Fubini’s Theorem,

lim
t→∞

Pm(Xt ∈ A, τ > t)

Pm(τ > t)
=
C2

C1

∫

A

φ̃0(y)dy,

that is, from (36) and (37) with A =]0,1[,

lim
t→∞

Pm(Xt ∈ A, τ > t)

Pm(τ > t)
=

∫
A
φ̃0(y)dy∫

D
φ̃0(y)dy

which is nothing else but ν(A) (see [22, Proposition 1.10]). 2

Thanks to Lemma 19, PX (Xt ∈ dx|Xt 6= ∂) converges almost surely to the Yaglom limit
when t → +∞, and so do X . Finally, X is the unique QSD of the process and the proof
is complete. 2

4 Numerical applications

4.1 The logistic case

We apply our result to the logistic Feller diffusion with values in ]0, + ∞[, driven by the
stochastic differential equation

dZt =
√
ZtdBt + (rZt − cZ2

t )dt, Z0 = z > 0, (38)

and killed when it hits 0. Here B is a 1-dimensional Brownian motion and r,c are two
positive constants.

We define P
0 as the law of 2

√
Z., which is killed at 0 and satisfies the SDE

dXt = dBt −
(

1

2Xt
− rXt

2
+
cX3

t

4

)
dt, X0 = x ∈]0, + ∞[.

For each ǫ > 0, we define the law P
ǫ and denote its QSD by νǫ.

As proved in [3], (H1) and (H3) are fulfilled in this case. Thanks to Theorem 1 and
denoting by ν the Yaglom limit associated with P

0, we have

νǫ
law−→
ǫ→0

ν.
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In the numerical simulations below, we set ǫ equal to 0.001.
By Theorem 10, we have

XN −→
N→+∞

νǫ,

where XN is the empirical measure of the system studied in Section 3. In the numerical
simulations, we set N = 1000 and, because of the randomness of XN , we approximate
E(XN) using the Ergodic theorem: we compute 1

10000

∑10000
t=1 µN(t,dx). The graphic below

(see Figure 3) shows this approximation for different values of r and c.
As it could be wanted for, greater is c, closer is the support of the QSD to 0. We thus

numerically describe the impact of the linear and quadratic terms on the QSD.

 0
 0  1  2  3  4  5  6  7  8

r=1, c=10
r=1, c=1

r=10, c=1

1

2

Figure 3: E(XN) for the diffusion (38), with different values of r and c

4.2 The Wright-Fisher case

We illustrate the result of Section 2.3 by an application to the Wright-Fisher diffusion
with values in ]0,1[ conditioned to be killed at 0. This diffusion is driven by the SDE

dZt =
√
Zt(1 − Zt)dBt − Ztdt, Z0 = z ∈]0,1[,

and killed when it hits 0 (1 is never reached). In [13], the author proves that the QSD of
this process exists and has the density 2 − 2x with respect to the Lebesgue measure.

Define P
0 as the law of X. = arccos(1 − 2Z.), where Z is defined as above. P

0 is the
law of the diffusion with values in ]0,π[, driven by the SDE

dXt = dBt −
1 − 2 cosXt

2 sinXt
dt, X0 = x ∈]0,π[,

killed when it hits 0 (π is never reached). For all ǫ ∈]0,π/2[, define P
ǫ and νǫ as in Section

2.3.
The drift of the diffusion is q(x) = 1−2 cos Xt

2 sinXt
, ∀x ∈]0,π[. Let us show that it satisfies

the hypotheses of Theorem 9.
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We have, ∀x ∈]0,π[,

q(x)2 − q′(x) =
8 cos2 x+ 2 cosx+ 2 cosx+ 1

4 sin2 x
+ 1

which is positive and tends to +∞ both in 0+ and π−. It implies that hypothesis (HH1)
is fulfilled.

For all x ∈]0,π[,

Q(x) =

∫ x

π/2

q(y)dy

=
1

2
ln
∣∣∣tan

x

2

∣∣∣+ ln |sin x|

= ln

(
2
(
sin

x

2

) 3

2
(
cos

x

2

) 1

2

)
.

That implies

e−Q(x) =
1

2
(
sin x

2

) 3

2
(
cos x

2

) 1

2

then

xe−Q(x) ∼
0+

√
2

x

and

(π − x)e−Q(x) ∼
π−

√
π − x

2
.

Finally, hypotheses (HH2) and (HH3) are satisfied and Theorem 9 can be applied.
In the following numerical simulation (see Figure 4), we set ǫ = 0.001 and N = 1000.

We compute E(XN), which is an approximation of νǫ, and then of ν, with the method
used in the logistic case (see Part 4.1).

The simulation is very close to the QSD (2− 2x)dx, which shows the efficiency of the
method.

Remark 7 In the simulations, we have chosen to simulate a system with N = 1000
particles, because of empirical consideration. The question of convergence speed will be
studied in further works.
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Astérisque 52-53, 117-144

[6] P. Collet, S. Martinez, J. San Martin (1995) Asymptotic laws for one-dimensional
diffusions conditioned to nonabsorption, Ann. Probab., 23-3, 1300-1314.

[7] J.N. Darroch and E. Seneta (1965) On quasi-stationary distributions in absorbing
discrete-time Markov chains, J. Appl. Probab. 2, 88-100

[8] D. Down, S.P. Meyn, R.L. Tweedie (1995) Exponential and uniform ergodicity of
Markov processes, Ann. Probab. 23, 1671-1691.

[9] S.N. Ethier, T.G. Kurtz (1986) Markov Processes, Characterization And Conver-
gence, Wiley series in probability and mathematical statistics.

[10] P.A. Ferrari, Nevena Maric̀ (2006) Quasi-stationary distributions and Fleming-Viot
processes in countable spaces, arXiv:math/0605665, eprint.

[11] P.A. Ferrari, H. Kesten, S. Martinez, P. Picco, (1995) Existence of quasi-stationary
distributions. A renewal dynamical approach, Ann. Probab. 23, 2:511-521.

28



[12] I. Grigorescu, M. Kang (2004) Hydrodynamic limit for a Fleming-Viot type system,
Stochastic Process. Appl. 110, 111-143.

[13] T. Huillet (2007) On Wright-Fisher diffusion and its relatives, J. Stat. Mech. Theory
Exp. P11006.

[14] N. Ikeda, S. Watanabe (1988) Stochastic differential equations and diffusion processes,
North-Holland, Amsterdam, 2nd edition.

[15] J. Jacod, A. Shiryaev (1987) Limit Theorems for Stochastic Processes, Springer,
Berlin.

[16] A. Jakubowski (1988) Tightness criteria for random measures with applications to
the principle of conditioning in Hilbert spaces, Probab. Math. Statist. 9.1, 95-114.

[17] A. Lambert (2005) The branching process with logistic growth, Ann. Appl. Probab.
15, 1506-1535.

[18] M. LLadser, J. San Martin (2000) Domain of attraction of the quasi-stationary dis-
tributions for the Orstein-Uhlenbeck process, J. Appl. Prob. 37, 511-520.

[19] S. Martinez, P. Picco, J. San Martin (1998) Domain of attraction of quasi-stationary
distributions for the Brownian motion with drift, Adv. Appl. Prob. 30, 385-408.

[20] S.P. Meyn, R.L. Tweedie (1993) Markov Chains and Stochastic Stability, Springer,
Berlin.

[21] M. Métivier (1982) Semimartingales, a Course on Stochastic Processes, Gruyter,
Berlin.

[22] R.G. Pinsky (1985) On the convergence of diffusion processes conditioned to remain
in a bounded region for large time to limiting positive recurrent diffusion processes,
Ann. Probab. 13-2, 363-378.

[23] P.K. Polett (regularly updated) Quasi-stationary distributions : a bibliography,
http://www.maths.uq .edu.au/ pkp/papers/qsds/qsds.pdf.

[24] R. Ranga Rao (1963) The law of large numbers for D[0,1]-valued random variables,
Theor. Probab. App. 8, 70-74.

[25] D. Steinsaltz and S.N. Evans (2004) Markov mortality models : implications of quasi-
stationarity and varying initial distributions, Theo. Pop. Bio. 65, 319-337.

[26] D. Steinsaltz and S.N. Evans (2007) Quasistationary distributions for one-
dimensional diffusions with killing, Trans. Amer. Math. Soc. 359-3, 1285-1324.

[27] A.M. Yaglom (1947) Certain limit theorems of the theory of branching processes (in
Russian) Dokl. Acad. Nauk 56, 795-798.

[28] K. Yosida (1966) Functional analysis, 2nd Edition Springer-Verlag.

29


	Introduction
	From unbounded drift to bounded drift
	Tightness of the family ()0<<1/2
	The limit points of the family ()0<<1/2
	Diffusions with values in a bounded interval

	Approximation of , QSD for P
	Existence and non-degeneracy at the boundary
	Coupling's construction
	Existence of the interacting particle process
	Non-degeneracy at the boundary

	Convergence in finite time
	Existence and convergence of the empirical stationary measures XN
	Exponential ergodicity
	Convergence to the QSD


	Numerical applications
	The logistic case
	The Wright-Fisher case


