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Cycles and Components in Geometric Graphs:

Adjacency Operator Approach

René Schott, ∗G. Stacey Staples†

Abstract

Nilpotent and idempotent adjacency operator methods are applied to
the study of random geometric graphs in a discretized, d-dimensional unit
cube [0, 1]d. Cycles are enumerated, sizes of maximal connected compo-
nents are computed, and closed formulas are obtained for graph circumfer-
ence and girth. Expected numbers of k-cycles, expected sizes of maximal
components, and expected circumference and girth are also computed by
considering powers of adjacency operators.

1 Introduction

Consider n points distributed uniformly and independently in the unit cube
[0, 1]d. Given a fixed real number r > 0, connect two points by an edge if
their Euclidean distance is at most r. More specifically, as described in the
monograph by Penrose [11], given some probability density on Rd, let X1, X2, . . .
be i.i.d. d-dimensional random variables with common density f , and let χn =
{X1, . . . , Xn}. The geometric graph G(d)(χn, ; r) is called a random geometric
graph. Random geometric graphs are of particular interest as models of wireless
networks [7], [8].

Asymptotic properties of random geometric graphs have been studied in a
number of papers. For example, fix d ≥ 2, and let n points be uniformly and
independently distributed in [0, 1]d. Letting ρn denote the minimum r at which
the corresponding geometric graph is k-connected and letting σn denote the
minimum r at which the graph has minimum degree k, Penrose [12] showed
that P(ρn = σn) → 1 as n → ∞.

In studies of the capacity of wireless networks, Gupta and Kumar have
considered connectivity in the case d = 2. In particular, they showed that
for appropriate constants cn, if πr(n)2 = (log n + cn)/n, then as n → ∞, the
graph is connected almost surely if cn → ∞ and is disconnected almost surely
if cn → −∞ [6].
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In contrast to previous works on random geometric graphs, the goal of the
current work is to recover information about a geometric graph’s cycles and
connected components using methods from algebraic probability theory. In ear-
lier works by the current authors (cf. [15], [16], [17], [21]), adjacency operators
associated with finite graphs and Bernoulli random graphs were constructed
using commuting elements that square to zero. Cycles were enumerated by con-
sidering powers of the resulting nilpotent operators. Similarly, by constructing
adjacency operators over algebras generated by commuting idempotents, sizes
of maximal connected components can be recovered by considering powers of
the operators [19].

In order to apply the adjacency operator methods to random geometric
graphs, it is necessary to somehow discretize the space. In the current work,
vertices of d-dimensional random geometric graphs will be points in the unit
cube [0, 1]d having rational coordinates; i.e. vertices will be elements of the
space (Q∩ [0, 1])d. More specifically, the d-dimensional cube is partitioned into
equal sub-cubes whose centers serve as the vertices of geometric graphs.

2 Partitions of [0, 1]d and Notational Preliminar-

ies

Consider first the unit d-cube [0, 1]d. Dividing the sides into N equal subinter-
vals yields Nd sub-cubes. Center points of the sub d-cubes will serve as vertices
of a geometric graph.

The set of vertices V is defined by

V = {
(

2j1 − 1

2N
, . . . ,

2jd
− 1

2N

)

: 1 ≤ j1, . . . , jd ≤ N}. (1)

The partitioned d-cube just described will be said to have mesh 1/Nd.
Given any subset U ⊆ V , the topology of the geometric graph on vertex set

U is uniquely determined by

v1 ∼ v2 ⇔ 0 < ‖v1 − v2‖ ≤ r. (2)

Let P be a probability measure on V such that elements of V are pairwise-
independent, and let F be the σ-algebra of subsets of V . In particular, for
U ⊆ V ,

P(U) =
∏

v∈U

P(v)
∏

w/∈U

(1 − P(w)). (3)

The resulting probability space (V,F , P) then induces a probability measure on
the collection of geometric graphs.

Let G denote the collection of geometric graphs on the partitioned d-cube
with mesh 1/Nd. The induced probability measure µ on G is defined by

µ(GU ) =
∏

v∈U

P(v)
∏

w/∈U

(1 − P(w)). (4)
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Figure 1: Two-dimensional geometric graph with radius r =
√

5
32 , and vertex

probability p = 0.2.

Example 2.1. In Figure 1, the unit square [0, 1]2 is partitioned into 4096 sub-
squares. Vertices are present with equal probability p = 0.2, and adjacency is
determined using r =

√
5/32.

Given a collection of commuting null-square elements {ζj} in one-to-one
correspondence with the vertex set V , let ZV denote the associative algebra
generated by {ζj} and the unit scalar 1 = ζ∅. In particular, ζi ζj = ζj ζi when
i 6= j and ζi

2 = 0 for each i.
For convenience, generators of ZV will be labeled with elements of V . The

basis of ZV is then in one-to-one correspondence with the power set of V . For

any subset U ⊆ V , define the notation ζU =
∏

v∈U

ζv. An arbitrary element

z ∈ ZV then has canonical expansion of the form

z =
∑

U⊆V

αU ζU , (5)

where αU ∈ R.

Remark 2.2. The algebra ZV is referred to as a zeon algebra in Feinsilver [4]. It
is the algebra referred to as Cℓ|V |

nil in Staples [22], and it is the algebra referred
to as NV in Schott and Staples [16].
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Assuming a fixed enumeration of elements of V , a probability mapping ϕ is
induced on the generators of ZV by

ϕ(ζvj
) = µ(vj). (6)

Denote by {ei} the collection of orthonormal basis vectors of R|V |2|V |
. The

Dirac notation 〈ei| will represent a row vector, while the conjugate transpose
|ei〉 represents a column vector. In this way,

〈ei|ej〉 =

{

1 if i = j,

0 otherwise.
(7)

Moreover, |ei〉 〈ei| is the rank-one orthogonal projector onto the linear subspace
span(ei).

Fix an enumeration f : 2V → {1, . . . , 2|V |} of the power set 2V . Notation
of the form |eU 〉 and 〈eU | should be understood to use the fixed enumeration of
2V for subsets U ⊆ V .

Define an enumeration of 2V × V by

(U, {vj}) 7→ (f(U) − 1)|V | + j. (8)

The enumeration of 2V × V is then used as a double-index for the unit basis
vectors of R|V |2|V |

. Notation of the form |eU,vi
〉 and 〈eU,vi

| should be viewed in
this context.

For each subset of vertices U ⊆ V , denote the nilpotent adjacency operator

of the corresponding subgraph GU by Λ
(U)
r . In particular,

Λ(U)
r =

∑

vi,vj∈U

0<‖v1−v2‖<Nr

ζ{v2} |eU,v1
〉 〈eU,v2

| . (9)

Use the fixed enumeration of 2V to define the second quantization nilpotent

adjacency operator by

Λr =
∑

U∈2V

(

Λ(U)
r ⊗ |eU 〉 〈eU |

)

. (10)

By construction, Λr is an operator on the Nd2Nd

-dimensional product space

ZV
|V |2|V |

. In particular, Λr is defined by

〈eU,vi
|Λr

∣

∣eU,vj

〉

=

{

ζvj
if vi ∼ vj in GU ,

0 otherwise.
(11)

Recalling the canonical expansion x =
∑

U⊆V

xU ζU ∈ ZV , let N0 = {0, 1, 2, . . .}

and define the function ψ : ZV → N0 by

ψ(x) =
∑

U⊆V

〈x, ζU 〉 =
∑

U⊆V

xu. (12)
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In other words, ψ(x) is the sum of the scalar coefficients in the canonical ex-
pansion of x.

For convenience, define the notation ~eV = e1 + e2 + · · · + e|V |! , and for any
U ⊆ V , define the U -trace of Λr by

trU (Λr) =

|V |
∑

j=1

〈eU,j |Λr |eU,j〉 . (13)

Given a collection of commuting idempotent elements {γj} in one-to-one
correspondence with the vertex set V , let IV denote the associative algebra
generated by {γj} and the unit scalar 1 = γ∅. In particular, γi γj = γj γi when
i 6= j, and γi

2 = γi for each i.
For convenience, generators of IV will be labeled with elements of V . The

basis of IV is then in one-to-one correspondence with the power set of V . For

any subset U ⊆ V , define the notation γU =
∏

v∈U

γv. An arbitrary element

z ∈ IV then has canonical expansion of the form

z =
∑

U⊆V

αU γU , (14)

where αU ∈ R.
Define the degree mapping δ : IV → N0 by

δ

(

∑

U∈2V

αU γU

)

= max
αU 6=0

{|U |}. (15)

In other word, δ(z) is the size of the maximal multi-index in the canonical
expansion of z ∈ IV .

Example 2.3. For example, given V = {v1, . . . , v5}, let

u = γ{v1,v4} + 2γ{v1,v2,v5} + 5γ{v2,v3,v4,v5} ∈ IV .

Then, δ(u) = 4.

For each subset U of the collection of vertices V , denote the corresponding
idempotent adjacency operator by

Ξ(U)
r =

∑

v1,v2∈U

‖v1−v2‖≤r

γv2
|eU,v1

〉 〈eU,v2
| . (16)

Remark 2.4. By using the inequality ‖v1−v2‖ ≤ r in place of 0 < ‖v1−v2‖ ≤ r,
“loops” are placed at each vertex of the graph. This allows every pair of vertices
in a given component to be joined by a closed walk of length 2|V | − 1.
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The second quantization idempotent adjacency operator is defined by

Ξr =
∑

U∈2V

(

Ξ(U)
r ⊗ |eU 〉 〈eU |

)

. (17)

By construction, Ξr is an operator on the Nd2Nd

-dimensional product space

IV
|V |2|V |

. In particular, Ξr is defined by

〈eU,vi
|Ξr

∣

∣eU,vj

〉

=

{

γvj
if vi ∼ vj in GU ,

0 otherwise.
(18)

3 Main Results

Theorem 3.1. Let k ≥ 3 be fixed. Let Λr denote the second quantization

nilpotent adjacency operator. Let Xk denote the number of k-cycles in a random

geometric graph in the partitioned d-cube with mesh 1/Nd. Then,

E(Xk) =
1

2k

∑

U∈2V

µ(GU )ψ
(

trU (Λr
k)

)

. (19)

Proof. Fix vertex set U ⊆ V and integer k ≥ 3, and consider the nilpotent

adjacency operator Λ
(U)
r . A well-known result in graph theory states that the

diagonal elements of the kth power of a graph’s adjacency matrix correspond
to the graph’s closed k-walks. Similarly, a diagonal element of the kth power
of a graph’s nilpotent adjacency operator is a sum of products of k commuting
null-square generators indexed by subsets of vertices. Because each generator
ζi squares to zero, a straightforward inductive argument shows that

〈

ej |Λ(U)
r

k|ej

〉

=
∑

k-cycles W⊆U

based at vj

ζW (20)

for any integer j satisfying 1 ≤ j ≤ |V |. Applying the mapping ψ to this
result reveals the number of distinct k-cycles based at vertex vj in GU , if vj ∈
U . Moreover, each cycle appears with multiplicity 2 due to the two possible
orientations of the cycle.

It follows that applying ψ to the trace of Λ
(U)
r reveals all of the k-cycles

contained in GU . Each k-cycle now appears with multiplicity 2k due to the k
choices of basepoint for each cycle. By construction, applying the U -trace of
the second quantization nilpotent adjacency operator is equivalent to the trace

of Λ
(U)
r .

Finally, summing the products of graph probabilities and numbers of k-cycles
over all geometric graphs GU yields the expected value of Xk.

Example 3.2. Consider the partition of [0, 1]2 of mesh 1/9. Assume each
vertex has equal probability p = 0.2 of existence in the random geometric graph
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Figure 2: A geometric graph plotted with Mathematica in [0, 1]2 partitioned
with mesh 1/9. Adjacency determined by r =

√
2/3.

In[18]:= H* Build all possible adjacency matrices in @0,1 D2 with mesh 1 �9 and r = 2 �3 *LL0 = 880<<;

For Bm= 1, m £ 511, m ++,

Lm = BuildMatrix Bm, 3, 2 � 3F;

If @Mod@m, 50 D � 0, Print @mD, DF

In[43]:= H* Calculate expected number of 4 -cycles in random geometric graph

on partition of mesh 1

9
in @0,1 D2. Assume equiprobable vertices p =.2,

and adjacency determined by radius 2 �3. *L

SumB
Μ@gnum, 3, .2 D

8
 Expand ASimplify ATr AMatPwr ALgnum, 4 EEEE �. 9Ζ_ ® 1=, 8gnum, 0, 511 <F

Out[43]= 0.0464

Figure 3: Mathematica computation of expected number of 4-cycles.

GU . In this case, for any U ⊆ V , µ(GU ) = (0.2)|U |(0.8)(9−|U |). Further, let the
topology of GU be determined by r =

√
2/3. An example of one such graph

appears in Figure 2.
The expected number of 4-cycles in a random geometric graph GU is then

given by

E(X4) =
1

8

∑

U⊆V

(0.2)|U |(0.8)(9−|U |)ψ
(

trU

(

Λ√
2

3

4
))

.

In Figure 3, Mathematica computations (see Appendix for more details of
Mathematica code) reveal E(X4) = 0.0464.

Theorem 3.3. The probability that a random geometric graph contains exactly

ℓ cycles of length k ≥ 3 is given by

P(Xk = ℓ) =
∑

U∈2V

〈

eψ(trU (Λr
k)), e2kℓ

〉

µ(GU ). (21)
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Proof. As in the proof of Theorem 3.1, ψ
(

trU (Λr
k)

)

is a positive integer rep-

resenting the number of k-cycles in the geometric graph GU . Due to multiple
choices of orientation and basepoint, the correction factor 2k must be consid-
ered.

By definition of the inner-product on R|V |2|V |
, 〈ei, ej〉 takes values 1 if i = j

and 0 if i 6= j. Hence,

〈

eψ(trU (Λr
k)), e2kℓ

〉

=

{

1 if GU contains exactly ℓ k-cycles,

0 otherwise.
(22)

Summing the probabilities over all geometric graphs GU containing ℓ k-cycles
yields the required result.

Example 3.4. Recall the random geometric graphs of Example 3.2. Mathe-
matica calculations reveal the probability that such a random graph contains
exactly ℓ 5-cycles in Figure 4.

Definition 3.5. The circumference of a graph G is the length of the longest
cycle contained in G. Circumference will be denoted by Circ(G).

Theorem 3.6. Fix integer ℓ such that 3 ≤ ℓ ≤ |V |. Then, the geometric graph

GU has circumference ℓ if and only if

〈

eψ(trU (Λr
ℓ)), ~eV

〉

|V |
∏

k=ℓ+1

〈

eψ(trU (Λr
k)), e0

〉

= 1. (23)

Proof. Recall that ~eV = e1 + e2 + · · · + e|V |! . It follows that

〈

eψ(trU (Λr
ℓ)), ~eV

〉

=

{

1 if GU contains 1 or more ℓ-cycles,

0 otherwise.
(24)

Moreover,

|V |
∏

k=ℓ+1

〈

eψ(trU (Λr
k)), e0

〉

= 1 if and only if the number of k-cycles in

GU is zero for all ℓ < k ≤ |V |. In other words, ℓ is the length of the longest
cycle in GU .

Proposition 3.7. The expected circumference of a random geometric graph GU

is given by

E(Circ(GU )) =

|V |
∑

ℓ=3

ℓ





∑

U∈2V

〈

eψ(trU (Λr
ℓ)), ~eV

〉

|V |
∏

k=ℓ+1

〈

eψ(trU (Λr
k)), e0

〉

µ(GU )



 .

(25)
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In[16]:= H* Calculate probability that G U contains exactly ell 5 -cycles *L
s0 = Μ@0, 3, .2 D;

For Bgnum = 1, gnum £ 511, gnum ++,

L = BuildMatrix Bgnum, 3, 2 � 3F;

t =
1

10
*Expand @Simplify @Tr @MatPwr @L, 5 DDDD �. 9Ζ_ ® 1=;

s t = s t + Μ@gnum, 3, .2 D;

F

In[136]:= For @ell = 0, ell £ Binomial @9, 5 D � 10, ell ++,

Print @"The probability that G U contains ", ell, " 5 -cycles is ", s ell , "." DD

The probability that GU contains 0 5-cycles is 0.993772.

The probability that GU contains 1 5-cycles is 0.00222822.

The probability that GU contains 2 5-cycles is 0.00268698.

The probability that GU contains 3 5-cycles is 0.000032768.

The probability that GU contains 4 5-cycles is 0.000395264.

The probability that GU contains 5 5-cycles is 0.000425984.

The probability that GU contains 6 5-cycles is 0.

The probability that GU contains 7 5-cycles is 0.000065536.

The probability that GU contains 8 5-cycles is 0.000131072.

The probability that GU contains 9 5-cycles is 0.

The probability that GU contains 10 5-cycles is 0.

The probability that GU contains 11 5-cycles is 0.000131072.

The probability that GU contains 12 5-cycles is 0.000065536.

Figure 4: Probability that a random graph in [0, 1]2 contains ℓ 5-cycles.
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Proof. This is an immediate corollary of Theorem 3.6 by noting that the prob-
ability that a random geometric graph has circumference ℓ is given by

P (Circ(GU ) = ℓ) =
∑

U∈2V

〈

eψ(trU (Λr
ℓ)), ~eV

〉

|V |
∏

k=ℓ+1

〈

eψ(trU (Λr
k)), e0

〉

µ(GU ).

(26)

Definition 3.8. The girth of a graph G is the length of the shortest cycle
contained in G. Girth will be denoted by Girth(G).

Theorem 3.9. Fix integer ℓ such that 3 ≤ ℓ ≤ |V |. Then, the geometric graph

GU has girth ℓ if and only if

〈

eψ(trU (Λr
ℓ)), ~eV

〉

ℓ−1
∏

k=3

〈

eψ(trU (Λr
k)), e0

〉

= 1. (27)

Proof. The proof is virtually identical to that of Theorem 3.6.

Proposition 3.10. The expected girth of a random geometric graph GU is given

by

E(Girth(GU )) =

|V |
∑

ℓ=3

ℓ

(

∑

U∈2V

〈

eψ(trU (Λr
ℓ)), ~eV

〉

ℓ−1
∏

k=3

〈

eψ(trU (Λr
k)), e0

〉

µ(GU )

)

.

(28)

Proof. This is a corollary of Theorem 3.9 by noting that the probability that a
random geometric graph GU has girth ℓ is given by

P (Girth(GU ) = ℓ) =
∑

U∈2V

〈

eψ(trU (Λr
ℓ)), ~eV

〉

ℓ−1
∏

k=3

〈

eψ(trU (Λr
k)), e0

〉

µ(GU ).

(29)

Example 3.11. The expected circumference and expected girth of a random
graph in the partitioned square [0, 1]2 with mesh 1/9 are computed with Math-
ematica in Figure 5. As in Example 3.2, p = 0.2, and r =

√
2/3.

Theorem 3.12. The size of the largest component Cmax in GU is given by

|Cmax| = δ
(

trU

(

Ξr
2|V |−1

))

. (30)

Proof. Similar to the proof of Theorem 3.1, diagonal entries of the kth power of

the idempotent adjacency operator Ξ
(U)
r are sums of products of k commuting

idempotents γj corresponding to closed k-walks in GU . Because γj
2 = γj for

each j, the maximum degree of such a product is k.
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H* Compute expected circumference *L
For Agnum = 1, gnum £ 511, gnum ++,

Tgnum =

Table AIf AIExpand ASimplify ATr AMatPwr ALgnum, ell EEEE �. 9Ζ_ ® 1=M ¹ 0, ell, 0 E, 8ell, 3, 9 <E; E;

Print A"Expected circumference = ", Sum AMaxATgnumE * Μ@gnum, 3, .2 D, 8gnum, 1, 511 <EE;

Print A"Expected girth = ",

SumAIf ANormATgnumE ¹ 0, IMin ADeleteCases ATgnum, 0 EE * Μ@gnum, 3, .2 DM, 0 E, 8gnum, 1, 511 <EE;

Expected circumference = 0.288265

Expected girth = 0.260005

Figure 5: Mathematica computation of expected circumference and girth.

Because GU is undirected and contains at most |V | vertices, the maximum
length of any simple path joining two vertices u, v is |V |. A closed walk from
u → v → u has length at most 2|V | − 1. By including loops at each vertex
in the definition of Ξr, a closed walk of length 2|V | − 1 exists from u to each
vertex v in the same component. Hence, considering diagonal elements of the

(2|V | − 1)th power of Ξ
(U)
r is sufficient to determine the size of the connected

component C containing vertex vj :

|C| = δ
(

〈ej |Ξr
(U)2|V |−1 |ej〉

)

. (31)

The size of the maximal component in GU is the maximum taken over all
vertices in GU , given by

|Cmax| = δ
(

trU

(

Ξr
(U)2|V |−1

))

. (32)

Observing the equivalence

〈eU,j |Ξr|eU,j〉 =
〈

ej |Ξ(U)
r |ej

〉

(33)

completes the proof.

Example 3.13. The size of the maximal component in a geometric graph is
computed with Mathematica in Figure 6.

Corollary 3.14. The graph GU on vertices U ∈ 2V is connected if and only if

for every j such that vj ∈ U ,

δ
(

〈eU,j |Ξr
2|V |−1 |eU,j〉

)

= |U |. (34)

Theorem 3.15. The expected size of a maximal component in a random geo-

metric graph is given by

E(|Cmax|) =
∑

U∈2V

µ(GU )δ
(

trU

(

Ξr
2|V |−1

))

. (35)
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In[84]:= H* Get size of component up to n *L
∆@S_, n _D : = MaxATable AIf AIDegreeKPart @S, k D �. 9Γ_ ® 1=M ¹ 0, k, 0 E, 8k, 1, n <EE

In[79]:= GeoPlot2D B1679, 3, 2 � 3F

Out[79]=

In[81]:= X = BuildIdemMatrix B1679, 3, 2 � 3F

In[86]:= Print @"Size of largest component: ", ∆@Expand @Simplify @Tr @MatPwr @X, 9 DDDD, 9 DD
Size of largest component: 4

Figure 6: Mathematica computation of maximal component size.
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Proof. This is a corollary of Theorem 3.12

Theorem 3.16. The probability that a random geometric graph is connected

and contains no k-cycles for all k ≤ k0 is given by

∑

U∈2V

µ(GU )
〈

eδ(trU (Ξr
2|V |−1)), e|U |

〉〈

e∑k0
k=3

ψ(trU (Λr
k)), e0

〉

. (36)

Proof. Let U ⊆ V be fixed. By Corollary 3.14, the geometric graph GU is
connected if and only if for any j such that vj ∈ U ,

δ
(

〈eU,j |Ξr
2|V |−1 |eU,j〉

)

= |U |. (37)

Moreover, GU contains no k-cycles if and only if

ψ
(

trU (Λr
k)

)

= 0. (38)

Summing over k from 3 to k0 completes the proof.

The following corollary deals with spanning trees, i.e. cycle-free connected
graphs.

Corollary 3.17. The probability that the geometric graph GU is a spanning

tree is given by

∑

U∈2V

µ(GU )
〈

eδ(trU(Ξr
2|V |−1)), e|U |

〉〈

e∑|U|
k=3

ψ(trU (Λr
k)), e0

〉

. (39)

One final goal is to enumerate the connected components in a geometric
graph GU . To this end, define the mapping η : IV → IV by

η

(

∑

U∈V

αU γU

)

=
∑

|U |=δ(u)

αU γU . (40)

Define the function ρ : IV → N0 by

ρ(u) = min
U∋u

{dim(U)}. (41)

In other words, ρ(u) is the dimension of the smallest linear subspace of IV

containing u. Now in a manner similar to the enumeration of cycles, it is
possible to enumerate components.

Theorem 3.18. Let Ξr denote the second quantization nilpotent adjacency op-

erator. Let X denote the number of connected components in a random geomet-

ric graph in the partitioned d-cube with mesh 1/Nd. Then,

E(X) =
∑

U∈2V

µ(GU ) ρ





∑

vj∈U

η
(

〈

eU,j

∣

∣ Ξr
2|V |−1 |eU,j〉

)



 . (42)
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Proof. For vertex set U ⊆ V , letting Cj denote the collection of vertices in the
connected component containing vertex vj in geometric graph GU , one finds

η
(

〈

eU,j

∣

∣ Ξr
2|V |−1 |eU,j〉

)

= αj γCj
, (43)

for some integer αj . In other words, η “sieves out” the blades of IV corre-
sponding to the connected component Cj . While the multi-index is unique, the
vertices can occur in many permutations when computing powers of Ξr, hence
the constant αj .

Accumulating all such terms by summing over 1 ≤ j ≤ |V | yields an el-
ement of IV corresponding to the collection of connected components in GU .
The number of distinct multi-indices is the number of components, and this
corresponds to the dimension of the linear space spanned by the blades. Hence,
application of ρ to the sum completes the proof.

Theorem 3.19. Let X denote the number of components in a random geometric

graph GU . The probability that a random geometric graph contains exactly ℓ
components is given by

P(X = ℓ) =
∑

U∈2V

〈

e
ρ
�∑

vj∈U η(〈eU,j |Ξr
2|V |−1|eU,j〉)

�, eℓ

〉

µ(GU ). (44)

Proof. As in the proof of Theorem 3.18, ρ
(

∑

vj∈U η
(

〈

eU,j

∣

∣ Ξr
2|V |−1 |eU,j〉

))

is

a nonnegative integer representing the number of components in the geometric
graph GU .

By definition of the inner-product on R|V |2|V |
, 〈ei, ej〉 takes values 1 if i = j

and 0 if i 6= j. Hence,

〈

e
ρ
�∑

vj∈U η(〈eU,j |Ξr
2|V |−1|eU,j〉)

�, eℓ

〉

=

{

1 GU contains exactly ℓ components,

0 otherwise.

(45)
Summing the probabilities over all geometric graphs GU containing ℓ com-

ponents yields the required result.

Example 3.20. In Figure 7, Mathematica is used to enumerate the connected
components in the randomly-generated geometric graph of Figure 6.

4 Time Complexity and Clifford Algebras

For geometric graphs in the partitioned d-cube of mesh 1/Nd, computing the kth

power of operators Λ
(U)
r and Ξ

(U)
r is of time complexity O(|V | log k) in terms of

algebra products computed [18]. In this context, enumerating cycles, computing
the size of a maximal component, and computing the circumference and girth
of a fixed geometric graph GU is of polynomial time complexity.
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In[73]:= H* Return maximal degree terms up to degree n *L

Η@S_, n _D : = DegreeKPart @S, ∆@S, n DD

In[79]:= H* Generate table of components *L

m= Simplify @MatPwr @X, 9 DD;

comptab = Table @Η@Expand @Simplify @m@@j DD@@j DDDD, 5 D, 8j, 1, 5 <D;

s = Expand @Sum@comptab @@j DD, 8j, 1, Length @comptab D<DD;

Print @"The number of components is ΡH", s, " L = ", Length @sD, "." D

The number of components is ΡHΓ81< + 33 080. Γ82,3,4,5<L = 2.

Figure 7: Counting the components in a geometric graph.

While this in not a natural measure of computational complexity in classi-
cal computing, recent progress has been made toward a geometric computing
architecture based on Clifford algebras (cf. [5], [13]). This is especially relevant
to the current work because the algebras NV and IV can both be constructed
within Clifford algebras of appropriate signature. Clifford algebras, also known
as geometric algebras, have recently been applied to computer vision [9], [14]
and automated geometric theorem proving [10].

Clifford algebras are also commonly applied to quantum physics. The Clif-
ford algebra Cℓ|V |,|V | in which ZV can be constructed is itself isomorphic to the
|V |-particle fermion algebra familiar to quantum probabilists [2], [3], [23]. In
fact, the adjacency operators themselves can be considered quantum random
variables [20]. The relationship between geometric computing and quantum
computing has also been the subject of recent work by Aerts and Czachor [1].
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Appendix 1: Mathematica Procedures

H* Overload Times operator to handle null -squares Ζ8j < and idempotents Γ8j < *L
Unprotect @Times D; ClearAttributes @Times, Orderless D; Ζa_ Ζb_ : = If @Length @a Ý bD > 0, 0, ΖaÜbD;

Γa_ Γb_ : = ΓaÜb;

Protect @Times D;

Unprotect @Power D;

Ix_ �; ! FreeQ Ax, Ζa_EMn_Integer
: = Module B8y, f <, y = Expand @xD; Switch BEvenQ@nD,

True, If An � 0, Return @1D, Composition @Expand D@Distribute @f @y, y DD �. f ® Times Dn�2E,

False, If Bn � 1, Return @xD, Composition @Expand D@Distribute @f @y, y DD �. f ® Times D
n-1

2 xFFF;

Ix_ �; ! FreeQ Ax, Γa_EMn_Integer
: = Module B8y, f <, y = Expand @xD; Switch BEvenQ@nD,

True, If An � 0, Return @1D, Composition @Expand D@Distribute @f @y, y DD �. f ® Times Dn�2E,

False, If Bn � 1, Return @xD, Composition @Expand D@Distribute @f @y, y DD �. f ® Times D
n-1

2 xFFF;

Protect @Power D; Unprotect @Expand D;

Expand Ax_ �; ! FreeQ Ax, Ζ_EE : = DeleteCases ADistribute @x, Plus, Times D, 0.` Ζ_E;

Expand Ax_ �; ! FreeQ Ax, Γ_EE : = DeleteCases ADistribute @x, Plus, Times D, 0.`  Γ_E; Protect @Expand D;

H* Return terms of particular degree *L
DegreeKPart @x_, k _Integer D : =

DeleteCases ADeleteCases AIf Ak � 0, Expand @xD �. 9Ζ_ ® 0, Γ_ ® 0=,

Expand Ax - Ix �. 9ΖTable @_, 8k<D ® 0, ΓTable @_, 8k<D ® 0=MEE, 0.` E, 0.` E;

H* Matrix powers *L
MatPwr @A_, m_D : = If @m� 1, Return @AD, Return @Expand @A.Simplify @MatPwr @A, m - 1DDDDD;

H* Plot G U in @0,1 D2 Imesh 1�n2M where U is a collection of vertices *L

PlotGU @U_, n _, r _D : =

edgs = 8<;

For @k = 1, k £ Length @UD, k ++,

edgs = Append @edgs, 8U@@kDD<D;

For @j = k + 1, j £ Length @UD, j ++,

edgs = If @Norm@U@@kDD - U@@j DDD £ r, Append @edgs, 8U@@kDD, U @@j DD<D, edgs DDD;

ListLinePlot Bedgs, GridLines ® :Table Bk, :k, 0, 1,
1

n
>F, Table Bk, :k, 0, 1,

1

n
>F>,

Axes ® False, AspectRatio ® 1, PlotRange ® 880, 1 <, 80, 1 <<, Frame ® True,

FrameTicks ® None, Mesh ® Full, PlotStyle ® RGBColor @0, 0, 0 D F

H* Convert binary string to coordinates of subsquares in @0,1 D2 with mesh 1 �n2

B is an integer *L

Bin2Coord @B_, n _D : =

d = PadLeft AIntegerDigits @B, 2 D, n 2E;

pnts = Table B:
H2 j - 1L

2 n
,
H2 k - 1L

2 n
>, 8j, 1, n <, 8k, 1, n <F;

Y = Table Ad@@j DD pnts @@IntegerPart @Hj - 1L � nD + 1DD@@Mod@j, n D + 1DD, 9j, 1, n 2=E;

Return @DeleteCases @Y, 80, 0 <DD;

H* Plot 2 -D Geometric graph with vertex set specified by binary expansion of integer B,

in partition of mesh 1 �n2 with topology determined by radius r *L
GeoPlot2D @B_, n _, r _D : = PlotGU @Bin2Coord @B, n D, n, r D
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In[18]:= H* Example *L
gnum = 28 291;

GeoPlot2D Bgnum, 4, 2 � 3F

Out[19]=

In[20]:= H* Build nilpotent adjacency matrix of G U in @0,1 D2 Imesh 1�n2M *L

BuildMatrix @B_, n _, r _D : =

d = PadLeft AIntegerDigits @B, 2 D, n 2E;

pnts = Table B:
H2 j - 1L

2 n
,
H2 k - 1L

2 n
>, 8j, 1, n <, 8k, 1, n <F;

Y = Table Ad@@j DD pnts @@IntegerPart @Hj - 1L � nD + 1DD@@Mod@j, n D + 1DD, 9j, 1, n 2=E;

U = DeleteCases @Y, 80, 0 <D;

edgs = 8<;

For @k = 1, k £ Length @UD, k ++,

edgs = Append @edgs, 8U@@kDD<D;

For @j = k + 1, j £ Length @UD, j ++,

edgs = If @Norm@U@@kDD - U@@j DDD £ r, Append @edgs, 8U@@kDD, U @@j DD<D, edgs DDD;

H* Build the adjacency matrix *L
A = Table @If @MemberQ@edgs, 8U@@i DD, U @@j DD<D ÈÈ MemberQ@edgs, 8U@@j DD, U @@i DD<D, 1, 0 D,

8i, Length @UD<, 8j, Length @UD<D;

Return @A.DiagonalMatrix @Table @Ζ8i <, 8i, 1, Length @AD<DDD;

In[21]:= H* Build idempotent adjacency matrix of G U in @0,1 D2 Imesh 1�n2M *L

BuildIdemMatrix @B_, n _, r _D : =

d = PadLeft AIntegerDigits @B, 2 D, n 2E;

pnts = Table B:
H2 j - 1L

2 n
,
H2 k - 1L

2 n
>, 8j, 1, n <, 8k, 1, n <F;

Y = Table Ad@@j DD pnts @@IntegerPart @Hj - 1L � nD + 1DD@@Mod@j, n D + 1DD, 9j, 1, n 2=E;

U = DeleteCases @Y, 80, 0 <D;

edgs = 8<;

For @k = 1, k £ Length @UD, k ++,

edgs = Append @edgs, 8U@@kDD<D;

For @j = k + 1, j £ Length @UD, j ++,

edgs = If @Norm@U@@kDD - U@@j DDD £ r, Append @edgs, 8U@@kDD, U @@j DD<D, edgs DDD;

H* Build the adjacency matrix *L
A = Table @If @MemberQ@edgs, 8U@@i DD, U @@j DD<D ÈÈ MemberQ@edgs, 8U@@j DD, U @@i DD<D, 1, 0 D,

8i, Length @UD<, 8j, Length @UD<D;

Return @HA + IdentityMatrix @Length @ADDL.DiagonalMatrix @Table @Γ8i <, 8i, 1, Length @AD<DDD;

In[22]:= H* Random Geom. graph with equiprobable vertices p has probability measure Μ *L
Μ@B_, n _, p _D : = pLength @Bin2Coord @B,n DD H1 - pLn2-Length @Bin2Coord @B,n DD
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