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Cycles and Components in Geometric Graphs: Adjacency Operator Approach

Nilpotent and idempotent adjacency operator methods are applied to the study of random geometric graphs in a discretized, d-dimensional unit cube [0, 1] d . Cycles are enumerated, sizes of maximal connected components are computed, and closed formulas are obtained for graph circumference and girth. Expected numbers of k-cycles, expected sizes of maximal components, and expected circumference and girth are also computed by considering powers of adjacency operators.

Introduction

Consider n points distributed uniformly and independently in the unit cube [0, 1] d . Given a fixed real number r > 0, connect two points by an edge if their Euclidean distance is at most r. More specifically, as described in the monograph by Penrose [START_REF] Penrose | Random geometric graphs[END_REF], given some probability density on R d , let X 1 , X 2 , . . . be i.i.d. d-dimensional random variables with common density f , and let χ n = {X 1 , . . . , X n }. The geometric graph G (d) (χ n , ; r) is called a random geometric graph. Random geometric graphs are of particular interest as models of wireless networks [START_REF] Gupta | The capacity of wireless networks[END_REF], [8].

Asymptotic properties of random geometric graphs have been studied in a number of papers. For example, fix d ≥ 2, and let n points be uniformly and independently distributed in [0, 1] d . Letting ρ n denote the minimum r at which the corresponding geometric graph is k-connected and letting σ n denote the minimum r at which the graph has minimum degree k, Penrose [START_REF] Penrose | On k-connectivity for a geometric random graph[END_REF] showed that P(ρ n = σ n ) → 1 as n → ∞.

In studies of the capacity of wireless networks, Gupta and Kumar have considered connectivity in the case d = 2. In particular, they showed that for appropriate constants c n , if πr(n) 2 = (log n + c n )/n, then as n → ∞, the graph is connected almost surely if c n → ∞ and is disconnected almost surely if c n → -∞ [START_REF] Gupta | Critical power for asymptotic connectivity in wireless networks, Stochastic analysis, control, optimization and applications[END_REF].

In contrast to previous works on random geometric graphs, the goal of the current work is to recover information about a geometric graph's cycles and connected components using methods from algebraic probability theory. In earlier works by the current authors (cf. [START_REF] Schott | Random walks in Clifford algebras of arbitrary signature as walks on directed hypercubes, Markov Processes and Related Fields[END_REF], [START_REF] Schott | Nilpotent adjacency matrices and random graphs[END_REF], [START_REF] Staples | Clifford-algebraic random walks on the hypercube[END_REF], [START_REF] Staples | Norms and generating functions in Clifford algebras[END_REF]), adjacency operators associated with finite graphs and Bernoulli random graphs were constructed using commuting elements that square to zero. Cycles were enumerated by considering powers of the resulting nilpotent operators. Similarly, by constructing adjacency operators over algebras generated by commuting idempotents, sizes of maximal connected components can be recovered by considering powers of the operators [START_REF] Schott | Connected components and evolution of random graphs: an algebraic approach[END_REF].

In order to apply the adjacency operator methods to random geometric graphs, it is necessary to somehow discretize the space. In the current work, vertices of d-dimensional random geometric graphs will be points in the unit cube [0, 1] d having rational coordinates; i.e. vertices will be elements of the space (Q ∩ [0, 1]) d . More specifically, the d-dimensional cube is partitioned into equal sub-cubes whose centers serve as the vertices of geometric graphs. The set of vertices V is defined by

V = { 2j 1 -1 2N , . . . , 2 j d -1 2N : 1 ≤ j 1 , . . . , j d ≤ N }. (1) 
The partitioned d-cube just described will be said to have mesh 1/N d . Given any subset U ⊆ V , the topology of the geometric graph on vertex set U is uniquely determined by

v 1 ∼ v 2 ⇔ 0 < v 1 -v 2 ≤ r. (2) 
Let P be a probability measure on V such that elements of V are pairwiseindependent, and let F be the σ-algebra of subsets of V . In particular, for

U ⊆ V , P(U ) = v∈U P(v) w / ∈U (1 -P(w)). (3) 
The resulting probability space (V, F, P) then induces a probability measure on the collection of geometric graphs. Let G denote the collection of geometric graphs on the partitioned d-cube with mesh 1/N d . The induced probability measure µ on G is defined by

µ(G U ) = v∈U P(v) w / ∈U (1 -P(w)). (4) 
Figure 1: Two-dimensional geometric graph with radius r = √ 5 32 , and vertex probability p = 0.2.

Example 2.1. In Figure 1, the unit square [0, 1] 2 is partitioned into 4096 subsquares. Vertices are present with equal probability p = 0.2, and adjacency is determined using r = √ 5/32.

Given a collection of commuting null-square elements {ζ j } in one-to-one correspondence with the vertex set V , let Z V denote the associative algebra generated by {ζ j } and the unit scalar 1 = ζ ∅ . In particular, ζ i ζ j = ζ j ζ i when i = j and ζ i 2 = 0 for each i. For convenience, generators of Z V will be labeled with elements of V . The basis of Z V is then in one-to-one correspondence with the power set of V . For any subset U ⊆ V , define the notation

ζ U = v∈U ζ v . An arbitrary element z ∈ Z V then has canonical expansion of the form z = U ⊆V α U ζ U , (5) 
where α U ∈ R.

Remark 2.2. The algebra Z V is referred to as a zeon algebra in Feinsilver [START_REF] Feinsilver | Zeon algebra, Fock space, and Markov chains[END_REF]. It is the algebra referred to as Cℓ |V | nil in Staples [START_REF] Staples | Graph-theoretic approach to stochastic integrals with Clifford algebras[END_REF], and it is the algebra referred to as N V in Schott and Staples [START_REF] Schott | Nilpotent adjacency matrices and random graphs[END_REF].

Assuming a fixed enumeration of elements of V , a probability mapping ϕ is induced on the generators of Z V by

ϕ(ζ vj ) = µ(v j ). (6) 
Denote by {e i } the collection of orthonormal basis vectors of R |V |2 |V | . The Dirac notation e i | will represent a row vector, while the conjugate transpose |e i represents a column vector. In this way,

e i |e j = 1 if i = j, 0 otherwise. ( 7 
)
Moreover, |e i e i | is the rank-one orthogonal projector onto the linear subspace span(e i ).

Fix an enumeration f : 2 V → {1, . . . , 2 |V | } of the power set 2 V . Notation of the form |e U and e U | should be understood to use the fixed enumeration of 2 V for subsets U ⊆ V .

Define an enumeration of 2 V × V by

(U, {v j }) → (f (U ) -1)|V | + j. ( 8 
)
The enumeration of 2 V × V is then used as a double-index for the unit basis vectors of R 

Λ (U ) r = v i ,v j ∈U 0< v 1 -v 2 <N r ζ {v2} |e U,v1 e U,v2 | . ( 9 
)
Use the fixed enumeration of 2 V to define the second quantization nilpotent adjacency operator by

Λ r = U ∈2 V Λ (U ) r ⊗ |e U e U | . (10) 
By construction, Λ r is an operator on the

N d 2 N d -dimensional product space Z V |V |2 |V | . In particular, Λ r is defined by e U,vi | Λ r e U,vj = ζ vj if v i ∼ v j in G U , 0 otherwise. ( 11 
)
Recalling the canonical expansion x =

U ⊆V x U ζ U ∈ Z V , let N 0 = {0, 1, 2, . . .}
and define the function ψ :

Z V → N 0 by ψ(x) = U ⊆V x, ζ U = U ⊆V x u . (12) 
In other words, ψ(x) is the sum of the scalar coefficients in the canonical expansion of x.

For convenience, define the notation e V = e 1 + e 2 + • • • + e |V |! , and for any

U ⊆ V , define the U -trace of Λ r by tr U (Λ r ) = |V | j=1 e U,j | Λ r |e U,j . (13) 
Given a collection of commuting idempotent elements {γ j } in one-to-one correspondence with the vertex set V , let I V denote the associative algebra generated by {γ j } and the unit scalar 1 = γ ∅ . In particular, γ i γ j = γ j γ i when i = j, and γ i 2 = γ i for each i. For convenience, generators of I V will be labeled with elements of V . The basis of I V is then in one-to-one correspondence with the power set of V . For any subset U ⊆ V , define the notation γ U = v∈U γ v . An arbitrary element z ∈ I V then has canonical expansion of the form

z = U ⊆V α U γ U , (14) 
where α U ∈ R.

Define the degree mapping δ :

I V → N 0 by δ U ∈2 V α U γ U = max αU =0 {|U |}. (15) 
In other word, δ(z) is the size of the maximal multi-index in the canonical expansion of z ∈ I V .

Example 2.3. For example, given V = {v 1 , . . . , v 5 }, let

u = γ {v1,v4} + 2γ {v1,v2,v5} + 5γ {v2,v3,v4,v5} ∈ I V .
Then, δ(u) = 4.

For each subset U of the collection of vertices V , denote the corresponding idempotent adjacency operator by

Ξ (U ) r = v 1 ,v 2 ∈U v 1 -v 2 ≤r γ v2 |e U,v1 e U,v2 | . ( 16 
)
Remark 2.4. By using the inequality

v 1 -v 2 ≤ r in place of 0 < v 1 -v 2 ≤ r,
"loops" are placed at each vertex of the graph. This allows every pair of vertices in a given component to be joined by a closed walk of length 2|V | -1.

The second quantization idempotent adjacency operator is defined by

Ξ r = U ∈2 V Ξ (U ) r ⊗ |e U e U | . (17) 
By construction, Ξ r is an operator on the

N d 2 N d -dimensional product space I V |V |2 |V | . In particular, Ξ r is defined by e U,vi | Ξ r e U,vj = γ vj if v i ∼ v j in G U , 0 otherwise. ( 18 
)
3 Main Results

Theorem 3.1. Let k ≥ 3 be fixed. Let Λ r denote the second quantization nilpotent adjacency operator. Let X k denote the number of k-cycles in a random geometric graph in the partitioned d-cube with mesh 1/N d . Then,

E(X k ) = 1 2k U ∈2 V µ(G U ) ψ tr U (Λ r k ) . (19) 
Proof. Fix vertex set U ⊆ V and integer k ≥ 3, and consider the nilpotent adjacency operator Λ (U ) r . A well-known result in graph theory states that the diagonal elements of the k th power of a graph's adjacency matrix correspond to the graph's closed k-walks. Similarly, a diagonal element of the k th power of a graph's nilpotent adjacency operator is a sum of products of k commuting null-square generators indexed by subsets of vertices. Because each generator ζ i squares to zero, a straightforward inductive argument shows that

e j |Λ (U ) r k |e j = k-cycles W ⊆U based at v j ζ W (20) 
for any integer j satisfying 1 ≤ j ≤ |V |. Applying the mapping ψ to this result reveals the number of distinct k-cycles based at vertex v j in G U , if v j ∈ U . Moreover, each cycle appears with multiplicity 2 due to the two possible orientations of the cycle. It follows that applying ψ to the trace of Λ G U . In this case, for any U ⊆ V , µ(G U ) = (0.2) |U | (0.8) (9-|U |) . Further, let the topology of G U be determined by r = √ 2/3. An example of one such graph appears in Figure 2.

The expected number of 4-cycles in a random geometric graph G U is then given by

E(X 4 ) = 1 8 U ⊆V (0.2) |U | (0.8) (9-|U |) ψ tr U Λ √ 2 3

4

.

In Figure 3, Mathematica computations (see Appendix for more details of Mathematica code) reveal E(X 4 ) = 0.0464. Theorem 3.3. The probability that a random geometric graph contains exactly ℓ cycles of length k ≥ 3 is given by

P(X k = ℓ) = U ∈2 V e ψ(trU (Λr k )) , e 2kℓ µ(G U ). ( 21 
)
Proof. As in the proof of Theorem 3.1, ψ tr U (Λ r k ) is a positive integer representing the number of k-cycles in the geometric graph G U . Due to multiple choices of orientation and basepoint, the correction factor 2k must be considered.

By definition of the inner-product on R |V |2 |V | , e i , e j takes values 1 if i = j and 0 if i = j. Hence,

e ψ(trU (Λr k )) , e 2kℓ = 1 if G U contains exactly ℓ k-cycles, 0 otherwise. ( 22 
)
Summing the probabilities over all geometric graphs G U containing ℓ k-cycles yields the required result. 

E(Circ(G U )) = |V | ℓ=3 ℓ   U ∈2 V e ψ(tr U (Λr ℓ )) , e V |V | k=ℓ+1 e ψ(tr U (Λr k )) , e 0 µ(G U )   . (25) 
In [START_REF] Schott | Nilpotent adjacency matrices and random graphs[END_REF]:=

Calculate probability that G U contains exactly ell 5 cycles s 0 Μ 0, 3, . In[136]:= For ell 0, ell Binomial 9, 5 10, ell , Print "The probability that G U contains ", ell, " 5 cycles is ", s ell , "."

The probability that G U contains 0 5 cycles is 0.993772.

The probability that G U contains 1 5 cycles is 0.00222822.

The probability that G U contains 2 5 cycles is 0.00268698.

The probability that G U contains 3 5 cycles is 0.000032768.

The probability that G U contains 4 5 cycles is 0.000395264.

The probability that G U contains 5 5 cycles is 0.000425984.

The probability that G U contains 6 5 cycles is 0.

The probability that G U contains 7 5 cycles is 0.000065536.

The probability that G U contains 8 5 cycles is 0.000131072.

The probability that G U contains 9 5 cycles is 0.

The probability that G U contains 10 5 cycles is 0.

The probability that G U contains 11 5 cycles is 0.000131072.

The probability that G U contains 12 5 cycles is 0.000065536. Proof. This is an immediate corollary of Theorem 3.6 by noting that the probability that a random geometric graph has circumference ℓ is given by (

P (Circ(G U ) = ℓ) = U ∈2 V
) 27 
Proof. The proof is virtually identical to that of Theorem 3.6.

Proposition 3.10. The expected girth of a random geometric graph G U is given by

E(Girth(G U )) = |V | ℓ=3 ℓ U ∈2 V e ψ(trU (Λr ℓ )) , e V ℓ-1 k=3 e ψ(trU (Λr k )) , e 0 µ(G U ) . (28) 
Proof. This is a corollary of Theorem 3.9 by noting that the probability that a random geometric graph G U has girth ℓ is given by Theorem 3.12. The size of the largest component C max in G U is given by

P (Girth(G U ) = ℓ) = U ∈2 V
|C max | = δ tr U Ξ r 2|V |-1 . (30) 
Proof. Similar to the proof of Theorem 3.1, diagonal entries of the k th power of the idempotent adjacency operator Ξ (U ) r are sums of products of k commuting idempotents γ j corresponding to closed k-walks in G U . Because γ j 2 = γ j for each j, the maximum degree of such a product is k. 

Compute expected circumference

|C| = δ e j | Ξ r (U ) 2|V |-1 |e j . (31) 
The size of the maximal component in G U is the maximum taken over all vertices in G U , given by

|C max | = δ tr U Ξ r (U ) 2|V |-1 . ( 32 
)
Observing the equivalence e U,j |Ξ r |e U,j = e j |Ξ (U ) r |e j (33) completes the proof.

Example 3.13. The size of the maximal component in a geometric graph is computed with Mathematica in Figure 6.

Corollary 3.14. The graph G U on vertices U ∈ 2 V is connected if and only if for every j such that v j ∈ U ,

δ e U,j | Ξ r 2|V |-1 |e U,j = |U |. ( 34 
)
Theorem 3.15. The expected size of a maximal component in a random geometric graph is given by

E(|C max |) = U ∈2 V µ(G U )δ tr U Ξ r 2|V |-1 . (35) 
In Proof. This is a corollary of Theorem 3.12 Theorem 3.16. The probability that a random geometric graph is connected and contains no k-cycles for all k ≤ k 0 is given by

U ∈2 V µ(G U ) e δ(trU (Ξr 2|V |-1 )
) , e |U | e k 0 k=3 ψ(trU (Λr k )) , e 0 .

(36)

Proof. Let U ⊆ V be fixed. By Corollary 3.14, the geometric graph G U is connected if and only if for any j such that v j ∈ U ,

δ e U,j | Ξ r 2|V |-1 |e U,j = |U |. (37) 
Moreover, G U contains no k-cycles if and only if

ψ tr U (Λ r k ) = 0. ( 38 
)
Summing over k from 3 to k 0 completes the proof.

The following corollary deals with spanning trees, i.e. cycle-free connected graphs.

Corollary 3.17. The probability that the geometric graph G U is a spanning tree is given by

U ∈2 V µ(G U ) e δ(trU (Ξr 2|V |-1 )) , e |U | e |U | k=3 ψ(tr U (Λr k )) , e 0 . (39) 
One final goal is to enumerate the connected components in a geometric graph G U . To this end, define the mapping η :

I V → I V by η U ∈V α U γ U = |U |=δ(u) α U γ U . ( 40 
)
Define the function ρ :

I V → N 0 by ρ(u) = min U ∋u {dim(U)}. (41) 
In other words, ρ(u) is the dimension of the smallest linear subspace of I V containing u. Now in a manner similar to the enumeration of cycles, it is possible to enumerate components.

Theorem 3.18. Let Ξ r denote the second quantization nilpotent adjacency operator. Let X denote the number of connected components in a random geometric graph in the partitioned d-cube with mesh 1/N d . Then,

E(X) = U ∈2 V µ(G U ) ρ   vj ∈U η e U,j Ξ r 2|V |-1 |e U,j   . (42) 
Proof. For vertex set U ⊆ V , letting C j denote the collection of vertices in the connected component containing vertex v j in geometric graph G U , one finds

η e U,j Ξ r 2|V |-1 |e U,j = α j γ Cj , (43) 
for some integer α j . In other words, η "sieves out" the blades of I V corresponding to the connected component C j . While the multi-index is unique, the vertices can occur in many permutations when computing powers of Ξ r , hence the constant α j . Accumulating all such terms by summing over 1 ≤ j ≤ |V | yields an element of I V corresponding to the collection of connected components in G U . The number of distinct multi-indices is the number of components, and this corresponds to the dimension of the linear space spanned by the blades. Hence, application of ρ to the sum completes the proof. Theorem 3.19. Let X denote the number of components in a random geometric graph G U . The probability that a random geometric graph contains exactly ℓ components is given by

P(X = ℓ) = U ∈2 V e ρ v j ∈U η( eU, j |Ξr 2|V |-1 |eU,j ) , e ℓ µ(G U ). (44) 
Proof. As in the proof of Theorem 3.18, ρ vj ∈U η e U,j Ξ r 2|V |-1 |e U,j is a nonnegative integer representing the number of components in the geometric graph G U .

By definition of the inner-product on R |V |2 |V | , e i , e j takes values 1 if i = j and 0 if i = j. Hence, e ρ v j ∈U η( e U, j |Ξr 2|V |-1 |e U,j )

, e ℓ = 1 G U contains exactly ℓ components, 0 otherwise. (45) Summing the probabilities over all geometric graphs G U containing ℓ components yields the required result.

Example 3.20. In Figure 7, Mathematica is used to enumerate the connected components in the randomly-generated geometric graph of Figure 6.

Time Complexity and Clifford Algebras

For geometric graphs in the partitioned d-cube of mesh 1/N d , computing the k th power of operators Λ (U ) r and Ξ (U ) r is of time complexity O(|V | log k) in terms of algebra products computed [START_REF] Schott | Reductions in computational complexity using Clifford algebras[END_REF]. In this context, enumerating cycles, computing the size of a maximal component, and computing the circumference and girth of a fixed geometric graph G U is of polynomial time complexity. The number of components is Ρ Γ 1 33 080. Γ 2,3,4,5 2. While this in not a natural measure of computational complexity in classical computing, recent progress has been made toward a geometric computing architecture based on Clifford algebras (cf. [START_REF] Gentile | CliffoSor, an innovative FPGA-based architecture for geometric algebra[END_REF], [START_REF] Perwass | Implementation of a Clifford algebra coprocessor design on a field-programmable gate array[END_REF]). This is especially relevant to the current work because the algebras N V and I V can both be constructed within Clifford algebras of appropriate signature. Clifford algebras, also known as geometric algebras, have recently been applied to computer vision [START_REF] Lasenby | New geometric methods for computer vision[END_REF], [START_REF] Perwass | Estimation of geometric entities and operators from uncertain data[END_REF] and automated geometric theorem proving [START_REF] Li | Clifford algebra approaches to automated geometry theorem proving, Mathematics Mechanization and Applications[END_REF].

Clifford algebras are also commonly applied to quantum physics. The Clifford algebra Cℓ |V |,|V | in which Z V can be constructed is itself isomorphic to the |V |-particle fermion algebra familiar to quantum probabilists [START_REF] Applebaum | Fermion stochastic calculus in Dirac-Fock space[END_REF], [START_REF] Applebaum | Fermion Itô's formula and stochastic evolutions[END_REF], [START_REF] Waldenfels | An algebraic central limit theorem in the anti-commuting case[END_REF]. In fact, the adjacency operators themselves can be considered quantum random variables [START_REF] Schott | Nilpotent adjacency matrices, random graphs, and quantum random variables[END_REF]. The relationship between geometric computing and quantum computing has also been the subject of recent work by Aerts and Czachor [START_REF] Aerts | Cartoon computation: quantum-like computing without quantum mechanics[END_REF].
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 32223 Figure 2: A geometric graph plotted with Mathematica in [0, 1] 2 partitioned with mesh 1/9. Adjacency determined by r = √ 2/3.
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 343637 Recall the random geometric graphs of Example 3.2. Mathematica calculations reveal the probability that such a random graph contains exactly ℓ 5-cycles in Figure4. Definition 3.5. The circumference of a graph G is the length of the longest cycle contained in G. Circumference will be denoted by Circ(G). Fix integer ℓ such that 3 ≤ ℓ ≤ |V |. Then, the geometric graph G U has circumference ℓ if and only if e ψ(trU (Λr ℓ )) , e V |V | k=ℓ+1 e ψ(trU (Λr k )) , e 0 = 1. (23) Proof. Recall that e V = e 1 + e 2 + • • • + e |V |! . It follows that e ψ(trU (Λr ℓ )) , e V = 1 if G U contains 1 or more ℓ-cycles, trU (Λr k )) , e 0 = 1 if and only if the number of k-cycles in G U is zero for all ℓ < k ≤ |V |. In other words, ℓ is the length of the longest cycle in G U . The expected circumference of a random geometric graph G U is given by
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 4 Figure 4: Probability that a random graph in [0, 1] 2 contains ℓ 5-cycles.
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 39 e ψ(trU (Λr ℓ )) , e V |V | k=ℓ+1 e ψ(trU (Λr k )) , e 0 µ(G U ). (26) Definition 3.8. The girth of a graph G is the length of the shortest cycle contained in G. Girth will be denoted by Girth(G). Fix integer ℓ such that 3 ≤ ℓ ≤ |V |. Then, the geometric graph G U has girth ℓ if and only if e ψ(trU (Λr ℓ )) , e V ℓ-1 k=3 e ψ(trU (Λr k )) , e 0 = 1.
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  ψ(trU (Λr ℓ )) , e V ℓ-1 k=3 e ψ(trU (Λr k )) , e 0 µ(G U ). (29) Example 3.11. The expected circumference and expected girth of a random graph in the partitioned square [0, 1] 2 with mesh 1/9 are computed with Mathematica in Figure 5. As in Example 3.2, p = 0.2, and r = √ 2/3.
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 5 Figure 5: Mathematica computation of expected circumference and girth.
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 946 Figure 6: Mathematica computation of maximal component size.
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 7 Figure 7: Counting the components in a geometric graph.
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